Phosphoinositide 3-kinase/akt signaling pathway and its therapeutical implications for human acute myeloid leukemia

Phosphoinositide 3-kinase/akt signaling pathway and its therapeutical implications for human acute myeloid leukemia

Play all audios:

Loading...

ABSTRACT The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is crucial to many aspects of cell growth, survival and apoptosis, and its constitutive activation has been implicated in


the both the pathogenesis and the progression of a wide variety of neoplasias. Hence, this pathway is an attractive target for the development of novel anticancer strategies. Recent studies


showed that PI3K/Akt signaling is frequently activated in acute myeloid leukemia (AML) patient blasts and strongly contributes to proliferation, survival and drug resistance of these cells.


Upregulation of the PI3K/Akt network in AML may be due to several reasons, including FLT3, Ras or c-Kit mutations. Small molecules designed to selectively target key components of this


signal transduction cascade induce apoptosis and/or markedly increase conventional drug sensitivity of AML blasts _in vitro_. Thus, inhibitory molecules are currently being developed for


clinical use either as single agents or in combination with conventional therapies. However, the PI3K/Akt pathway is important for many physiological cellular functions and, in particular,


for insulin signaling, so that its blockade _in vivo_ might cause severe systemic side effects. In this review, we summarize the existing knowledge about PI3K/Akt signaling in AML cells and


we examine the rationale for targeting this fundamental signal transduction network by means of selective pharmacological inhibitors. Access through your institution Buy or subscribe This is


a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per


year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support REFERENCES * Smith M, Barnett M, Bassan R, Gatta G,


Tondini C, Kern W . Adult acute myeloid leukaemia. _Crit Rev Oncol Hematol_ 2004; 50: 197–222. Article  PubMed  Google Scholar  * Ferrara F . Unanswered questions in acute myeloid leukaemia.


_Lancet Oncol_ 2004; 5: 443–450. Article  PubMed  Google Scholar  * Tallman MS, Gilliland DG, Rowe JM . Drug therapy for acute myeloid leukemia. _Blood_ 2005; 106: 1154–1163. Article  CAS 


PubMed  Google Scholar  * Lowenberg B, Downing JR, Burnett A . Acute myeloid leukemia. _N Engl J Med_ 1999; 341: 1051–1062. Article  CAS  PubMed  Google Scholar  * Grimwade D, Enver T .


Acute promyelocytic leukemia: where does it stem from? _Leukemia_ 2004; 18: 375–384. Article  CAS  PubMed  Google Scholar  * Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, Kelly


G _et al_. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. _Blood_ 2005; 106: 4086–4092. Article  CAS 


PubMed  PubMed Central  Google Scholar  * Warner JK, Wang JC, Takenaka K, Doulatov S, McKenzie JL, Harrington L _et al_. Direct evidence for cooperating genetic events in the leukemic


transformation of normal human hematopoietic cells. _Leukemia_ 2005; 19: 1794–1805. Article  CAS  PubMed  Google Scholar  * Sambani C, La Starza R, Roumier C, Crescenzi B, Stavropoulou C,


Katsarou O _et al_. Partial duplication of the MLL oncogene in patients with aggressive acute myeloid leukemia. _Haematologica_ 2004; 89: 403–407. CAS  PubMed  Google Scholar  * Tonks A,


Tonks AJ, Pearn L, Pearce L, Hoy T, Couzens S _et al_. Expression of AML1-ETO in human myelomonocytic cells selectively inhibits granulocytic differentiation and promotes their self-renewal.


_Leukemia_ 2004; 18: 1238–1245. Article  CAS  PubMed  Google Scholar  * Nanri T, Matsuno N, Kawakita T, Suzushima H, Kawano F, Mitsuya H _et al_. Mutations in the receptor tyrosine kinase


pathway are associated with clinical outcome in patients with acute myeloblastic leukemia harboring t(8;21)(q22;q22). _Leukemia_ 2005; 19: 1361–1366. Article  CAS  PubMed  Google Scholar  *


Shih LY, Huang CF, Wang PN, Wu JH, Lin TL, Dunn P _et al_. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid


leukemia. _Leukemia_ 2004; 18: 466–475. Article  CAS  PubMed  Google Scholar  * Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T . Prognostic significance of FLT3 internal tandem duplication


and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. _Leukemia_ 2005; 19: 1345–1349. Article  CAS  PubMed  Google Scholar  * Cammenga J . Gatekeeper pathways and


cellular background in the pathogenesis and therapy of AML. _Leukemia_ 2005; 19: 1719–1728. Article  CAS  PubMed  Google Scholar  * Moore MA . Converging pathways in leukemogenesis and stem


cell self-renewal. _Exp Hematol_ 2005; 33: 719–737. Article  CAS  PubMed  Google Scholar  * Brazil DP, Yang ZZ, Hemmings BA . Advances in protein kinase B signalling: AKT ion on multiple


fronts. _Trends Biochem Sci_ 2004; 29: 233–242. Article  CAS  PubMed  Google Scholar  * Hanada M, Feng J, Hemmings BA . Structure, regulation and function of PKB/AKT – a major therapeutic


target. _Biochim Biophys Acta_ 2004; 1697: 3–16. Article  CAS  PubMed  Google Scholar  * Bellacosa A, Kumar CC, Di Cristofano A, Testa JR . Activation of AKT kinases in cancer: implications


for therapeutic targeting. _Adv Cancer Res_ 2005; 94: 29–86. Article  CAS  PubMed  Google Scholar  * Osaki M, Oshimura M, Ito H . PI3K-Akt pathway: its functions and alterations in human


cancer. _Apoptosis_ 2004; 9: 667–676. Article  CAS  PubMed  Google Scholar  * Song G, Ouyang G, Bao S . The activation of Akt/PKB signaling pathway and cell survival. _J Cell Mol Med_ 2005;


9: 59–71. Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim D, Dan HC, Park S, Yang L, Liu Q, Kaneko S _et al_. AKT/PKB signaling mechanisms in cancer and chemoresistance. _Front


Biosci_ 2005; 10: 975–987. Article  CAS  PubMed  Google Scholar  * Kubota Y, Ohnishi H, Kitanaka A, Ishida T, Tanaka T . Constitutive activation of PI3K is involved in the spontaneous


proliferation of primary acute myeloid leukemia cells: direct evidence of PI3K activation. _Leukemia_ 2004; 18: 1438–1440. Article  CAS  PubMed  Google Scholar  * Min YH, Eom JI, Cheong JW,


Maeng HO, Kim JY, Jeung HK _et al_. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. _Leukemia_ 2003; 17: 995–997.


Article  CAS  PubMed  Google Scholar  * Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. _Blood_ 2003; 102: 972–980.


Article  CAS  PubMed  Google Scholar  * Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M _et al_. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes


apoptosis in myeloid leukemias. _Leukemia_ 2004; 18: 267–275. Article  CAS  PubMed  Google Scholar  * Stauffer F, Holzer P, Garcia-Echeverria C . Blocking the PI3K/PKB pathway in tumor


cells. _Curr Med Chem Anti-Canc Agents_ 2005; 5: 449–462. Article  CAS  Google Scholar  * Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC . Signalling by PI3K isoforms: insights


from gene-targeted mice. _Trends Biochem Sci_ 2005; 30: 194–204. Article  CAS  PubMed  Google Scholar  * Anderson KE, Jackson SP . Class I phosphoinositide 3-kinases. _Int J Biochem Cell


Biol_ 2003; 35: 1028–1033. Article  CAS  PubMed  Google Scholar  * Stephens L, Williams R, Hawkins P . Phosphoinositide 3-kinases as drug targets in cancer. _Curr Opin Pharmacol_ 2005; 5:


357–365. Article  CAS  PubMed  Google Scholar  * Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . Exploiting the PI3K/AKT pathway for cancer drug discovery. _Nat Rev Drug Discov_ 2005; 4:


988–1004. Article  CAS  PubMed  Google Scholar  * Wymann MP, Bjorklof K, Calvez R, Finan P, Thomast M, Trifilieff A _et al_. Phosphoinositide 3-kinase gamma: a key modulator in inflammation


and allergy. _Biochem Soc Trans_ 2003; 31: 275–280. Article  CAS  PubMed  Google Scholar  * Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C . PI3K/Akt and apoptosis: size matters.


_Oncogene_ 2003; 22: 8983–8998. Article  CAS  PubMed  Google Scholar  * Steelman LS, Bertrand FE, McCubrey JA . The complexity of PTEN: mutation, marker and potential target for therapeutic


intervention. _Expert Opin Ther Targets_ 2004; 8: 537–550. Article  CAS  PubMed  Google Scholar  * Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw III EB _et al_. Insulin resistance and


a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB _β_). _Science_ 2001; 292: 1728–1731. Article  CAS  PubMed  Google Scholar  * Chen WS, Xu PZ, Gottlob K, Chen


ML, Sokol K, Shiyanova T _et al_. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. _Genes Dev_ 2001; 15: 2203–2208. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, Forman MS _et al_. Role for Akt3/protein kinase B_γ_ in attainment of normal brain size. _Mol Cell


Biol_ 2005; 25: 1869–1878. Article  CAS  PubMed  PubMed Central  Google Scholar  * Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and regulation of Akt/PKB by the


rictor-mTOR complex. _Science_ 2005; 307: 1098–1101. Article  CAS  PubMed  Google Scholar  * Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F _et al_. Protein kinase CK2


phosphorylates and upregulates Akt/PKB. _Cell Death Differ_ 2005; 12: 668–677. Article  CAS  PubMed  Google Scholar  * Ye K . PIKE/nuclear PI 3-kinase signaling in preventing programmed cell


death. _J Cell Biochem_ 2005; 96: 463–472. Article  CAS  PubMed  Google Scholar  * Du K, Tsichlis PN . Regulation of the Akt kinase by interacting proteins. _Oncogene_ 2005; 24: 7401–7409.


Article  CAS  PubMed  Google Scholar  * Pearl LH . Hsp90 and Cdc37 – a chaperone cancer conspiracy. _Curr Opin Genet Dev_ 2005; 15: 55–61. Article  CAS  PubMed  Google Scholar  * West KA,


Castillo SS, Dennis PA . Activation of the PI3K/Akt pathway and chemotherapeutic resistance. _Drug Resist Updat_ 2002; 5: 234–248. Article  CAS  PubMed  Google Scholar  * Pelicano H, Carney


D, Huang P . ROS stress in cancer cells and therapeutic implications. _Drug Resist Updat_ 2004; 7: 97–110. Article  CAS  PubMed  Google Scholar  * Plo I, Bettaieb A, Payrastre B, Mansat-De


Mas V, Bordier C, Rousse A _et al_. The phosphoinositide 3-kinase/Akt pathway is activated by daunorubicin in human acute myeloid leukemia cell lines. _FEBS Lett_ 1999; 452: 150–154. Article


  CAS  PubMed  Google Scholar  * Johnstone RW, Ruefli AA, Lowe SW . Apoptosis: a link between cancer genetics and chemotherapy. _Cell_ 2002; 108: 153–164. Article  CAS  PubMed  Google


Scholar  * Zauli G, Sancilio S, Cataldi A, Sabatini N, Bosco D, Di Pietro R . PI-3K/Akt and NF-_κ_B/I_κ_B_α_ pathways are activated in Jurkat T cells in response to TRAIL treatment. _J Cell


Physiol_ 2005; 202: 900–911. Article  CAS  PubMed  Google Scholar  * Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL


in cell cycle progression and leukemogenesis. _Leukemia_ 2004; 18: 189–218. Article  CAS  PubMed  Google Scholar  * Backers K, Blero D, Paternotte N, Zhang J, Erneux C . The termination of


PI3K signalling by SHIP1 and SHIP2 inositol 5-phosphatases. _Adv Enzyme Regul_ 2003; 43: 15–28. Article  CAS  PubMed  Google Scholar  * Sansal I, Sellers WR . The biology and clinical


relevance of the PTEN tumor suppressor pathway. _J Clin Oncol_ 2004; 22: 2954–2963. Article  CAS  PubMed  Google Scholar  * Choi Y, Zhang J, Murga C, Yu H, Koller E, Monia BP _et al_. PTEN,


but not SHIP and SHIP2, suppresses the PI3K/Akt pathway and induces growth inhibition and apoptosis of myeloma cells. _Oncogene_ 2002; 21: 5289–5300. Article  CAS  PubMed  Google Scholar  *


Janssens V, Goris J, Van Hoof C . PP2A: the expected tumor suppressor. _Curr Opin Genet Dev_ 2005; 15: 34–41. Article  CAS  PubMed  Google Scholar  * Borgatti P, Martelli AM, Tabellini G,


Bellacosa A, Capitani S, Neri LM . Threonine 308 phosphorylated form of Akt translocates to the nucleus of PC12 cells under nerve growth factor stimulation and associates with the nuclear


matrix protein nucleolin. _J Cell Physiol_ 2003; 196: 79–88. Article  CAS  PubMed  Google Scholar  * Liu W, Akhand AA, Takeda K, Kawamoto Y, Itoigawa M, Kato M _et al_. Protein phosphatase


2A-linked and -unlinked caspase-dependent pathways for downregulation of Akt kinase triggered by 4-hydroxynonenal. _Cell Death Differ_ 2003; 10: 772–781. Article  CAS  PubMed  Google Scholar


  * Gao T, Furnari F, Newton AC . PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. _Mol Cell_ 2005; 18: 13–24. Article  CAS  PubMed 


Google Scholar  * Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B, Schwable J _et al_. Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased


survival, proliferation, and myeloid transformation. _Cancer Res_ 2005; 65: 9643–9650. Article  CAS  PubMed  Google Scholar  * Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is


constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. _Leukemia_ 2005; 19: 586–594. Article 


CAS  PubMed  Google Scholar  * Kornblau SM, Womble M, Cade JS, Lemker E, Qiu YH . Comparative analysis of the effects of sample source and test methodology on the assessment of protein


expression in acute myelogenous leukemia. _Leukemia_ 2005; 19: 1550–1557. Article  CAS  PubMed  Google Scholar  * Tazzari PL, Cappellini A, Grafone T, Mantovani I, Ricci F, Billi AM _et al_.


Detection of serine 473 phosphorylated Akt in acute myeloid leukaemia blasts by flow cytometry. _Br J Haematol_ 2004; 126: 675–681. Article  CAS  PubMed  Google Scholar  * Birkenkamp KU,


Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E . Constitutive NF-_κ_B DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. _Leukemia_ 2004; 18:


103–112. Article  CAS  PubMed  Google Scholar  * Minami Y, Yamamoto K, Kiyoi H, Ueda R, Saito H, Naoe T . Different antiapoptotic pathways between wild-type and mutated FLT3: insights into


therapeutic targets in leukemia. _Blood_ 2003; 102: 2969–2975. Article  CAS  PubMed  Google Scholar  * Scheijen B, Ngo HT, Kang H, Griffin JD . FLT3 receptors with internal tandem


duplications promote cell viability and proliferation by signaling through Foxo proteins. _Oncogene_ 2004; 23: 3338–3349. Article  CAS  PubMed  Google Scholar  * Choudhary C, Schwable J,


Brandts C, Tickenbrock L, Sargin B, Kindler T _et al_. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. _Blood_ 2005; 106:


265–273. Article  CAS  PubMed  Google Scholar  * Schwable J, Choudhary C, Thiede C, Tickenbrock L, Sargin B, Steur C _et al_. RGS2 is an important target gene of Flt3-ITD mutations in AML


and functions in myeloid differentiation and leukemic transformation. _Blood_ 2005; 105: 2107–2114. Article  CAS  PubMed  Google Scholar  * Noguera NI, Ammatuna E, Zangrilli D, Lavorgna S,


Divona M, Buccisano F _et al_. Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia. _Leukemia_ 2005; 19: 1479–1482. Article  CAS 


PubMed  Google Scholar  * Naoe T, Kiyoi H . Normal and oncogenic FLT3. _Cell Mol Life Sci_ 2004; 61: 2932–2938. Article  CAS  PubMed  Google Scholar  * Frohling S, Scholl C, Gilliland DG,


Levine RL . Genetics of myeloid malignancies: pathogenetic and clinical implications. _J Clin Oncol_ 2005; 23: 6285–6295. Article  CAS  PubMed  Google Scholar  * Roskoski Jr R . Structure


and regulation of Kit protein-tyrosine kinase – the stem cell factor receptor. _Biochem Biophys Res Commun_ 2005; 338: 1307–1315. Article  CAS  PubMed  Google Scholar  * Kohl TM, Schnittger


S, Ellwart JW, Hiddemann W, Spiekermann K . KIT exon 8 mutations associated with core-binding factor (CBF)-acute myeloid leukemia (AML) cause hyperactivation of the receptor in response to


stem cell factor. _Blood_ 2005; 105: 3319–3321. Article  CAS  PubMed  Google Scholar  * Ning ZQ, Li J, McGuinness M, Arceci RJ . STAT3 activation is required for Asp(816) mutant c-Kit


induced tumorigenicity. _Oncogene_ 2001; 20: 4528–4536. Article  CAS  PubMed  Google Scholar  * Larizza L, Magnani I, Beghini A . The Kasumi-1 cell line: a t(8;21)-kit mutant model for acute


myeloid leukemia. _Leuk Lymphoma_ 2005; 46: 247–255. Article  CAS  PubMed  Google Scholar  * Beghini A, Bellini M, Magnani I, Colapietro P, Cairoli R, Morra E _et al_. STI 571 inhibition


effect on KITAsn822Lys-mediated signal transduction cascade. _Exp Hematol_ 2005; 33: 682–688. Article  CAS  PubMed  Google Scholar  * Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS,


Prie N, Verdier F _et al_. Essential role for the p110_δ_ isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. _Blood_ 2005; 106: 1063–1066.


Article  CAS  PubMed  Google Scholar  * Sawyer C, Sturge J, Bennett DC, O'Hare MJ, Allen WE, Bain J _et al_. Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase


p110_δ_. _Cancer Res_ 2003; 63: 1667–1675. CAS  PubMed  Google Scholar  * Cornillet-Lefebvre P, Cuccuini W, Bardet V, Tamburini J, Gillot L, Ifrah N _et al_. Constitutive phosphoinositide


3-kinase activation in acute myeloid leukemia is not due to p110_δ_ mutations. _Leukemia_ 2006; 20: 374–376. Article  CAS  PubMed  Google Scholar  * Bousquet M, Recher C, Queleen C, Demur C,


Payrastre B, Brousset P . Assessment of somatic mutations in phosphatidylinositol 3-kinase gene in human lymphoma and acute leukaemia. _Br J Haematol_ 2005; 131: 411–413. Article  CAS 


PubMed  Google Scholar  * Samuels Y, Velculescu VE . Oncogenic mutations of PIK3CA in human cancers. _Cell Cycle_ 2004; 3: 1221–1224. Article  CAS  PubMed  Google Scholar  * Samuels Y,


Ericson K . Oncogenic PI3K and its role in cancer. _Curr Opin Oncol_ 2006; 18: 77–82. Article  CAS  PubMed  Google Scholar  * Cheong JW, Eom JI, Maeng HY, Lee ST, Hahn JS, Ko YW _et al_.


Phosphatase and tensin homologue phosphorylation in the C-terminal regulatory domain is frequently observed in acute myeloid leukaemia and associated with poor clinical outcome. _Br J


Haematol_ 2003; 122: 454–456. Article  CAS  PubMed  Google Scholar  * Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR . Phosphorylation of the PTEN tail acts as an


inhibitory switch by preventing its recruitment into a protein complex. _J Biol Chem_ 2001; 276: 48627–48630. Article  CAS  PubMed  Google Scholar  * Liu TC, Lin PM, Chang JG, Lee JP, Chen


TP, Lin SF . Mutation analysis of PTEN/MMAC1 in acute myeloid leukemia. _Am J Hematol_ 2000; 63: 170–175. Article  CAS  PubMed  Google Scholar  * Aggerholm A, Gronbaek K, Guldberg P, Hokland


P . Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders. _Eur J Haematol_ 2000; 65: 109–113. Article  CAS  PubMed  Google Scholar  * Dahia PL, Aguiar


RC, Alberta J, Kum JB, Caron S, Sill H _et al_. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanismsin haematological malignancies.


_Hum Mol Genet_ 1999; 8: 185–193. Article  CAS  PubMed  Google Scholar  * Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K _et al_. Possible dominant-negative mutation of the SHIP


gene in acute myeloid leukemia. _Leukemia_ 2003; 17: 1–8. Article  CAS  PubMed  Google Scholar  * Yamamoto M, Suzuki Y, Kihira H, Miwa H, Kita K, Nagao M _et al_. Expressions of four major


protein Ser/Thr phosphatases in human primary leukemic cells. _Leukemia_ 1999; 13: 595–600. Article  CAS  PubMed  Google Scholar  * Scavelli C, Vacca A, Di Pietro G, Dammacco F, Ribatti D .


Crosstalk between angiogenesis and lymphangiogenesis in tumor progression. _Leukemia_ 2004; 18: 1054–1058. Article  CAS  PubMed  Google Scholar  * Gutierrez NC, Lopez-Perez R, Hernandez JM,


Isidro I, Gonzalez B, Delgado M _et al_. Gene expression profile reveals deregulation of genes with relevant functions in the different subclasses of acute myeloid leukemia. _Leukemia_ 2005;


19: 402–409. Article  CAS  PubMed  Google Scholar  * List AF, Glinsmann-Gibson B, Stadheim C, Meuillet EJ, Bellamy W, Powis G . Vascular endothelial growth factor receptor-1 and receptor-2


initiate a phosphatidylinositide 3-kinase-dependent clonogenic response in acute myeloid leukemia cells. _Exp Hematol_ 2004; 32: 526–535. Article  CAS  PubMed  Google Scholar  * Wakabayashi


M, Miwa H, Shikami M, Hiramatsu A, Ikai T, Tajima E _et al_. Autocrine pathway of angiopoietins-Tie2 system in AML cells: association with phosphatidyl-inositol 3 kinase. _Hematol J_ 2004;


5: 353–360. Article  CAS  PubMed  Google Scholar  * Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G _et al_. The phosphoinositide 3-kinase/AKT1 pathway involvement in


drug and all-trans-retinoic acid resistance of leukemia cells. _Mol Cancer Res_ 2003; 1: 234–246. CAS  PubMed  Google Scholar  * Estrov Z, Meir R, Barak Y, Zaizov R, Zadik Z . Human growth


hormone and insulin-like growth factor-1 enhance the proliferation of human leukemic blasts. _J Clin Oncol_ 1991; 9: 394–399. Article  CAS  PubMed  Google Scholar  * Grimberg A . Mechanisms


by which IGF-I may promote cancer. _Cancer Biol Ther_ 2003; 2: 630–635. Article  CAS  PubMed  Google Scholar  * Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D _et


al_. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. _Oncogene_ 2002;


21: 5673–5683. Article  CAS  PubMed  Google Scholar  * Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A _et al_. Interaction between leukemic-cell VLA-4 and stromal


fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. _Nat Med_ 2003; 9: 1158–1165. Article  CAS  PubMed  Google Scholar  * De Toni F, Racaud-Sultan C,


Chicanne G, Mas VM, Cariven C, Mesange F _et al_. A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia.


_Oncogene_ 2006, in press. * Xu Q, Thompson JE, Carroll M . mTOR regulates cell survival after etoposide treatment in primary AML cells. _Blood_ 2005; 106: 4261–4268. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Thompson JE, Thompson CB . Putting the rap on Akt. _J Clin Oncol_ 2004; 22: 4217–4226. Article  CAS  PubMed  Google Scholar  * Basu S, Totty NF, Irwin MS,


Sudol M, Downward J . Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. _Mol Cell_ 2003; 11: 11–23. Article 


CAS  PubMed  Google Scholar  * Tamm I, Wagner M, Schmelz K . Decitabine activates specific caspases downstream of p73 in myeloid leukemia. _Ann Hematol_ 2005; 84 (Suppl 13): 47–53. Article 


CAS  PubMed  Google Scholar  * Rizzo MG, Giombini E, Diverio D, Vignetti M, Sacchi A, Testa U _et al_. Analysis of p73 expression pattern in acute myeloid leukemias: lack of DeltaN-p73


expression is a frequent feature of acute promyelocytic leukemia. _Leukemia_ 2004; 18: 1804–1809. Article  CAS  PubMed  Google Scholar  * Olesen LH, Aggerholm A, Andersen BL, Nyvold CG,


Guldberg P, Norgaard JM _et al_. Molecular typing of adult acute myeloid leukaemia: significance of translocations, tandem duplications, methylation, and selective gene expression profiling.


_Br J Haematol_ 2005; 131: 457–467. Article  CAS  PubMed  Google Scholar  * van Stijn A, van der Pol MA, Kok A, Bontje PM, Roemen GM, Beelen RH _et al_. Differences between the CD34+and


CD34-blast compartments in apoptosis resistance in acute myeloid leukemia. _Haematologica_ 2003; 88: 497–508. PubMed  Google Scholar  * Brozovic A, Fritz G, Christmann M, Zisowsky J, Jaehde


U, Osmak M _et al_. Long-term activation of SAPK/JNK, p38 kinase and fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance. _Int J Cancer_ 2004;


112: 974–985. Article  CAS  PubMed  Google Scholar  * Dai Y, Rahmani M, Pei XY, Khanna P, Han SI, Mitchell C _et al_. Farnesyltransferase inhibitors interact synergistically with the Chk1


inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. _Blood_ 2005; 105: 1706–1716. Article  CAS 


PubMed  Google Scholar  * O'Gorman DM, McKenna SL, McGahon AJ, Cotter TG . Inhibition of PI3-kinase sensitises HL60 human leukaemia cells to both chemotherapeutic drug- and Fas-induced


apoptosis by a JNK independent pathway. _Leuk Res_ 2001; 25: 801–811. Article  CAS  PubMed  Google Scholar  * Lunghi P, Tabilio A, Pinelli S, Valmadre G, Ridolo E, Albertini R _et al_.


Expression and activation of SHC/MAP kinase pathway in primary acute myeloid leukemia blasts. _Hematol J_ 2001; 2: 70–80. Article  CAS  PubMed  Google Scholar  * Zhou BP, Hung MC . Novel


targets of Akt, p21(Cipl/WAF1), and MDM2. _Semin Oncol_ 2002; 29: 62–70. Article  CAS  PubMed  Google Scholar  * Mayo LD, Donner DB . The PTEN, Mdm2, p53 tumor suppressor-oncoprotein


network. _Trends Biochem Sci_ 2002; 27: 462–467. Article  CAS  PubMed  Google Scholar  * Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I _et al_. p53 mutations are


associated with resistance to chemotherapy and short survival in hematologic malignancies. _Blood_ 1994; 84: 3148–3157. CAS  PubMed  Google Scholar  * Greer EL, Brunet A . FOXO transcription


factors at the interface between longevity and tumor suppression. _Oncogene_ 2005; 24: 7410–7425. Article  CAS  PubMed  Google Scholar  * Arden KC, Biggs III WH . Regulation of the FoxO


family of transcription factors by phosphatidylinositol-3 kinase-activated signaling. _Arch Biochem Biophys_ 2002; 403: 292–298. Article  CAS  PubMed  Google Scholar  * Van Der Heide LP,


Hoekman MF, Smidt MP . The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. _Biochem J_ 2004; 380: 297–309. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Cappellini A, Tabellini G, Zweyer M, Bortul R, Tazzari PL, Billi AM _et al_. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60


human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. _Leukemia_ 2003; 17: 2157–2167. Article  CAS 


PubMed  Google Scholar  * Cheong JW, Eom JI, Maeng HY, Lee ST, Hahn JS, Ko YW _et al_. Constitutive phosphorylation of FKHR transcription factor as a prognostic variable in acute myeloid


leukemia. _Leuk Res_ 2003; 27: 1159–1162. Article  CAS  PubMed  Google Scholar  * Gupta P, Niehans GA, LeRoy SC, Gupta K, Morrison VA, Schultz C _et al_. Fas ligand expression in the bone


marrow in myelodysplastic syndromes correlates with FAB subtype and anemia, and predicts survival. _Leukemia_ 1999; 13: 44–53. Article  CAS  PubMed  Google Scholar  * Lee JJ, Chung IJ, Park


MR, Ryang DW, Park CS, Kim HJ . Increased angiogenesis and Fas-ligand expression are independent processes in acute myeloid leukemia. _Leuk Res_ 2001; 25: 1067–1073. Article  CAS  PubMed 


Google Scholar  * Aggarwal BB . Nuclear factor-_κ_B: the enemy within. _Cancer Cell_ 2004; 6: 203–208. Article  CAS  PubMed  Google Scholar  * Shishodia S, Aggarwal BB . Nuclear


factor-kappaB activation: a question of life or death. _J Biochem Mol Biol_ 2002; 35: 28–40. CAS  PubMed  Google Scholar  * Hayden MS, Ghosh S . Signaling to NF-_κ_B. _Genes Dev_ 2004; 18:


2195–2224. Article  CAS  PubMed  Google Scholar  * Bortul R, Tazzari PL, Cappellini A, Tabellini G, Billi AM, Bareggi R _et al_. Constitutively active Akt1 protects HL60 leukemia cells from


TRAIL-induced apoptosis through a mechanism involving NF-_κ_B activation and cFLIP(L) up-regulation. _Leukemia_ 2003; 17: 379–389. Article  CAS  PubMed  Google Scholar  * Tabellini G,


Cappellini A, Tazzari PL, Fala F, Billi AM, Manzoli L _et al_. Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. _J Cell Physiol_ 2005; 202:


623–634. Article  CAS  PubMed  Google Scholar  * Baumgartner B, Weber M, Quirling M, Fischer C, Page S, Adam M _et al_. Increased I_κ_B kinase activity is associated with activated NF-kappaB


in acute myeloid blasts. _Leukemia_ 2002; 16: 2062–2071. Article  CAS  PubMed  Google Scholar  * Frelin C, Imbert V, Griessinger E, Peyron AC, Rochet N, Philip P _et al_. Targeting NF-_κ_B


activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells. _Blood_ 2005; 105: 804–811. Article  CAS  PubMed  Google Scholar  * Sherr CJ, Roberts


JM . CDK inhibitors: positive and negative regulators of G1-phase progression. _Genes Dev_ 1999; 13: 1501–1512. Article  CAS  PubMed  Google Scholar  * Min YH, Cheong JW, Kim JY, Eom JI,


Lee ST, Hahn JS _et al_. Cytoplasmic mislocalization of p27Kip1 protein is associated with constitutive phosphorylation of Akt or protein kinase B and poor prognosis in acute myelogenous


leukemia. _Cancer Res_ 2004; 64: 5225–5231. Article  CAS  PubMed  Google Scholar  * Min YH, Cheong JW, Lee MH, Kim JY, Lee ST, Hahn JS _et al_. Elevated S-phase kinase-associated protein 2


protein expression in acute myelogenous leukemia: its association with constitutive phosphorylation of phosphatase and tensin homologue protein and poor prognosis. _Clin Cancer Res_ 2004;


10: 5123–5130. Article  CAS  PubMed  Google Scholar  * Diehl JA, Cheng M, Roussel MF, Sherr CJ . Glycogen synthase kinase-3_β_ regulates cyclin D1 proteolysis and subcellular localization.


_Genes Dev_ 1998; 12: 3499–3511. Article  CAS  PubMed  PubMed Central  Google Scholar  * Medema RH, Kops GJ, Bos JL, Burgering BM . AFX-like Forkhead transcription factors mediate cell-cycle


regulation by Ras and PKB through p27kip1. _Nature_ 2000; 404: 782–787. Article  CAS  PubMed  Google Scholar  * Seoane J, Le HV, Shen L, Anderson SA, Massague J . Integration of Smad and


forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. _Cell_ 2004; 117: 211–223. Article  CAS  PubMed  Google Scholar  * Kops GJ, Medema RH, Glassford J,


Essers MA, Dijkers PF, Coffer PJ _et al_. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. _Mol Cell Biol_ 2002; 22: 2025–2036. Article  CAS


  PubMed  PubMed Central  Google Scholar  * Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR . A novel mechanism of gene regulation and tumor suppression by the transcription factor


FKHR. _Cancer Cell_ 2002; 2: 81–91. Article  CAS  PubMed  Google Scholar  * Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW _et al_. Cell cycle inhibition


by FoxO forkhead transcription factors involves downregulation of cyclin D. _Mol Cell Biol_ 2002; 22: 7842–7852. Article  CAS  PubMed  PubMed Central  Google Scholar  * Wendel HG, De


Stanchina E, Fridman JS, Malina A, Ray S, Kogan S _et al_. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. _Nature_ 2004; 428: 332–337. Article  CAS  PubMed  Google


Scholar  * Fingar DC, Blenis J . Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. _Oncogene_ 2004;


23: 3151–3171. Article  CAS  PubMed  Google Scholar  * Tokunaga C, Yoshino K, Yonezawa K . mTOR integrates amino acid- and energy-sensing pathways. _Biochem Biophys Res Commun_ 2004; 313:


443–446. Article  CAS  PubMed  Google Scholar  * Martin DE, Soulard A, Hall MN . TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. _Cell_


2004; 119: 969–979. Article  CAS  PubMed  Google Scholar  * Giles FJ, Albitar M . Mammalian target of rapamycin as a therapeutic target in leukemia. _Curr Mol Med_ 2005; 5: 653–661. Article


  CAS  PubMed  Google Scholar  * Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target


of the phosphoinositide 3-kinase/akt pathway. _Mol Cell_ 2002; 10: 151–162. Article  CAS  PubMed  Google Scholar  * Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D . Rheb is a direct


target of the tuberous sclerosis tumour suppressor proteins. _Nat Cell Biol_ 2003; 5: 578–581. Article  CAS  PubMed  Google Scholar  * Hay N . The Akt-mTOR tango and its relevance to cancer.


_Cancer Cell_ 2005; 8: 179–183. Article  CAS  PubMed  Google Scholar  * Granville CA, Memmott RM, Gills JJ, Dennis PA . Handicapping the race to develop inhibitors of the phosphoinositide


3-kinase/Akt/mammalian target of rapamycin pathway. _Clin Cancer Res_ 2006; 12: 679–689. Article  CAS  PubMed  Google Scholar  * Hardt SE, Sadoshima J . Glycogen synthase kinase-3_β_: a


novel regulator of cardiac hypertrophy and development. _Circ Res_ 2002; 90: 1055–1063. Article  CAS  PubMed  Google Scholar  * Prunier C, Hocevar BA, Howe PH . Wnt signaling: physiology and


pathology. _Growth Factors_ 2004; 22: 141–150. Article  CAS  PubMed  Google Scholar  * Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S _et al_. Translocation products


in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. _Mol Cell Biol_ 2004; 24: 2890–2904. Article  CAS  PubMed  PubMed Central  Google Scholar  * Simon M,


Grandage VL, Linch DC, Khwaja A . Constitutive activation of the Wnt/_β_-catenin signalling pathway in acute myeloid leukaemia. _Oncogene_ 2005; 24: 2410–2420. Article  CAS  PubMed  Google


Scholar  * Tickenbrock L, Schwable J, Wiedehage M, Steffen B, Sargin B, Choudhary C _et al_. Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction.


_Blood_ 2005; 105: 3699–3706. Article  CAS  PubMed  Google Scholar  * O’Gorman DM, McKenna SL, McGahon AJ, Knox KA, Cotter TG . Sensitisation of HL60 human leukaemic cells to cytotoxic


drug-induced apoptosis by inhibition of PI3-kinase survival signals. _Leukemia_ 2000; 14: 602–611. Article  PubMed  Google Scholar  * Puccetti E, Ruthardt M . Acute promyelocytic leukemia:


PML/RAR_α_ and the leukemic stem cell. _Leukemia_ 2004; 18: 1169–1175. Article  CAS  PubMed  Google Scholar  * Ramos AM, Fernandez C, Amran D, Sancho P, de Blas E, Aller P . Pharmacologic


inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells.


_Blood_ 2005; 105: 4013–4020. Article  CAS  PubMed  Google Scholar  * Tabellini G, Tazzari PL, Bortul R, Evangelisti C, Billi AM, Grafone T _et al_. Phosphoinositide 3-kinase/Akt inhibition


increases arsenic trioxide-induced apoptosis of acute promyelocytic and T-cell leukaemias. _Br J Haematol_ 2005; 130: 716–725. Article  CAS  PubMed  Google Scholar  * Sanz MA, Fenaux P, Lo


Coco F . Arsenic trioxide in the treatment of acute promyelocytic leukemia. A review of current evidence. _Haematologica_ 2005; 90: 1231–1235. CAS  PubMed  Google Scholar  * Bouralexis S,


Findlay DM, Evdokiou A . Death to the bad guys: targeting cancer via Apo2L/TRAIL. _Apoptosis_ 2005; 10: 35–51. Article  CAS  PubMed  Google Scholar  * Kaufmann SH, Steensma DP . On the TRAIL


of a new therapy for leukemia. _Leukemia_ 2005; 19: 2195–2202. Article  CAS  PubMed  Google Scholar  * Cappellini A, Mantovani I, Tazzari PL, Grafone T, Martinelli G, Cocco L _et al_.


Application of flow cytometry to molecular medicine: detection of tumor necrosis factor-related apoptosis-inducing ligand receptors in acute myeloid leukaemia blasts. _Int J Mol Med_ 2005;


16: 1041–1048. CAS  PubMed  Google Scholar  * Riccioni R, Pasquini L, Mariani G, Saulle E, Rossini A, Diverio D _et al_. TRAIL decoy receptors mediate resistance of acute myeloid leukemia


cells to TRAIL. _Haematologica_ 2005; 90: 612–624. CAS  PubMed  Google Scholar  * Guo F, Sigua C, Tao J, Bali P, George P, Li Y _et al_. Cotreatment with histone deacetylase inhibitor LAQ824


enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. _Cancer Res_ 2004; 64:


2580–2589. Article  CAS  PubMed  Google Scholar  * Kataoka T . The caspase-8 modulator c-FLIP. _Crit Rev Immunol_ 2005; 25: 31–58. Article  CAS  PubMed  Google Scholar  * Tamm I, Kornblau


SM, Segall H, Krajewski S, Welsh K, Kitada S _et al_. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. _Clin Cancer Res_ 2000; 6: 1796–1803.


CAS  PubMed  Google Scholar  * Carter BZ, Kornblau SM, Tsao T, Wang RY, Schober WD, Milella M _et al_. Caspase-independent cell death in AML: caspase inhibition _in vitro_ with pan-caspase


inhibitors or _in vivo_ by XIAP or Survivin does not affect cell survival or prognosis. _Blood_ 2003; 102: 4179–4186. Article  CAS  PubMed  Google Scholar  * Carter BZ, Milella M, Tsao T,


McQueen T, Schober WD, Hu W _et al_. Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia. _Leukemia_ 2003; 17: 2081–2089. Article  CAS  PubMed  Google Scholar  * Cai D,


Wang Y, Ottmann OG, Barth PJ, Neubauer A, Burchert A . FLT3-ITD-, but not BCR/ABL-transformed cells require concurrent Akt/mTor blockage to undergo apoptosis after histone deacetylase


inhibitor treatment. _Blood_ 2006; 107: 2094–2097. Article  CAS  PubMed  Google Scholar  * Schmidt-Arras D, Schwable J, Bohmer FD, Serve H . Flt3 receptor tyrosine kinase as a drug target in


leukemia. _Curr Pharm Des_ 2004; 10: 1867–1883. Article  CAS  PubMed  Google Scholar  * Levis M . Recent advances in the development of small-molecule inhibitors for the treatment of acute


myeloid leukemia. _Curr Opin Hematol_ 2005; 12: 55–61. Article  CAS  PubMed  Google Scholar  * Morgan MA, Ganser A, Reuter CW . Therapeutic efficacy of prenylation inhibitors in the


treatment of myeloid leukemia. _Leukemia_ 2003; 17: 1482–1498. Article  CAS  PubMed  Google Scholar  * Moehler TM, Hillengass J, Goldschmidt H, Ho AD . Antiangiogenic therapy in hematologic


malignancies. _Curr Pharm Des_ 2004; 10: 1221–1234. Article  CAS  PubMed  Google Scholar  * Garcia-Echeverria C, Pearson MA, Marti A, Meyer T, Mestan J, Zimmermann J _et al_. _In vivo_


antitumor activity of NVP-AEW541 – a novel, potent, and selective inhibitor of the IGF-IR kinase. _Cancer Cell_ 2004; 5: 231–239. Article  CAS  PubMed  Google Scholar  * Luo J, Manning BD,


Cantley LC . Targeting the PI3K-Akt pathway in human cancer: rationale and promise. _Cancer Cell_ 2003; 4: 257–262. Article  CAS  PubMed  Google Scholar  * Martelli AM, Tabellini G, Bortul


R, Tazzari PL, Cappellini A, Billi AM _et al_. Involvement of the phosphoinositide 3-kinase/Akt signaling pathway in the resistance to therapeutic treatments of human leukemias. _Histol


Histopathol_ 2005; 20: 239–252. CAS  PubMed  Google Scholar  * Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV . The Akt/PKB pathway: molecular target for cancer drug discovery.


_Oncogene_ 2005; 24: 7482–7492. Article  CAS  PubMed  Google Scholar  * Ihle NT, Paine-Murrieta G, Berggren MI, Baker A, Tate WR, Wipf P _et al_. The phosphatidylinositol-3-kinase inhibitor


PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts. _Mol Cancer Ther_ 2005; 4: 1349–1357. Article 


CAS  PubMed  PubMed Central  Google Scholar  * Sadhu C, Masinovsky B, Dick K, Sowell CG, Staunton DE . Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement.


_J Immunol_ 2003; 170: 2647–2654. Article  CAS  PubMed  Google Scholar  * Mora A, Komander D, van Aalten DM, Alessi DR . PDK1, the master regulator of AGC kinase signal transduction. _Semin


Cell Dev Biol_ 2004; 15: 161–170. Article  CAS  PubMed  Google Scholar  * Daub H, Specht K, Ullrich A . Strategies to overcome resistance to targeted protein kinase inhibitors. _Nat Rev Drug


Discov_ 2004; 3: 1001–1010. Article  CAS  PubMed  Google Scholar  * Sato S, Fujita N, Tsuruo T . Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine).


_Oncogene_ 2002; 21: 1727–1738. Article  CAS  PubMed  Google Scholar  * Komander D, Kular GS, Bain J, Elliott M, Alessi DR, Van Aalten DM . Structural basis for UCN-01


(7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. _Biochem J_ 2003; 375: 255–262. Article  CAS  PubMed  PubMed Central  Google Scholar


  * Sampath D, Cortes J, Estrov Z, Du M, Shi Z, Andreeff M _et al_. Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts _in vitro_ and


during a clinical trial. _Blood_ 2006; 107: 2517–2524. Article  CAS  PubMed  PubMed Central  Google Scholar  * Senderowicz AM . Small-molecule cyclin-dependent kinase modulators. _Oncogene_


2003; 22: 6609–6620. Article  CAS  PubMed  Google Scholar  * Gills JJ, Dennis PA . The development of phosphatidylinositol ether lipid analogues as inhibitors of the serine/threonine kinase,


Akt. _Expert Opin Investig Drugs_ 2004; 13: 787–797. Article  CAS  PubMed  Google Scholar  * Kumar CC, Madison V . AKT crystal structure and AKT-specific inhibitors. _Oncogene_ 2005; 24:


7493–7501. Article  CAS  PubMed  Google Scholar  * Castillo SS, Brognard J, Petukhov PA, Zhang C, Tsurutani J, Granville CA _et al_. Preferential inhibition of Akt and killing of


Akt-dependent cancer cells by rationally designed phosphatidylinositol ether lipid analogues. _Cancer Res_ 2004; 64: 2782–2792. Article  CAS  PubMed  Google Scholar  * Meuillet EJ, Ihle N,


Baker AF, Gard JM, Stamper C, Williams R _et al_. _In vivo_ molecular pharmacology and antitumor activity of the targeted Akt inhibitor PX-316. _Oncol Res_ 2004; 14: 513–527. Article  CAS 


PubMed  Google Scholar  * Martelli AM, Tazzari PL, Tabellini G, Bortul R, Billi AM, Manzoli L _et al_. A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic


drugs, TRAIL, all-_trans_-retinoic acid, and ionizing radiation of human leukemia cells. _Leukemia_ 2003; 17: 1794–1805. Article  CAS  PubMed  Google Scholar  * Tabellini G, Tazzari PL,


Bortul R, Billi AM, Conte R, Manzoli L _et al_. Novel 2′-substituted, 3′-deoxy-phosphatidyl-myo-inositol analogues reduce drug resistance in human leukaemia cell lines with an activated


phosphoinositide 3-kinase/Akt pathway. _Br J Haematol_ 2004; 126: 574–582. Article  CAS  PubMed  Google Scholar  * Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK . Perifosine,


a novel alkylphospholipid, inhibits protein kinase B activation. _Mol Cancer Ther_ 2003; 2: 1093–1103. CAS  PubMed  Google Scholar  * Chun KH, Kosmeder II JW, Sun S, Pezzuto JM, Lotan R,


Hong WK _et al_. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. _J Natl Cancer Inst_ 2003; 95: 291–302.


Article  CAS  PubMed  Google Scholar  * Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE _et al_. Identification and characterization of pleckstrin-homology-domain-dependent


and isoenzyme-specific Akt inhibitors. _Biochem J_ 2005; 385: 399–408. Article  CAS  PubMed  PubMed Central  Google Scholar  * DeFeo-Jones D, Barnett SF, Fu S, Hancock PJ, Haskell KM,


Leander KR _et al_. Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members. _Mol Cancer Ther_ 2005; 4: 271–279. CAS  PubMed  Google Scholar


  * Luo Y, Shoemaker AR, Liu X, Woods KW, Thomas SA, de Jong R _et al_. Potent and selective inhibitors of Akt kinases slow the progress of tumors _in vivo_. _Mol Cancer Ther_ 2005; 4:


977–986. Article  CAS  PubMed  Google Scholar  * Yang L, Dan HC, Sun M, Liu Q, Sun XM, Feldman RI _et al_. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of


Akt signaling with antitumor activity in cancer cells overexpressing Akt. _Cancer Res_ 2004; 64: 4394–4399. Article  CAS  PubMed  Google Scholar  * Shin I, Edl J, Biswas S, Lin PC, Mernaugh


R, Arteaga CL . Proapoptotic activity of cell-permeable anti-Akt single-chain antibodies. _Cancer Res_ 2005; 65: 2815–2824. Article  CAS  PubMed  Google Scholar  * Bortul R, Tazzari PL,


Billi AM, Tabellini G, Mantovani I, Cappellini A _et al_. Deguelin, A PI3K/AKT inhibitor, enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway. _Br J Haematol_ 2005;


129: 677–686. Article  CAS  PubMed  Google Scholar  * Rahmani M, Reese E, Dai Y, Bauer C, Payne SG, Dent P _et al_. Coadministration of histone deacetylase inhibitors and perifosine


synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. _Cancer Res_ 2005; 65: 2422–2432.


Article  CAS  PubMed  Google Scholar  * Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C _et al_. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and


induces _in vitro_ and _in vivo_ cytotoxicity in human multiple myeloma cells. _Blood_ 2006, in press. * Crul M, Rosing H, de Klerk GJ, Dubbelman R, Traiser M, Reichert S _et al_. Phase I


and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. _Eur J Cancer_ 2002; 38: 1615–1621. Article  CAS  PubMed  Google


Scholar  * Yang ZZ, Tschopp O, Baudry A, Dummler B, Hynx D, Hemmings BA . Physiological functions of protein kinase B/Akt. _Biochem Soc Trans_ 2004; 32: 350–354. Article  CAS  PubMed  Google


Scholar  * Neckers L, Ivy SP . Heat shock protein 90. _Curr Opin Oncol_ 2003; 15: 419–424. Article  CAS  PubMed  Google Scholar  * Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz


LC _et al_. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. _Nature_ 2003; 425: 407–410. Article  CAS  PubMed  Google Scholar  * Minami Y, Kiyoi H,


Yamamoto Y, Yamamoto K, Ueda R, Saito H _et al_. Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. _Leukemia_ 2002; 16: 1535–1540. Article  CAS


  PubMed  Google Scholar  * George P, Bali P, Cohen P, Tao J, Guo F, Sigua C _et al_. Cotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly


effective against human acute myelogenous leukemia cells with mutant FLT-3. _Cancer Res_ 2004; 64: 3645–3652. Article  CAS  PubMed  Google Scholar  * George P, Bali P, Annavarapu S, Scuto A,


Fiskus W, Guo F _et al_. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating


mutation of FLT-3. _Blood_ 2005; 105: 1768–1776. Article  CAS  PubMed  Google Scholar  * Yu W, Rao Q, Wang M, Tian Z, Lin D, Liu X _et al_. The Hsp90 inhibitor


17-allylamide-17-demethoxygeldanamycin induces apoptosis and differentiation of Kasumi-1 harboring the Asn822Lys KIT mutation and down-regulates KIT protein level. _Leuk Res_ 2006; 30:


575–582. Article  CAS  PubMed  Google Scholar  * Mesa RA, Loegering D, Powell HL, Flatten K, Arlander SJ, Dai NT _et al_. Heat shock protein 90 inhibition sensitizes acute myelogenous


leukemia cells to cytarabine. _Blood_ 2005; 106: 318–327. Article  CAS  PubMed  PubMed Central  Google Scholar  * Hresko RC, Mueckler M . mTOR.RICTOR is the Ser473 kinase for Akt/protein


kinase B in 3T3-L1 adipocytes. _J Biol Chem_ 2005; 280: 40406–40416. Article  CAS  PubMed  Google Scholar  * Dutcher JP . Mammalian target of rapamycin inhibition. _Clin Cancer Res_ 2004;


10: 6382S–6387S. Article  CAS  PubMed  Google Scholar  * Huang S, Houghton PJ . Targeting mTOR signaling for cancer therapy. _Curr Opin Pharmacol_ 2003; 3: 371–377. Article  CAS  PubMed 


Google Scholar  * Recher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM _et al_. Antileukemic activity of rapamycin in acute myeloid leukemia. _Blood_ 2005; 105: 2527–2534.


Article  CAS  PubMed  Google Scholar  * Hahn M, Li W, Yu C, Rahmani M, Dent P, Grant S . Rapamycin and UCN-01 synergistically induce apoptosis in human leukemia cells through a process that


is regulated by the Raf-1/MEK/ERK, Akt, and JNK signal transduction pathways. _Mol Cancer Ther_ 2005; 4: 457–470. CAS  PubMed  Google Scholar  * Kaufmann SH, Karp JE, Svingen PA, Krajewski


S, Burke PJ, Gore SD _et al_. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. _Blood_ 1998; 91: 991–1000. CAS  PubMed  Google Scholar  * van Stijn A,


Kok A, van der Pol MA, Feller N, Roemen GM, Westra AH _et al_. A flow cytometric method to detect apoptosis-related protein expression in minimal residual disease in acute myeloid leukemia.


_Leukemia_ 2003; 17: 780–786. Article  CAS  PubMed  Google Scholar  * Yu C, Rahmani M, Dai Y, Conrad D, Krystal G, Dent P _et al_. The lethal effects of pharmacological cyclin-dependent


kinase inhibitors in human leukemia cells proceed through a phosphatidylinositol 3-kinase/Akt-dependent process. _Cancer Res_ 2003; 63: 1822–1833. CAS  PubMed  Google Scholar  * Xu RH,


Pelicano H, Zhang H, Giles FJ, Keating MJ, Huang P . Synergistic effect of targeting mTOR by rapamycin and depleting ATP by inhibition of glycolysis in lymphoma and leukemia cells.


_Leukemia_ 2005; 19: 2153–2158. Article  CAS  PubMed  Google Scholar  * Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR _et al_. Akt stimulates aerobic glycolysis in cancer


cells. _Cancer Res_ 2004; 64: 3892–3899. Article  CAS  PubMed  Google Scholar  * Belozerov VE, Van Meir EG . Hypoxia inducible factor-1: a novel target for cancer therapy. _Anticancer Drugs_


2005; 16: 901–909. Article  CAS  PubMed  Google Scholar  * Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK . Phosphatidylinositol 3-kinase signaling controls levels of


hypoxia-inducible factor 1. _Cell Growth Differ_ 2001; 12: 363–369. CAS  PubMed  Google Scholar  * Fisher TL, White MF . Signaling pathways: the benefits of good communication. _Curr Biol_


2004; 14: R1005–R1007. Article  CAS  PubMed  Google Scholar  * Harrington LS, Findlay GM, Lamb RF . Restraining PI3K: mTOR signalling goes back to the membrane. _Trends Biochem Sci_ 2005;


30: 35–42. Article  CAS  PubMed  Google Scholar  * Shi Y, Yan H, Frost P, Gera J, Lichtenstein A . Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells


by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. _Mol Cancer Ther_ 2005; 4: 1533–1540. Article  CAS  PubMed 


Google Scholar  * Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M _et al_. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a


therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. _Cancer Cell_ 2004; 5: 221–230. Article  CAS  PubMed  Google Scholar  * Miller DS, Fricker G,


Drewe J . p-Glycoprotein-mediated transport of a fluorescent rapamycin derivative in renal proximal tubule. _J Pharmacol Exp Ther_ 1997; 282: 440–444. CAS  PubMed  Google Scholar  * van der


Kolk DM, de Vries EG, Noordhoek L, van den Berg E, van der Pol MA, Muller M _et al_. Activity and expression of the multidrug resistance proteins P-glycoprotein, MRP1, MRP2, MRP3 and MRP5 in


_de novo_ and relapsed acute myeloid leukemia. _Leukemia_ 2001; 15: 1544–1553. Article  CAS  PubMed  Google Scholar  * Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA


_et al_. Nuclear factor-_κ_B is constitutively activated in primitive human acute myelogenous leukemia cells. _Blood_ 2001; 98: 2301–2307. Article  CAS  PubMed  Google Scholar  * Guzman ML,


Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ _et al_. Preferential induction of apoptosis for primary human leukemic stem cells. _Proc Natl Acad Sci USA_ 2002; 99: 16220–16225.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Dorai T, Aggarwal BB . Role of chemopreventive agents in cancer therapy. _Cancer Lett_ 2004; 215: 129–140. Article  CAS  PubMed 


Google Scholar  * Kuo ML, Huang TS, Lin JK . Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. _Biochim Biophys Acta_ 1996; 1317: 95–100. Article 


CAS  PubMed  Google Scholar  * Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB . Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c


release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. _Carcinogenesis_ 2002; 23: 143–150. Article  CAS  PubMed  Google Scholar  * Ito K, Nakazato T, Yamato K, Miyakawa Y,


Yamada T, Hozumi N _et al_. Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at Ser-15


residue by reactive oxygen species. _Cancer Res_ 2004; 64: 1071–1078. Article  CAS  PubMed  Google Scholar  * Estrov Z, Shishodia S, Faderl S, Harris D, Van Q, Kantarjian HM _et al_.


Resveratrol blocks interleukin-1_β_-induced activation of the nuclear transcription factor NF-_κ_B, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid


leukemia cells. _Blood_ 2003; 102: 987–995. Article  CAS  PubMed  Google Scholar  * Takada Y, Andreeff M, Aggarwal BB . Indole-3-carbinol suppresses NF-_κ_B and IkappaBalpha kinase


activation, causing inhibition of expression of NF-_κ_B-regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells. _Blood_ 2005; 106:


641–649. Article  CAS  PubMed  PubMed Central  Google Scholar  * Lin YZ, Yao SY, Veach RA, Torgerson TR, Hawiger J . Inhibition of nuclear translocation of transcription factor NF-_κ_ B by a


synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. _J Biol Chem_ 1995; 270: 14255–14258. Article  CAS  PubMed  Google Scholar  * Hansson A,


Marin YE, Suh J, Rabson AB, Chen S, Huberman E _et al_. Enhancement of TPA-induced growth inhibition and apoptosis in myeloid leukemia cells by BAY 11–7082, an NF-kappaB inhibitor. _Int J


Oncol_ 2005; 27: 941–948. CAS  PubMed  Google Scholar  * Horton TM, Gannavarapu A, Blaney SM, D'Argenio DZ, Plon SE, Berg SL . Bortezomib interactions with chemotherapy agents in acute


leukemia _in vitro_. _Cancer Chemother Pharmacol_ 2006, in press. * Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T _et al_. Bortezomib or high-dose dexamethasone


for relapsed multiple myeloma. _N Engl J Med_ 2005; 352: 2487–2498. Article  CAS  PubMed  Google Scholar  * Orlowski RZ, Voorhees PM, Garcia RA, Hall MD, Kudrik FJ, Allred T _et al_. Phase 1


trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. _Blood_ 2005; 105: 3058–3065. Article  CAS  PubMed 


Google Scholar  * Braun T, Carvalho G, Coquelle A, Vozenin MC, Lepelley P, Hirsch F _et al_. NF-_κ_B constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. _Blood_


2006; 107: 1156–1165. Article  CAS  PubMed  Google Scholar  * Nyakern M, Tazzari PL, Finelli C, Bosi C, Follo MY, Grafone T _et al_. Frequent elevation of Akt kinase phosphorylation in


blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. _Leukemia_ 2006; 20: 230–238. Article  CAS  PubMed  Google Scholar  * Shishodia S,


Aggarwal BB . Nuclear factor-_κ_B: a friend or a foe in cancer? _Biochem Pharmacol_ 2004; 68: 1071–1080. Article  CAS  PubMed  Google Scholar  * Shetty S, Graham BA, Brown JG, Hu X,


Vegh-Yarema N, Harding G _et al_. Transcription factor NF-_κ_B differentially regulates death receptor 5 expression involving histone deacetylase 1. _Mol Cell Biol_ 2005; 25: 5404–5416.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Workman P . The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and


molecular chaperones. _Cancer Chemother Pharmacol_ 2003; 52 (Suppl 1): S45–S56. Article  CAS  PubMed  Google Scholar  * Hsu J, Shi Y, Krajewski S, Renner S, Fisher M, Reed JC _et al_. The


AKT kinase is activated in multiple myeloma tumor cells. _Blood_ 2001; 98: 2853–2855. Article  CAS  PubMed  Google Scholar  * Tazzari PL, Cappellini A, Bortul R, Ricci F, Billi AM, Tabellini


G _et al_. Flow cytometric detection of total and serine 473 phosphorylated Akt. _J Cell Biochem_ 2002; 86: 704–715. Article  CAS  PubMed  Google Scholar  * Krutzik PO, Nolan GP .


Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. _Cytometry A_ 2003; 55: 61–70. Article  CAS  PubMed  Google Scholar  * Irish


JM, Hovland R, Krutzik PO, Perez OD, Bruserud O, Gjertsen BT _et al_. Single cell profiling of potentiated phospho-protein networks in cancer cells. _Cell_ 2004; 118: 217–228. Article  CAS 


PubMed  Google Scholar  * Krutzik PO, Hale MB, Nolan GP . Characterization of the murine immunological signaling network with phosphospecific flow cytometry. _J Immunol_ 2005; 175:


2366–2373. Article  CAS  PubMed  Google Scholar  * Van Ummersen L, Binger K, Volkman J, Marnocha R, Tutsch K, Kolesar J _et al_. A phase I trial of perifosine (NSC 639966) on a loading


dose/maintenance dose schedule in patients with advanced cancer. _Clin Cancer Res_ 2004; 10: 7450–7456. Article  CAS  PubMed  Google Scholar  * Sausville EA, Arbuck SG, Messmann R, Headlee


D, Bauer KS, Lush RM _et al_. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. _J Clin Oncol_ 2001; 19: 2319–2333. Article  CAS  PubMed  Google


Scholar  * Geddis AE, Fox NE, Kaushansky K . Phosphatidylinositol 3-kinase is necessary but not sufficient for thrombopoietin-induced proliferation in engineered Mpl-bearing cell lines as


well as in primary megakaryocytic progenitors. _J Biol Chem_ 2001; 276: 34473–34479. Article  CAS  PubMed  Google Scholar  * Myklebust JH, Blomhoff HK, Rusten LS, Stokke T, Smeland EB .


Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. _Exp Hematol_ 2002; 30: 990–1000. Article  CAS


  PubMed  Google Scholar  * Lewis JL, Marley SB, Ojo M, Gordon MY . Opposing effects of PI3 kinase pathway activation on human myeloid and erythroid progenitor cell proliferation and


differentiation _in vitro_. _Exp Hematol_ 2004; 32: 36–44. Article  CAS  PubMed  Google Scholar  * Young SM, Cambareri AC, Ashman LK . Role of c-KIT expression level and phosphatidylinositol


3-kinase activation in survival and proliferative responses of early myeloid cells. _Cell Signal_ 2006; 18: 608–620. Article  CAS  PubMed  Google Scholar  * Barnache S, Le Scolan E,


Kosmider O, Denis N, Moreau-Gachelin F . Phosphatidylinositol 4-phosphatase type II is an erythropoietin-responsive gene. _Oncogene_ 2006; 25: 1420–1423. Article  CAS  PubMed  Google Scholar


  * Ghaffari S, Kitidis C, Zhao W, Marinkovic D, Fleming MD, Luo B _et al_. AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo


regulation of erythroid-cell differentiation. _Blood_ 2006; 107: 1888–1891. Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhao W, Kitidis C, Fleming MD, Lodish HF, Ghaffari S .


Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. _Blood_ 2006; 107: 907–915. Article  CAS  PubMed  PubMed Central  Google Scholar


  Download references ACKNOWLEDGEMENTS This work was supported by grants from: Italian MIUR FIRB 2001 and COFIN 2005, Associazione Italiana Ricerca sul Cancro (AIRC Regional Grants), CARISBO


Foundation. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell’Apparato Locomotore, Cell Signalling Laboratory, Sezione di Anatomia


Umana, Università di Bologna, Bologna, Italy A M Martelli, M Nyåkern, C Evangelisti & L Cocco * ITOI-CNR, c/o IOR, Bologna, Italy A M Martelli * Dipartimento di Scienze Biomediche e


Biotecnologie, Sezione di Citologia e Istologia, Università di Brescia, Brescia, Italy G Tabellini * Dipartimento di Morfologia Umana Normale, Università di Trieste, Trieste, Italy R Bortul


* Servizio di Immunoematologia e Trasfusionale, Policlinico S.Orsola-Malpighi, Bologna, Italy P L Tazzari Authors * A M Martelli View author publications You can also search for this author


inPubMed Google Scholar * M Nyåkern View author publications You can also search for this author inPubMed Google Scholar * G Tabellini View author publications You can also search for this


author inPubMed Google Scholar * R Bortul View author publications You can also search for this author inPubMed Google Scholar * P L Tazzari View author publications You can also search for


this author inPubMed Google Scholar * C Evangelisti View author publications You can also search for this author inPubMed Google Scholar * L Cocco View author publications You can also


search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to A M Martelli. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Martelli, A., Nyåkern, M., Tabellini, G. _et al._ Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. _Leukemia_ 20, 911–928


(2006). https://doi.org/10.1038/sj.leu.2404245 Download citation * Received: 23 February 2006 * Accepted: 27 March 2006 * Published: 27 April 2006 * Issue Date: 01 June 2006 * DOI:


https://doi.org/10.1038/sj.leu.2404245 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * signal transduction networks * 3-phosphorylated


inositol lipids * apoptosis * drug resistance * targeted molecular therapy