Gene targeting in normal and amplified cell lines

Gene targeting in normal and amplified cell lines

Play all audios:

Loading...

ABSTRACT TARGETED recombination in mammalian cells is rare compared with non-homologous integration1–5. In _Saccharomyces cerevisiae_ the reverse is true6,7. Differences in tageting efficiency could arise because a target of unique DNA is 200 times more dilute in mammalian genomes than it is in yeast. We tested this possibility by measuring gene targeting in normal CHO cells with two copies of the dihydrofolate reductase (DHFR) gene and in amplified CHOC 400 cells, which carry 800 copies8. If the concentration of the target gene is critical, amplified cells should show an enhanced frequency of targeted recombination relative to non-homologous integration. Using a positive/negative selection protocol3, we demonstrated that the efficiency of targeting into DHFR genes is indistinguishable in normal and amplified CHO cells. As targeting does not depend on the number of targets, the search for homology is not a rate-limiting step in the mammalian pathway of gene targeting. Thus, the difference in genome size is not the basis for the different outcomes of targeting experiments in _S_. _cerevisiae_ and mammals. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CRISPR/CAS9-MEDIATED TARGETED KNOCK-IN OF LARGE CONSTRUCTS USING NOCODAZOLE AND RNASE HII Article Open access 15 February 2023 RAPID GENERATION OF HOMOZYGOUS FLUORESCENT KNOCK-IN HUMAN CELLS USING CRISPR–CAS9 GENOME EDITING AND VALIDATION BY AUTOMATED IMAGING AND DIGITAL PCR SCREENING Article 20 September 2024 APPLICATION OF CHYMERA CAS9-CAS12A COMBINATORIAL GENOME-EDITING PLATFORM FOR GENETIC INTERACTION MAPPING AND GENE FRAGMENT DELETION SCREENING Article 10 September 2021 REFERENCES * Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. _Nature_ 317, 230–234 (1985). Article  ADS  CAS  Google Scholar  * Thomas, K. R. & Capecchi, M. R. _Cell_ 51, 503–512 (1987). Article  CAS  Google Scholar  * Mansour, S. L., Thomas, K. R. & Capecchi, M. R. _Nature_ 336, 348–352 (1988). Article  ADS  CAS  Google Scholar  * Adair, G. M. _et al._ _Proa. natn. Acad. Scl. U.S.A._ 88, 4574–4578 (1989). Article  ADS  Google Scholar  * Joyner, A. L., Skarnes, W. C. & Rossant, J. _Nature_ 338, 153–156 (1989). Article  ADS  CAS  Google Scholar  * Hinnen, A., Hicks, J. B. & Fink, G. R. _Proc. natn. Acad. Sci. U.S.A._ 75, 1929–1933 (1978). Article  ADS  CAS  Google Scholar  * Rothstein, R. _Meth. Enzym._ 101, 202–211 (1983). Article  CAS  Google Scholar  * Milbrandt, J. D., Heintz, N. H., White, W. C., Rothman, S. M. & Hamlin, J. L. _Proc. natn. Acad. Sci. U.S.A._ 78, 6043–6047 (1981). Article  ADS  CAS  Google Scholar  * Borrelli, E., Heyman, R., Hsi, M. & Evans, R. M. _Proc. natn. Acad. Sci. U.S.A._ 85, 7572–7576 (1988). Article  ADS  CAS  Google Scholar  * Roth, D. B., Porter, T. N. & Wilson, J. H. _Molec. cell. Biol._ 5, 2299–2607 (1985). Article  Google Scholar  * Thomas, K. R., Folger, K. R. & Capecchi, M. R. _Cell_ 44, 419–428 (1986). Article  CAS  Google Scholar  * Steele, R. E., Bakken, A. H. & Reeder, R. H. _Molec. cell. Biol._ 4, 576–582 (1984). Article  CAS  Google Scholar  * Wallenburg, J. C., Nepveu, A. & Chartrand, P. _Nucleic Acids Res._ 15, 7849–7863 (1987). Article  CAS  Google Scholar  * Schweizer, E. C. MacKechnie, C. & Halvorson, H. O. _J. molec. Biol._ 40, 261–277 (1969). Article  CAS  Google Scholar  * Szostak, J. W. & Wu, R. _Plasmid_ 2, 536–554 (1979). Article  CAS  Google Scholar  * Rommerskirch, W., Graeber, I., Grassmann, M. & Grassmann, A. _Nucleic Acids Res._ 16, 941–952 (1988). Article  CAS  Google Scholar  * Capecchi, M. R. _Science_ 244, 1288–1292 (1989). Article  ADS  CAS  Google Scholar  * Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. _Nature_ 309, 255–256 (1984). Article  ADS  CAS  Google Scholar  * Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L. & Melton, D. W. _Cell_ 56, 313–321 (1989). Article  CAS  Google Scholar  * Smolik-Utlaut, S. & Petes, T. D. _Molec. cell. Biol._ 3, 1204–1211 (1983). Article  CAS  Google Scholar  * Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. _Proc. natn. Acad. Sci. U.S.A_ 78, 6354–6358 (1981). Article  ADS  CAS  Google Scholar  * Carothers, A. M., Urlaub, G., Ellis, N. & Chasin, L. A. _Nucleic Acids Res._ 11, 1997–2012 (1983). Article  CAS  Google Scholar  Download references AUTHOR INFORMATION Author notes * John H. Wilson: To whom correspondence should be addressed. AUTHORS AND AFFILIATIONS * Verna and Marrs McLean Department of Biochemistry, Bay lor College of Medicine, Houston, Texas, 77030, USA Hui Zheng & John H. Wilson Authors * Hui Zheng View author publications You can also search for this author inPubMed Google Scholar * John H. Wilson View author publications You can also search for this author inPubMed Google Scholar RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Zheng, H., Wilson, J. Gene targeting in normal and amplified cell lines. _Nature_ 344, 170–173 (1990). https://doi.org/10.1038/344170a0 Download citation * Received: 24 November 1989 * Accepted: 11 January 1990 * Issue Date: 08 March 1990 * DOI: https://doi.org/10.1038/344170a0 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative

ABSTRACT TARGETED recombination in mammalian cells is rare compared with non-homologous integration1–5. In _Saccharomyces cerevisiae_ the reverse is true6,7. Differences in tageting


efficiency could arise because a target of unique DNA is 200 times more dilute in mammalian genomes than it is in yeast. We tested this possibility by measuring gene targeting in normal CHO


cells with two copies of the dihydrofolate reductase (DHFR) gene and in amplified CHOC 400 cells, which carry 800 copies8. If the concentration of the target gene is critical, amplified


cells should show an enhanced frequency of targeted recombination relative to non-homologous integration. Using a positive/negative selection protocol3, we demonstrated that the efficiency


of targeting into DHFR genes is indistinguishable in normal and amplified CHO cells. As targeting does not depend on the number of targets, the search for homology is not a rate-limiting


step in the mammalian pathway of gene targeting. Thus, the difference in genome size is not the basis for the different outcomes of targeting experiments in _S_. _cerevisiae_ and mammals.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this


journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS CRISPR/CAS9-MEDIATED TARGETED KNOCK-IN OF LARGE CONSTRUCTS USING NOCODAZOLE AND RNASE HII Article Open access 15 February 2023 RAPID GENERATION


OF HOMOZYGOUS FLUORESCENT KNOCK-IN HUMAN CELLS USING CRISPR–CAS9 GENOME EDITING AND VALIDATION BY AUTOMATED IMAGING AND DIGITAL PCR SCREENING Article 20 September 2024 APPLICATION OF


CHYMERA CAS9-CAS12A COMBINATORIAL GENOME-EDITING PLATFORM FOR GENETIC INTERACTION MAPPING AND GENE FRAGMENT DELETION SCREENING Article 10 September 2021 REFERENCES * Smithies, O., Gregg, R.


G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. _Nature_ 317, 230–234 (1985). Article  ADS  CAS  Google Scholar  * Thomas, K. R. & Capecchi, M. R. _Cell_ 51, 503–512


(1987). Article  CAS  Google Scholar  * Mansour, S. L., Thomas, K. R. & Capecchi, M. R. _Nature_ 336, 348–352 (1988). Article  ADS  CAS  Google Scholar  * Adair, G. M. _et al._ _Proa.


natn. Acad. Scl. U.S.A._ 88, 4574–4578 (1989). Article  ADS  Google Scholar  * Joyner, A. L., Skarnes, W. C. & Rossant, J. _Nature_ 338, 153–156 (1989). Article  ADS  CAS  Google Scholar


  * Hinnen, A., Hicks, J. B. & Fink, G. R. _Proc. natn. Acad. Sci. U.S.A._ 75, 1929–1933 (1978). Article  ADS  CAS  Google Scholar  * Rothstein, R. _Meth. Enzym._ 101, 202–211 (1983).


Article  CAS  Google Scholar  * Milbrandt, J. D., Heintz, N. H., White, W. C., Rothman, S. M. & Hamlin, J. L. _Proc. natn. Acad. Sci. U.S.A._ 78, 6043–6047 (1981). Article  ADS  CAS 


Google Scholar  * Borrelli, E., Heyman, R., Hsi, M. & Evans, R. M. _Proc. natn. Acad. Sci. U.S.A._ 85, 7572–7576 (1988). Article  ADS  CAS  Google Scholar  * Roth, D. B., Porter, T. N.


& Wilson, J. H. _Molec. cell. Biol._ 5, 2299–2607 (1985). Article  Google Scholar  * Thomas, K. R., Folger, K. R. & Capecchi, M. R. _Cell_ 44, 419–428 (1986). Article  CAS  Google


Scholar  * Steele, R. E., Bakken, A. H. & Reeder, R. H. _Molec. cell. Biol._ 4, 576–582 (1984). Article  CAS  Google Scholar  * Wallenburg, J. C., Nepveu, A. & Chartrand, P. _Nucleic


Acids Res._ 15, 7849–7863 (1987). Article  CAS  Google Scholar  * Schweizer, E. C. MacKechnie, C. & Halvorson, H. O. _J. molec. Biol._ 40, 261–277 (1969). Article  CAS  Google Scholar 


* Szostak, J. W. & Wu, R. _Plasmid_ 2, 536–554 (1979). Article  CAS  Google Scholar  * Rommerskirch, W., Graeber, I., Grassmann, M. & Grassmann, A. _Nucleic Acids Res._ 16, 941–952


(1988). Article  CAS  Google Scholar  * Capecchi, M. R. _Science_ 244, 1288–1292 (1989). Article  ADS  CAS  Google Scholar  * Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E.


_Nature_ 309, 255–256 (1984). Article  ADS  CAS  Google Scholar  * Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L. & Melton, D. W. _Cell_ 56, 313–321 (1989). Article  CAS  Google


Scholar  * Smolik-Utlaut, S. & Petes, T. D. _Molec. cell. Biol._ 3, 1204–1211 (1983). Article  CAS  Google Scholar  * Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. _Proc.


natn. Acad. Sci. U.S.A_ 78, 6354–6358 (1981). Article  ADS  CAS  Google Scholar  * Carothers, A. M., Urlaub, G., Ellis, N. & Chasin, L. A. _Nucleic Acids Res._ 11, 1997–2012 (1983).


Article  CAS  Google Scholar  Download references AUTHOR INFORMATION Author notes * John H. Wilson: To whom correspondence should be addressed. AUTHORS AND AFFILIATIONS * Verna and Marrs


McLean Department of Biochemistry, Bay lor College of Medicine, Houston, Texas, 77030, USA Hui Zheng & John H. Wilson Authors * Hui Zheng View author publications You can also search for


this author inPubMed Google Scholar * John H. Wilson View author publications You can also search for this author inPubMed Google Scholar RIGHTS AND PERMISSIONS Reprints and permissions


ABOUT THIS ARTICLE CITE THIS ARTICLE Zheng, H., Wilson, J. Gene targeting in normal and amplified cell lines. _Nature_ 344, 170–173 (1990). https://doi.org/10.1038/344170a0 Download citation


* Received: 24 November 1989 * Accepted: 11 January 1990 * Issue Date: 08 March 1990 * DOI: https://doi.org/10.1038/344170a0 SHARE THIS ARTICLE Anyone you share the following link with will


be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative