Ice-binding structure and mechanism of an antifreeze protein from winter flounder

Ice-binding structure and mechanism of an antifreeze protein from winter flounder

Play all audios:

Loading...

Letter Published: 01 June 1995 Ice-binding structure and mechanism of an antifreeze protein from winter flounder F. Sicheri1 & D. S. C. Yang1,2  Nature volume 375, pages 427–431 (1995)Cite this article  3118 Accesses 12 Altmetric Metrics details AbstractANTIFREEZE proteins provide fish with protection against the freezing effect of polar environments by binding to ice surfaces and inhibiting growth of ice crystals. We present the X-ray crystal structure at 1.5 Å resolution of a lone α-helical antifreeze protein from winter flounder, which provides a detailed look at its icebinding features. These consist of four repeated ice-binding motifs, the side chains of which are inherently rigid or restrained by pair-wise side-chain interactions to form a flat binding surface. Elaborate amino- and carboxy-terminal cap structures are also present, which explain the proteins rich α-helical content in solution. We propose an ice-binding model that accounts for the binding specificity of the antifreeze protein along the  axes of the {202¯1} ice planes1. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution Access options Access through your institution Additional access options: Log in Learn about institutional subscriptions Read our FAQs Contact customer support Similar content being viewed by others Polyproline type II helical antifreeze proteins are widespread in Collembola and likely originated over 400 million years ago in the Ordovician Period Article Open access 01 June 2023 Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity Article Open access 16 March 2021 Adsorption of ice-binding proteins onto whole ice crystal surfaces does not necessarily confer a high thermal hysteresis activity Article Open access 14 September 2022 References Knight, C. A., Cheng, C. C. & DeVries, A. L. Biophys. J. 59, 409–418 (1991). Article  CAS  Google Scholar   Chakrabartty, A. & Hew, C. L. Eur. J. Biochem. 202, 1057–1063 (1991). Article  CAS  Google Scholar   Wen, D. & Laursen, R. A. J. biol. Chem. 267, 14102–14108 (1992). CAS  PubMed  Google Scholar   Jorgensen, H. et al. Protein Engng 6, 19–27 (1993). Article  CAS  Google Scholar   Ananthanarayanan, V. A. & Hew, C. L. Biochem. biophys. Res. Commun. 74, 685–689 (1977). Article  CAS  Google Scholar   Chakrabartty, A., Ananthanarayanan, V. A. & Hew, C. L. J. biol. Chem. 264, 11307–11312 (1989). CAS  PubMed  Google Scholar   Richardson, J. S. & Richardson, D. C. Science 240, 1648–1652 (1988). Article  ADS  CAS  Google Scholar   Presta, L. D. & Rose, G. D. Science 240, 1632–1641 (1988). Article  ADS  CAS  Google Scholar   Baker, E. N. & Hubbard, R. E. Progr. Biophys. molec. Biol. 44, 97–179 (1984). Article  CAS  Google Scholar   Hew, C. L. et al. Eur. J. Biochem. 160, 267–272 (1986). Article  CAS  Google Scholar   Piela, L., Nemethy, G. & Scheraga, H. A. Biopolymers 26, 1273–1286 (1987). Article  CAS  Google Scholar   McGregor, M. J., Islam, S. A. & Sternberg, M. J. E. J. molec. Biol. 198, 295–310 (1987). Article  CAS  Google Scholar   Thanki, N., Thornton, J. M. & Goodfellow, J. M. J. molec. Biol. 202, 637–657 (1988). Article  CAS  Google Scholar   Knight, C. A., Driggers, E. & DeVries, A. L. Biophys. J. 64, 252–259 (1993). Article  ADS  CAS  Google Scholar   Wen, D. & Laursen, R. A. Biophys. J. 63, 1659–1662 (1992). Article  ADS  CAS  Google Scholar   Lal, M., Clark, A. H., Lips, A., Ruddock, J. N. & White, D. N. J. Faraday Discuss. 95, 299–306 (1993). Article  ADS  CAS  Google Scholar   Madura, J. D. et al. J. Am. chem. Soc. 116, 417–418 (1994). Article  CAS  Google Scholar   Yang, D. S. C., Chung, Y. J., Chen, P., Rose, J. P. & Hew, C. L. J. molec. Biol. 189, 725 (1986). Article  CAS  Google Scholar   Brunger, T. A., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987). Article  ADS  CAS  Google Scholar   Fitzgerald, P. M. D. J. appl. Crystallogr. 21, 273–278 (1988). Article  CAS  Google Scholar   Yang, D. S. C., Sax, M., Chakrabartty, A. & Hew, C. L. Nature 333, 232–237 (1988). Article  ADS  CAS  Google Scholar   Hew, C. L., Chakrabartty, A. & Yang, D. S. C. Integration and Control of Metabolic Processes: Pure and Applied Aspects (eds Kon, O. L. et al.) 299–309 (ISCU, Cambridge, 1987). Google Scholar   Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Acta crystallogr. A47, 110–119 (1991). Article  Google Scholar   Download referencesAuthor informationAuthors and Affiliations Department of Biochemistry, Faculty of Health Science, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada F. Sicheri & D. S. C. Yang BioCrystallography Laboratory, VA Medical Center, PO Box 12055, Pittsburgh, Pennsylvania, 15240, USA D. S. C. YangAuthorsF. SicheriView author publications You can also search for this author inPubMed Google ScholarD. S. C. YangView author publications You can also search for this author inPubMed Google ScholarRights and permissions Reprints and permissionsAbout this articleCite this article Sicheri, F., Yang, D. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375, 427–431 (1995). https://doi.org/10.1038/375427a0 Download citationReceived: 16 February 1995Accepted: 06 April 1995Issue Date: 01 June 1995DOI: https://doi.org/10.1038/375427a0Share this article Anyone you share the following link with will be able to read this content:Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative

Letter Published: 01 June 1995 Ice-binding structure and mechanism of an antifreeze protein from winter flounder F. Sicheri1 & D. S. C. Yang1,2  Nature volume 375, pages 427–431 (1995)Cite


this article


3118 Accesses


12 Altmetric


Metrics details

Abstract


ANTIFREEZE proteins provide fish with protection against the freezing effect of polar environments by binding to ice surfaces and inhibiting growth of ice crystals. We present the X-ray


crystal structure at 1.5 Å resolution of a lone α-helical antifreeze protein from winter flounder, which provides a detailed look at its icebinding features. These consist of four repeated


ice-binding motifs, the side chains of which are inherently rigid or restrained by pair-wise side-chain interactions to form a flat binding surface. Elaborate amino- and carboxy-terminal cap


structures are also present, which explain the protein's rich α-helical content in solution. We propose an ice-binding model that accounts for the binding specificity of the antifreeze


protein along the <011¯2> axes of the {202¯1} ice planes1.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


Access options Access through your institution Additional access options: Log in Learn about institutional subscriptions Read our FAQs Contact customer support Similar content being viewed


by others Polyproline type II helical antifreeze proteins are widespread in Collembola and likely originated over 400 million years ago in the Ordovician Period Article Open access 01 June


2023 Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity Article Open access 16 March 2021


Adsorption of ice-binding proteins onto whole ice crystal surfaces does not necessarily confer a high thermal hysteresis activity Article Open access 14 September 2022 References Knight, C.


A., Cheng, C. C. & DeVries, A. L. Biophys. J. 59, 409–418 (1991).


Article  CAS  Google Scholar 


Chakrabartty, A. & Hew, C. L. Eur. J. Biochem. 202, 1057–1063 (1991).


Article  CAS  Google Scholar 


Wen, D. & Laursen, R. A. J. biol. Chem. 267, 14102–14108 (1992).


CAS  PubMed  Google Scholar 


Jorgensen, H. et al. Protein Engng 6, 19–27 (1993).


Article  CAS  Google Scholar 


Ananthanarayanan, V. A. & Hew, C. L. Biochem. biophys. Res. Commun. 74, 685–689 (1977).


Article  CAS  Google Scholar 


Chakrabartty, A., Ananthanarayanan, V. A. & Hew, C. L. J. biol. Chem. 264, 11307–11312 (1989).


CAS  PubMed  Google Scholar 


Richardson, J. S. & Richardson, D. C. Science 240, 1648–1652 (1988).


Article  ADS  CAS  Google Scholar 


Presta, L. D. & Rose, G. D. Science 240, 1632–1641 (1988).


Article  ADS  CAS  Google Scholar 


Baker, E. N. & Hubbard, R. E. Progr. Biophys. molec. Biol. 44, 97–179 (1984).


Article  CAS  Google Scholar 


Hew, C. L. et al. Eur. J. Biochem. 160, 267–272 (1986).


Article  CAS  Google Scholar 


Piela, L., Nemethy, G. & Scheraga, H. A. Biopolymers 26, 1273–1286 (1987).


Article  CAS  Google Scholar 


McGregor, M. J., Islam, S. A. & Sternberg, M. J. E. J. molec. Biol. 198, 295–310 (1987).


Article  CAS  Google Scholar 


Thanki, N., Thornton, J. M. & Goodfellow, J. M. J. molec. Biol. 202, 637–657 (1988).


Article  CAS  Google Scholar 


Knight, C. A., Driggers, E. & DeVries, A. L. Biophys. J. 64, 252–259 (1993).


Article  ADS  CAS  Google Scholar 


Wen, D. & Laursen, R. A. Biophys. J. 63, 1659–1662 (1992).


Article  ADS  CAS  Google Scholar 


Lal, M., Clark, A. H., Lips, A., Ruddock, J. N. & White, D. N. J. Faraday Discuss. 95, 299–306 (1993).


Article  ADS  CAS  Google Scholar 


Madura, J. D. et al. J. Am. chem. Soc. 116, 417–418 (1994).


Article  CAS  Google Scholar 


Yang, D. S. C., Chung, Y. J., Chen, P., Rose, J. P. & Hew, C. L. J. molec. Biol. 189, 725 (1986).


Article  CAS  Google Scholar 


Brunger, T. A., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).


Article  ADS  CAS  Google Scholar 


Fitzgerald, P. M. D. J. appl. Crystallogr. 21, 273–278 (1988).


Article  CAS  Google Scholar 


Yang, D. S. C., Sax, M., Chakrabartty, A. & Hew, C. L. Nature 333, 232–237 (1988).


Article  ADS  CAS  Google Scholar 


Hew, C. L., Chakrabartty, A. & Yang, D. S. C. Integration and Control of Metabolic Processes: Pure and Applied Aspects (eds Kon, O. L. et al.) 299–309 (ISCU, Cambridge, 1987).


Google Scholar 


Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Acta crystallogr. A47, 110–119 (1991).


Article  Google Scholar 


Download references


Author informationAuthors and Affiliations Department of Biochemistry, Faculty of Health Science, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada


F. Sicheri & D. S. C. Yang


BioCrystallography Laboratory, VA Medical Center, PO Box 12055, Pittsburgh, Pennsylvania, 15240, USA


D. S. C. Yang


AuthorsF. SicheriView author publications You can also search for this author inPubMed Google Scholar


D. S. C. YangView author publications You can also search for this author inPubMed Google Scholar


Rights and permissions Reprints and permissions


About this articleCite this article Sicheri, F., Yang, D. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375, 427–431 (1995).


https://doi.org/10.1038/375427a0


Download citation


Received: 16 February 1995


Accepted: 06 April 1995


Issue Date: 01 June 1995


DOI: https://doi.org/10.1038/375427a0


Share this article Anyone you share the following link with will be able to read this content:


Get shareable link Sorry, a shareable link is not currently available for this article.


Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative