Crustacean appendage evolution associated with changes in hox gene expression

Crustacean appendage evolution associated with changes in hox gene expression

Play all audios:

Loading...

ABSTRACT Homeotic (Hox) genes specify the differential identity of segments along the body axis of insects. Changes in the segmental organization of arthropod bodies may therefore be driven


by changes in the function of Hox genes1,2,3, but so far this has been difficult to demonstrate. We show here that changes in the expression pattern of the Hox genes _Ubx_ and _AbdA_ in


different crustaceans correlate well with the modification of their anterior thoracic limbs into feeding appendages (maxillipeds). Our observations provide direct evidence that major


morphological changes in arthropod body plans are associated with changes in Hox gene regulation. They suggest that homeotic changes1,4 may play a role in the normal process of adaptive


evolutionary change. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS EXITES IN CAMBRIAN ARTHROPODS AND HOMOLOGY OF ARTHROPOD LIMB BRANCHES Article Open access 30 July 2021 EVOLUTION OF


STICKLEBACK SPINES THROUGH INDEPENDENT _CIS_-REGULATORY CHANGES AT _HOXDB_ Article Open access 01 September 2022 NON-COLLINEAR HOX GENE EXPRESSION IN BIVALVES AND THE EVOLUTION OF


MORPHOLOGICAL NOVELTIES IN MOLLUSKS Article Open access 11 February 2021 REFERENCES * Lewis, E. B. Agene complex controlling segmentation in _Drosophila_. _Nature_ 276, 567–570 (1978). ADS 


Google Scholar  * Raff, R. A. & Kaufman, T. C. _Embryos, Genes, and Evolution_ (Indiana University Press, Bloomington, 1991). Google Scholar  * Akam, M., Dawson, I. & Tear, G.


Homeotic genes and the control of segment diversity. _Development_ 104 (SUPPL.), 123–133 (1988). Google Scholar  * Bateson, W. _Materials for the Study of Variation, Treated with Especial


Regard to Discontinuity in the Origin of Species_ (Macmillan, London, 1894). Google Scholar  * Averof, M. & Akam, M. _HOM/Hox_ genes of _Artemia_: implications for the origin of insect


and crustacean body plans. _Curr. Biol._ 3, 73–78 (1993). Article  CAS  Google Scholar  * Averof, M., Dawes, R. & Ferrier, D. Diversification of arthropod _Hox_ genes as a paradigm for


the evolution of gene functions. _Sem. Dev. Cell. Biol._ 7, 539–551 (1996). Article  CAS  Google Scholar  * Averof, M. & Akam, M. _Hox_ genes and the diversification of insect and


crustacean body plans. _Nature_ 376, 420–423 (1995). Article  ADS  CAS  Google Scholar  * Panganiban, G., Sebring, A., Nagy, L. & Carroll, S. The development of crustacean limbs and the


evolution of arthropods. _Science_ 270, 1363–1366 (1995). Article  ADS  CAS  Google Scholar  * Calman, W. T. _Crustacea_ (Black, London, 1909). Google Scholar  * Giesbrecht, W. in


_Handwörterbuch der Naturwissecschaften_ (ed. Dittler, R.) 800–840 (Fischer, Jena, 1931). Google Scholar  * Schram, F. R. _Crustacea_ (Oxford University Press, Oxford, 1986). Google Scholar


  * Brusca, R. C. & Brusca, G. J. _Invertebrates_ 1–922 (Sinauer, Sunderland Massachusetts, 1990). Google Scholar  * Kelsh, R., Weinzierl, R. O. J., White, R. A. H. & Akam, M.


Homeotic gene expression in the locust _Schistocerca_: an antibody that detects conserved epitopes in _Ultrabithorax_ and _Abdominal-A_ proteins. _Dev. Genet._ 15, 19–31 (1994). Article  CAS


  Google Scholar  * McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. _Cell_ 68, 283–302 (1992). Article  CAS  Google Scholar  * Akam, M. _Hox_ genes and the evolution of


diverse body plans. _Phil. Trans. R. Soc. Lond. B_ 349, 313–319 (1995). Article  ADS  CAS  Google Scholar  * Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the


evolution of vertebral axial morphology. _Development_ 121, 333–346 (1995). CAS  PubMed  Google Scholar  * Gaunt, S. J. Conservation in the Hox code during morphological evolution. _Int. J.


Dev. Biol._ 38, 549–552 (1994). CAS  PubMed  Google Scholar  * Castelli-Gair, J., Greig, S., Micklem, G. & Akam, M. Dissecting the temporal requirements for homeotic gene function.


_Development_ 120, 1983–1995 (1994). CAS  PubMed  Google Scholar  * Castelli-Gair, J. & Akam, M. How the Hox gene _Ultrabithorax_ specifies two different segments: the significance of


spatial and temporal regulation within metemeres. _Development_ 121, 2973–2982 (1995). CAS  PubMed  Google Scholar  * Salser, S. J. & Kenyon, C. A. _C. elegans_ Hox gene switches on,


off, on, and off again to regulate proliferation, differentiation, and morphogenesis. _Development_ 122, 1651–1661 (1996). CAS  PubMed  Google Scholar  * Briggs, D. E. G. The morphology,


mode of life, and affinities of _Canadaspis perfecta_ (Crustacea, Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia. _Phil. Trans. R. Soc. Lond. B_ 281, 439–487 (1978). Article


  ADS  Google Scholar  * Muller, K. J. & Walossek, D. External morphology and larval development of the Upper Cambrian maxillopod _Bredocaris admirabilis_. _Foss. Strat._ 23, 1–70


(1988). Google Scholar  * Walossek, D. The Upper Cambrian _Rehbachiella_ and the phylogeny of Branchiopoda and Crustacea. _Foss. Strat._ 32, 1–202 (1993). Google Scholar  * Wagner, G. P. The


biological homology concept. _Annu. Rev. Ecol. Syst._ 20, 51–69 (1989). Article  Google Scholar  * Patel, N. H., Kornberg, T. B. & Goodman, C. S. Expression of _engrailed_ during


segmentation in grasshopper and crayfish. _Development_ 107, 201–212 (1989). CAS  PubMed  Google Scholar  * Patel, N. H. in _Methods in Cell Biology, 44. Drosophila Melanogaster: Practical


Uses in Cell Biology_ (eds Goldstein, L. S. B. & Fyrberg, E.) 445–487 (Academic, New York, 1994). Google Scholar  Download references ACKNOWLEDGEMENTS We thank M. Akam and F. Ferrari for


discussion; K. Rützler and the Smithsonian Institution for hosting our collecting expeditions at Carrie Bow Caye in Belize; R. White for the FP6.87 antibody; G. Wyngaard for _Mesocyclops_;


E. Chang for _Homarus_ embryos; M. Sepanski for help with electron microscopy; A. Crittenden and L. Brown for technical assistance; and M. Palopoli, R. Chasan and S. Cohen for comments on


the manuscript. This work was supported by the Wellcome Trust (M.A.), the Carnegie Institution of Washington, and the Howard Hughes Medical Institute (N.H.P.). AUTHOR INFORMATION Author


notes * Michalis Averof Present address: EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany AUTHORS AND AFFILIATIONS * Wellcome/CRC Institute, Tennis Court Road, CB2 1QR, Cambridge, UK


Michalis Averof & Nipam H. Patel * HHMI, University of Chicago, MC1028, N-101, 5841 South Maryland Avenue, 60637, Illinois, Chicago, USA Nipam H. Patel Authors * Michalis Averof View


author publications You can also search for this author inPubMed Google Scholar * Nipam H. Patel View author publications You can also search for this author inPubMed Google Scholar


CORRESPONDING AUTHOR Correspondence to Nipam H. Patel. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Averof, M., Patel, N. Crustacean appendage


evolution associated with changes in Hox gene expression. _Nature_ 388, 682–686 (1997). https://doi.org/10.1038/41786 Download citation * Received: 25 March 1997 * Accepted: 10 June 1997 *


Issue Date: 14 August 1997 * DOI: https://doi.org/10.1038/41786 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative