Play all audios:
ABSTRACT The Fas-associated death domain (FADD) adaptor protein FADD/Mort-1 is recruited by several members of the tumor necrosis factor receptor (TNFR) superfamily during cell death
activated via death receptors. Since most studies have focused on the interaction of FADD with plasma membrane proteins, FADD's subcellular location is thought to be confined to the
cytoplasm. In this report, we show for the first time that FADD is present in both the cytoplasm and the nucleus of cells, and that its nuclear localization relies on strong nuclear
localization and nuclear export signals (NLS and NES, respectively) that reside in the death-effector domain (DED) of the protein. Specifically, we found that a conserved basic KRK35
sequence of the human protein is necessary for FADD's nuclear localization, since disruption of this motif leads to the confinement of FADD in the cytoplasm. Furthermore, we show that
the leucine-rich motif LTELKFLCL28 in the DED is necessary for FADD's nuclear export. Functionally, mutation of the NES of FADD and its seclusion in the nucleus reduces the cell
death-inducing efficacy of FADD reconstituted in FADD-deficient T cells. SIMILAR CONTENT BEING VIEWED BY OTHERS PTPN23-DEPENDENT ESCRT MACHINERY FUNCTIONS AS A CELL DEATH CHECKPOINT Article
Open access 28 November 2024 DECIPHERING DED ASSEMBLY MECHANISMS IN FADD-PROCASPASE-8-CFLIP COMPLEXES REGULATING APOPTOSIS Article Open access 06 May 2024 IKK-MEDIATED TRAF6 AND RIPK1
INTERACTION STIFLES CELL DEATH COMPLEX ASSEMBLY LEADING TO THE SUPPRESSION OF TNF-Α-INDUCED CELL DEATH Article 21 April 2023 INTRODUCTION Programmed cell death induced by the interaction of
cell surface death receptors with their respective extracellular ligands plays a central role in numerous life and death decisions ranging from embryonic development to cellular homeostasis.
In mammals, the intracellular signaling initiated by death receptors of the tumor necrosis factor receptor (TNFR) superfamily leads to the activation of hierarchically organized
intracellular signaling pathways that typically culminate in the death of cells bearing such receptors.1 Fas-associated death domain (FADD) is an adaptor death domain (DD)-containing protein
of approximately 25 kDa2 shared by several death receptors that couple death signals to the intracellular death machinery. The human protein consists of 208 amino acids arranged in 12
amphipathic helices functionally divided into six helices in the death-effector domain (DED), which is located at its NH2-terminus, and six helices that form the DD at the COOH-terminus.3
Mechanistically, DD-containing adaptor proteins like FADD or TNFR1-associated DD (TRADD) appear to be required for cell death signaling induced by DD-containing receptors such as Fas/CD95,
TNFR1, and TRAIL 1 and TRAIL 2 receptors.2,4,5 The best characterized signaling mechanism mediated by FADD is the formation of the death-inducing signal complex (DISC) in which, upon
activation of death receptors, FADD interacts with the intracellular DD of the receptors and/or other adaptor proteins such as TRADD,2,6,7 and the DED of FADD subsequently recruits and
activates caspase-8.8 The intervention of FADD in this mechanism is primordial to signal death because expression of a dominant-negative form of FADD consisting of the DD alone (DN-FADD)
impairs Fas and TNFR1 death signaling cascades.9 Moreover, FADD−/− knockout mice display profound defects in apoptotic pathways, particularly in the immune system.10 In addition to its
prominent role in cell death, FADD may have a role in cell-cycle control and proliferation of lymphoid cells,10,11,12,13 as well as embryonic development.14 FADD's mode of action is
assumed to take place in the cytoplasm, possibly because the majority of studies document the interaction of FADD with plasma membrane receptors and associated proteins. However, the
cellular biology and regulation of FADD, its dynamics, as well as the understanding of cellular processes governed by FADD, remain poorly understood. One level of the regulation of FADD in
mammalian cells was shown to occur via its phosphorylation at the serine-194 by a nonidentified 70-kDa cell-cycle-related kinase,15 but the biological significance of FADD phosphorylation is
still a conundrum since both forms of FADD can interact with activated death receptors. In this report, we provide new experimental evidence for the presence of FADD in the nucleus and the
existence of functional nuclear localization signals (NLSs) in the amino-acid sequence of FADD. We propose that the mechanism of action of FADD needs to be reconsidered as a result of its
nucleocytosolic localization. This concept will undoubtedly help to resolve questions on functions regulated by this signaling adaptor molecule. RESULTS AND DISCUSSION We have detected
surprising constitutive expression of FADD in both the cytoplasm and nuclear compartments in a spectrum of cell lines examined by confocal microscopy. HeLa, HEK 293, Jurkat, HTC, COS-1, and
A549 cells were immunostained with a monoclonal IgG1 directed against the DD of FADD or with a polyclonal antibody that recognizes the phosphorylated form of FADD (data not shown, and Figure
1A). These cell lines examined exhibited FADD concentrated in the nucleus of the cells (Figure 1A, panels a,b,d,f). In contrast, we observed that in Jurkat T-lymphocytes approximately 50%
of the cell population harbored FADD in the nucleus, whereas the other 50% displayed FADD in the cytoplasm (Figure 1Ac). The use of this monoclonal anti-FADD has been validated and well
documented in specific studies for its ability to recognize (1) native and denatured FADD, (2) FADD recruited in the DISC of Fas-activated cells, and (3) the dominant-negative form of FADD
termed DN-FADD.16,17,18,19 The presence of FADD in the nucleus was confirmed by the examination of the expression of FADD in protein samples from nuclear and cytosolic fractions extracted
from HeLa cells (Figure 1B) in which FADD exhibited a nuclear/cytosolic pattern of expression similar to that found for transcriptional activators and other nuclear proteins.20 Since its
discovery, FADD has been reported to exert its function primarily by signaling at the plasma membrane;2,21 therefore, our finding that FADD displays nuclear localization was unprecedented.
Examination of the primary amino-acid sequence of full-length FADD (Figure 1C) led us to the identification of one putative NLS located in Helix 3 of the DED. The NLS of FADD corresponded to
a highly conserved short stretch of three basic amino acids KRK35 (Figure 2) that resembled a functional monopartite NLS of other well-characterized nuclear proteins such as Myc.22 To
define whether the KRK35 motif of FADD was a functional NLS, a mutant form of FADD (NLS Mutant-FADD) was generated by replacing the KRK35 with the sequence AAA35 through site-directed
mutagenesis. HeLa cells were transfected with either wild-type (WT)-FADD or NLS Mutant-FADD, and were immunostained with FADD- and Alexa Fluor594-conjugated antibodies. Overexpression of
full-length FADD in HeLa cells resulted in the appearance of spread filament-like structures as observed by confocal microscopy (Figure 3A), similar to those reported by Siegel _et al._23
that were attributed to the formation of death-effector filaments characterizing the overexpression of most DEDcontaining proteins. In most cells overexpressing FADD, the fluorescence was no
longer concentrated in the nucleus (Figure 3Aa) compared to our observations for the endogenous FADD (Figure 1A), perhaps suggesting that the formation of filamentous structures may be an
artefact of overexpression. Nonetheless, expression of the NLS Mutant-FADD in the cells led to a strong exclusion from the nucleus (Figure 3Ab) and formation of less apparent, filament-like
structures. These data suggest that the basic KRK35 sequence in the DED of FADD is required for FADD's subcellular distribution and its nuclear localization. To determine whether the
presence of FADD in the nucleus is dependent on nucleocytosolic trafficking, we scrutinized the primary sequence of FADD for putative leucine-rich motifs with conserved spacing and
hydrophobicity that are characteristic of nuclear proteins. Analysis of the primary amino-acid sequence of FADD revealed the existence of one consensus [LX2–3LX2–3LXL; see Nakielny and
Dreyfuss24 for review) leucine-rich nuclear export signal (NES) located in the DED of human FADD formed by the sequence LTELKFLCL28 (Figure 2), which conforms to a _rev_-type consensus NES
as that found in HIV-1 Rev.25 Using site-directed mutagenesis we eliminated the leucine-rich motif of FADD, and generated an NES Mutant-FADD mutant harboring the amino-acid sequence
ATEAKFACA28. Consistent with the hypothesis that FADD is transported to the nucleus, HeLa cells transfected with the NES Mutant-FADD showed significant retention of FADD in the nucleus
despite overexpressing this protein (Figure 3Ac). This observation was in marked contrast to the pattern observed with overexpressed WT-FADD or the NLS Mutant FADD (Figures 3Aa and Ab,
respectively), supporting the premise that FADD is shuttled into the nucleus, and that the NES sequence in FADD is functional and necessary for FADD's nuclear export. To validate and
extend these results, green-fluorescent protein (GFP)- tagged FADD was generated by linking GFP to the N-terminus of FADD to assess the subcellular distribution of GFP fusion proteins in
living cells by localizing direct fluorescence from the GFP moiety. Expression of GFP-FADD in HeLa cells led to a heterogeneous pattern of cytosolic and nuclear fluorescence among cells
(Figure 3Bb), while both HEK 293 and A549 cells displayed a significant amount of green fluorescence in the cytoplasm (Figure 3Cb and Cf, respectively). It should be noted that the fusion of
GFP with FADD yields a protein of approximately 52 kDa, considerably higher than the molecular size of endogenous FADD present in the cells, which may compromise trafficking mechanisms of
this overexpressed fusion protein. However, in every cell type examined for the expression of GFP-NLS Mutant-FADD, all the green-fluorescent cells exhibited profound cytoplasmic staining and
a loss of nuclear fluorescence (Figures 3Bc, 3Cc and Cg) compared with their respective controls, supporting the notion that a KRK35 cluster defines a functional NLS necessary for the
normal shuttling of FADD to the nucleus. In contrast, confocal analyses of cells transfected with GFP-NES Mutant-FADD (Figures 3Bd, 3Cd and Ch) showed a prominent increase in the intensity
of green fluorescence in the nucleus. Thus, GFP-NES Mutant-FADD is actively transported into the nucleus in the absence of this unique leucine-rich sequence. Overexpression of FADD in cells
has been reported to induce apoptosis owing to FADD oligomerization and the association of FADD molecules with plasma membrane death receptors in the absence of death receptor ligand.26
Although overexpression of FADD in HeLa, HEK 293, and A549 cells induced cell death, the percentage of death detected at the time of data acquisition (24 h post-transfection) was negligible,
in contrast to the 80% cell death found in Jurkat T- cells after 24 h of cell transfection with FADD (data not shown). In lymphoid cells, the interaction of FADD with death receptors
constitutes an important step of the immune response.27 Since induction of lymphocyte apoptosis through cell death receptors is a physiologically well-characterized model of apoptosis, we
examined whether the mutational changes that we introduced in FADD exerted any influence in FADD's ability to trigger cell death. For these experiments, we used the FADD-deficient
Jurkat T-cell line,28 which is resistant to apoptosis induced by the Fas/CD95 receptor. Since oligomerization of FADD following overexpression has been reported to induce both apoptosis and
necrosis,26 we quantified apoptotic cell death by measuring cell shrinkage, a distinctive feature of apoptotic cell death.29 Cell shrinkage was examined by fluorescence-activated cell
sorting (FACS) analyses of the forward-scatter light in the gated green-fluorescent cells expressing the GFP-FADD proteins that were treated with or without anti-Fas. The expression of the
various GFP constructs in FADD-deficient cells led to the same pattern of subcellular distribution as observed for HeLa, HEK 293, and A549 cells (not shown). As expected, expression of
GFP-WT-FADD-induced a significant increase in the amount of apoptotic cell shrinkage (Figure 3D). Upon treatment with anti-Fas for 1 h, the percentage of apoptosis detected in GFP-WT-FADD
transfected cells increased slightly compared to the untreated cell population (Figure 3D). This result suggested that the FADD-transfected cells were insensitive to exogenous Fas receptor
activation, probably as a result of the saturating concentration of FADD molecules present in the cells. Similarly, the percentage of apoptosis found in GFP-NLS Mutant-FADD-transfected cells
was independent of Fas activation (Figure 3D). In contrast, reconstitution of the FADD-deficient cells with GFP-NES Mutant-FADD significantly reduced the apoptosis. This effect probably
reflects the fact that the GFP-NES Mutant-FADD is secluded to a significant extent in the nucleus (Figure 3Bd, and 3Cd and Ch). Alternatively, it is plausible that the presence of FADD in
the nucleus may activate survival mechanisms. Our investigation suggests that many questions regarding the mechanisms that control the intracellular transport and biology of FADD remain
unsolved. However, our findings unveil a novel level in the regulation of FADD. The observation that in a homogenous Jurkat cell population, individual cells can be segregated into either
cytosolic or nuclear FADD (Figure 1Ac) raises the intriguing question as to which factors determine the subcellular localization of FADD in a given cell and whether this localization
predetermines sensitivity to death receptor stimulation, specifically in light of the asynchronous nature of the cell death process. Recently, it has been shown that TRADD can be shuttled to
the nucleus as well, although TRADD's constitutive expression is mainly localized in the cytoplasm and Golgi apparatus, and the regulation of the nucleocytosolic transport remains
unknown.30 The study of the mechanistic basis of FADD's presence in the nucleus may lead to new avenues for the role of FADD in the nucleus. EXPERIMENTAL METHODS CELL CULTURE CONDITIONS
AND TRANSFECTIONS Jurkat- and FADD-deficient T cells were cultured as previously described.17,28 HeLa cells were grown as monolayer cultures in Joklik's minimum essential medium and
were harvested with Versene as previously described.31 Human embryonic kidney HEK 293 cells were grown in Eagle's minimum essential medium (EMEM) containing 10% (v/v) heat-inactivated
fetal calf serum, 2 mM glutamine, 100 U penicillin/ml, and 100 U streptomycin/ml. Human lung carcinoma A549 cell line was cultured in a equal dilution (v/v) of F12 nutrient mixture and EMEM
medium supplemented with 5% (v/v) heat-inactivated fetal calf serum, 2 mM glutamine, 100 U penicillin ml, and 100 U streptomycin/ml. FADD-deficient cells were transiently transfected by
electroporation with a BTX ECM 600 electroporator (Genotronics, Inc., San Diego, CA, USA). A total of 10 million exponentially growing cells were harvested, resuspended in 400 _μ_l of
complete medium in disposable 0.4 cm gap BTX cuvettes (Genotronics, Inc.), and mixed with 10 _μ_g of each of the plasmids. Electroporation was performed by setting the BTX ECM 600
electroporator at 260 V, 1040 _μ_F, and 720 Ω. After transfection, cells were immediately placed in six-well plates containing 6 ml of complete medium per well, and were used 18 h after
transfection. Transfection efficiency was routinely measured by FACS and was determined to be between 25 and 40%. For apoptosis analyses, the green-fluorescent populations of cells were
gated for each of the groups. Adherent cell cultures were plated 24 h prior to transfection and were allowed to grow to 50–70% confluence. Cells were washed with Opti-MEM (Life Technologies,
Inc.) and transfected using Fugene-6 (Roche, Germany) according to the manufacturer's recommendations. The precipitates were incubated with cells in Opti-MEM medium, which was replaced
by complete medium after 4 h of transfection. Cells were maintained at 37°C and 5% CO2, 95% air until analyses. PREPARATION OF DNA CONSTRUCTS AND SITE-DIRECTED MUTAGENESIS pcDNA3 vector
containing the full length of FADD was kindly provided by Dr. A Strasser (Melbourne, Australia). To generate GFP-tagged FADD, we excised the cDNA of FADD from the pcDNA3-FADD vector through
digestion with _Bam_H1 and _Kpn_1 and subcloned into the multiple cloning site of _Bam_H1/_Kpn_1-digested pEGFP-C2 (BD Biosciences Clontech, Palo Alto, CA, USA). Plasmid DNA was prepared by
using Qiagen Maxiprep kits (Valencia, CA, USA). Site-specific mutagenesis was introduced by PCR with the QuikChange kit (Stratagene, La Jolla, CA, USA) by following the manufacturer's
instructions and using pcDNA3-FADD or GFP-FADD as templates. Oligonucleotides were individually designed following the QuikChange manufacturer's recommendations and were synthesized by
Integrated DNA Tech. (Coralville, IA, USA). Mutations were verified by PCR with the BigDye™ Terminator Cycle Sequencing kit (Applied Biosystems, Foster City, CA, USA) and analysis were
performed at the NIEHS Sequencing Core (Research Triangle Park, NC, USA). For elimination of the putative NLS, KRK35 was mutated to AAA35 by using the oligonucleotide sequence 5′ GC CTC GGG
CGC GTG GGC GCG GCC GCG CTG GAG CGC GTG CAG AG 3′ and its reverse complementary. This mutant is designated NLS Mutant FADD. For destruction of the sequence LTELKFLCL, leucines were
mutagenized to alanines by using the primer 5′CG AGC AGC GAG GCG ACC GAG GCC AAG TTC GCA TGC GCC GGG CGC GTG GG3′ and its reverse complementary. This mutant is designated NES Mutant FADD.
CELL FRACTIONATION AND WESTERN BLOT ANALYSES Cytoplasmic and nuclear extracts were prepared by standard methods with a fractionation kit (Biovision, CA, USA), and 20 _μ_g of each denatured
protein sample was analyzed by Western blot as previously described.17 Antibodies for tubulin (Upstate Biotechnology, NY, USA) and lamin B (Zymed, CA, USA) were used as positive controls for
the cytosolic and nuclear fractions, respectively. Results were confirmed with commercially available fractionated nuclear extracts (4C Biotech, Belgium; not shown). IMMUNOSTAINING AND
CONFOCAL MICROSCOPY HeLa, HEK 293, and A549 cells were plated and transiently transfected on glass-bottom culture dishes (MatTek Corporation, Ashland, MA, USA) for live imaging, and on
two-well Lab-Tek chamber slides (Nalge Nunc International, Naperville, IL, USA) for immunostaining. To prepare cells for immunofluorescence, monolayers of HeLa, HEK 293, A549, and pelleted
Jurkat cells were rinsed in phosphate-buffered saline (PBS) and fixed for 10 min at room temperature in freshly prepared 4% (w/v) paraformaldehyde (Sigma, St. Louis, MO, USA). Cells were
then permeabilized with 0.2% Triton X-100 and treated with 4% BSA–PBS solution as a blocking reagent. Cells were exposed to mouse anti-FADD (BD Biosciences-Pharmingen, CA, USA), or rabbit
antiphospho-ser194-FADD (Cell Signaling Technologies, Beverly, MA, USA) diluted 1 : 50 and 1 : 300, respectively, in a 1% BSA–PBS solution and were incubated overnight at 4°C. After three
washes with PBS, Fluor594®-conjugated anti-mouse or FITC-conjugated anti-rabbit (Molecular Probes, Eugene, OR, USA) were diluted in 1% BSA–PBS and added to the cells for 1 h. After three
washes with PBS, the upper chamber portions of the slides were removed, and the fixed cells were mounted and preserved with Prolong Anti-Fade (Molecular Probes). Negative controls for
staining consisting of fixed cells exposed to either Alexa-Fluor594®-conjugated IgG or FITC-conjugated were done to confirm specificity. For live GFP-tagged imaging, cells were analyzed 18 h
post-transfection, and the DNA-specific fluorochrome Hoechst 33342 (Molecular Probes) was occasionally added to the cells to visualize nuclei. Images from immunostaining and live imaging
were collected by using a Zeiss inverted laser scanning confocal microscope LSM 410 UV (Zeiss, Thornwood, NY, USA) with a C-Apo × 40 water-immersion objective. An excitation wave length of
488 nm with an LP 505 nm emission filter was used to detect GFP and FITC, and a wavelength of 568 nm with an LP 590 nm emission filter was used to detect Alexa Fluor 594. Images were
analyzed with the LSM-510 Image Browser Software. FLUORESCENCE-ACTIVATED CELL SORTING ANALYSIS FADD-deficient cells transfected with the pEGF-C2 empty vector, WT-GFP FADD, NLS Mutant-FADD or
NES Mutant-FADD-transfected cells were treated 18 h post-transfection with or without 500 ng / ml of anti-human Fas IgM CH-11 for 1 h. Flow-cytometric analyses for changes in cell volume
were examined on a Becton Dickinson FACSort using CellQuest (BD Biosciences) software through forward-scatter light analyses of cells, as reported previously.32 For examination of the
GFP-positive cell populations, wave lengths of 488 and 530 nm were used for excitation and emission, respectively. To ensure that the amount of cell death was quantified on the positively
transfected cell population exclusively, we determined analyses by gating on the GFP-positive cell population. Results were analyzed with Student's _t_-test for statistical
significance. ABBREVIATIONS * TNFR: tumor necrosis factor receptor * NLS: nuclear localization signal * NES: nuclear export signal * DED: death-effector domain * DD: death domain REFERENCES
* Locksley RM, Killeen N and Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. _Cell_ 104: 487–501 Article CAS Google Scholar * Chinnaiyan AM,
O'Rourke K, Tewari M and Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. _Cell_ 81(4): 505–512 Article
CAS Google Scholar * Strasser A and Newton K (1999) FADD/MORT1, a signal transducer that can promote cell death or cell growth. _Int. J. Biochem. Cell Biol._ 31: 533–537 Article CAS
Google Scholar * Hsu H, Shu HB, Pan MG and Goeddel DV (1996) TRADD–TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. _Cell_. 84: 299–308
Article CAS Google Scholar * Schneider P, Thome M, Burns K, Bodmer JL, Hofmann K, Kataoka T, Holler N and Tschopp J (1997) TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent
apoptosis and activate NF-kappaB. _Immunity_ 7(6): 831–836 Article CAS Google Scholar * Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH and Wallach D (1995) A novel protein that
interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. _J. Biol. Chem._ 270: 7795–7798 Article CAS Google Scholar * Kischkel FC, Hellbardt S,
Behrmann I, Germer M, Pawlita M, Krammer PH and Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor.
_EMBO J._ 14(22): 5579–5588 Article CAS Google Scholar * Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW and Yuan J (1996) Human ICE/CED-3 protease
nomenclature. _Cell_ 87(4): 171 Article CAS Google Scholar * Chinnaiyan AM, Tepper CG, Seldin MF, O'Rourke K, Kischkel FC, Hellbardt S, Krammer PH, Peter ME and Dixit VM (1996)
FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. _J. Biol. Chem._ 271(9): 4961–4965 Article CAS Google Scholar * Zhang J, Cado D,
Chen A, Kabra NH and Winoto A (1998) Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. _Nature_ 392: 296–300 Article CAS Google
Scholar * Hueber AO, Zornig M, Bernard AM, Chautan M and Evan G (2000) A dominant negative Fas-associated death domain protein mutant inhibits proliferation and leads to impaired calcium
mobilization in both T-cells and fibroblasts. _J. Biol. Chem._ 275: 10453–10462 Article CAS Google Scholar * Newton K, Harris AW, Bath ML, Smith KG and Strasser A (1998) A dominant
interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. _EMBO J._ 17: 706–718 Article CAS Google Scholar * Newton
K, Harris AW and Strasser A (2000) FADD/MORT1 regulates the pre- TCR checkpoint and can function as a tumour suppressor. _EMBO J._ 19: 931–941 Article CAS Google Scholar * Walsh CM, Wen
BG, Chinnaiyan AM, O'Rourke K, Dixit VM and Hedrick SM (1998) A role for FADD in T cell activation and development. _Immunity_ 8: 439–449 Article CAS Google Scholar * Scaffidi C,
Volkland J, Blomberg I, Hoffmann I, Krammer PH and Peter ME (2000) Phosphorylation of FADD/ MORT1 at serine 194 and association with a 70- kDa cell cycle-regulated protein kinase. _J.
Immunol._ 164: 1236–1242 Article CAS Google Scholar * Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P, Blenis J and Tschopp J (2000) TRAIL receptor-2 signals apoptosis
through FADD and caspase-8. _Nat. Cell Biol._ 2(4): 241–243 Article CAS Google Scholar * Gomez-Angelats M and Cidlowski JA (2001) PKC inhibits FADD recruitment and DISC formation during
FAS/CD95 induced apoptosis. _J. Biol. Chem._ 276: 44944–44952 Article CAS Google Scholar * Scaffidi C, Kischkel FC, Krammer PH and Peter ME (2000) Analysis of the CD95 (APO-1/Fas)
death-inducing signaling complex by high-resolution twodimensional gel electrophoresis. _Methods Enzymol._ 322: 363–373 Article CAS Google Scholar * Wieder T, Essmann F, Prokop A, Schmelz
K, Schulze-Osthoff K, Beyaert R, Dorken B and Daniel PT (2001) Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor–ligand interaction
and occurs downstream of caspase-3. _Blood_ 97(5): 1378–1387 Article CAS Google Scholar * Qutob MS, Bhattacharjee RN, Pollari E, Yee SP and Torchia J (2002) Microtubule-dependent
subcellular redistribution of the transcriptional coactivator p/CIP. _Mol. Cell Biol._ 22: 6611–6626 Article CAS Google Scholar * Zhang J and Winoto A (1996) A mouse Fas-associated
protein with homology to the human Mort1/FADD protein is essential for Fas-induced apoptosis. _Mol. Cell Biol._ 16: 2756–2763 Article CAS Google Scholar * Jans DA, Xiao CY and Lam MH
(2000) Nuclear targeting signal recognition: a key control point in nuclear transport?. _Bioessays_ 22: 532–544 Article CAS Google Scholar * Siegel RM, Martin DA, Zheng L, Ng SY, Bertin
J, Cohen J, Lenardo MJ (1998) Death-effector filaments: novel cytoplasmic structures that recruit caspases and trigger apoptosis. _J. Cell Biol._ 141(5): 1243–1253 Article CAS Google
Scholar * Nakielny S and Dreyfuss G (1999) Transport of proteins and RNAs in and out of the nucleus. _Cell_ 99: 677–690 Article CAS Google Scholar * Fischer U, Huber J, Boelens WC,
Mattaj IW and Luhrmann R (1995) The HIV- 1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. _Cell_ 82: 475–483 Article CAS
Google Scholar * Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y and Nagata S (2000) Necrotic death pathway in Fas receptor signaling. _J. Cell Biol._ 151: 1247–1256 Article CAS
Google Scholar * Newton K, Kurts C, Harris AW and Strasser A (2001) Effects of a dominant interfering mutant of FADD on signal transduction in activated T cells. _Curr Biol._ 11: 273–276
Article CAS Google Scholar * Juo P, Woo MS, Kuo CJ, Signorelli P, Biemann HP, Hannun YA and Blenis J (1999) FADD is required for multiple signaling events downstream of the receptor Fas.
_Cell Growth Differ._ 10(12): 797–804 CAS PubMed Google Scholar * Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation.
_Nature_ 284: 555–556 Article CAS Google Scholar * Morgan M, Thorburn J, Pandolfi PP and Thorburn A (2002) Nuclear and cytoplasmic shuttling of TRADD induces apoptosis via different
mechanisms. _J. Cell Biol._ 157: 975–984 Article CAS Google Scholar * Burnstein KL, Jewell CM, Sar M and Cidlowski JA (1994) Intragenic sequences of the human glucocorticoid receptor
complementary DNA mediate hormone-inducible receptor messenger RNA down-regulation through multiple mechanisms. _Mol. Endocrinol._ 8: 1764–1773 CAS PubMed Google Scholar * Gomez-Angelats
M, Bortner CD and Cidlowski JA (2000) PKC inhibits Fas-induced apoptosis through modulation of the loss of potassium and cell shrinkage. A role for PKC upstream of caspases. _J. Biol. Chem._
275: 19609–19619 Article CAS Google Scholar Download references AUTHOR INFORMATION Author notes * M Gómez-Angelats Present address: Almirall Research Centre, Cardener 68-74, 08024,
Barcelona, Spain AUTHORS AND AFFILIATIONS * The Laboratory of Signal Transduction, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, National Institutes of
Health, 111 Alexander Drive, Research Triangle Park, 27709, NC, USA M Gómez-Angelats & J A Cidlowski Authors * M Gómez-Angelats View author publications You can also search for this
author inPubMed Google Scholar * J A Cidlowski View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to J A Cidlowski.
ADDITIONAL INFORMATION Edited by G Melino RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Gómez-Angelats, M., Cidlowski, J. Molecular evidence for the
nuclear localization of FADD. _Cell Death Differ_ 10, 791–797 (2003). https://doi.org/10.1038/sj.cdd.4401237 Download citation * Received: 12 November 2002 * Revised: 10 January 2003 *
Accepted: 12 February 2003 * Published: 18 June 2003 * Issue Date: 01 July 2003 * DOI: https://doi.org/10.1038/sj.cdd.4401237 SHARE THIS ARTICLE Anyone you share the following link with will
be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt
content-sharing initiative KEYWORDS * FADD/Mort-1 * FAS * nuclear localization signal * nuclear export signal