Play all audios:
ABSTRACT In the near future, scientists and researchers hope to use semiconducting materials in various human-friendly electronic devices such as skin-like sensors and interactive
electronics, which require them to function properly while being bent, stretched or twisted. In this work, we managed to achieve excellent mechanical flexibility in conventionally fragile
ceramics with a design of nanobelt network. We engineered inorganic oxides into ultralong and continuous nanobelts via an extremely simple and scalable electrospinning process. The
as-synthesized SnO2 nanobelts possess ultrahigh aspect ratios (>105) and well-defined rectangular cross-section, which exhibit outstanding mechanical flexibility under a bending radius
down to 1 mm and show no obvious electrical degradation after 1000 cycles of bending to a radius of 2 mm. Moreover, the free-standing nanobelt network demonstrates superior optoelectronic
properties as well as high optical transparency (>80% transmittance at 550 nm), which enables us to construct conformable and ‘invisible’ UV photodetectors on multiple flexible or curved
substrates, including plastics, paper, textiles and curved/bio-surfaces. These results strongly indicate the great compatibility and potential of inorganic nanobelt networks as flexible and
transparent functional electronics. SIMILAR CONTENT BEING VIEWED BY OTHERS A MOLECULAR DESIGN APPROACH TOWARDS ELASTIC AND MULTIFUNCTIONAL POLYMER ELECTRONICS Article Open access 29
September 2021 INK FORMULATION OF FUNCTIONAL NANOWIRES WITH HYPERBRANCHED STABILIZERS FOR VERSATILE PRINTING OF FLEXIBLE ELECTRONICS Article Open access 16 March 2025 BIOMIMETIC FREESTANDING
MICROFRACTALS FOR FLEXIBLE ELECTRONICS Article Open access 14 February 2025 INTRODUCTION Inorganic semiconductors have been employed as key components in a wide range of areas, such as
field effect transistors,1 light emitting diodes,2, 3, 4 sensors5, 6 and piezoelectric elements.7 However, their applications in flexible electronics are severely confined due to the
brittleness. In this regard, intensive studies have been conducted on exploiting advanced fabrication techniques and materials suitable for soft electronics. Materials with improved
mechanical flexibility have been reported, such as two-dimensional (2D) topological insulators8 and graphene films,9 one-dimensional (1D) nanostructures10 and carbon nanotubes11 and
zero-dimensional (0D) chalcogenide nanocrystals.12, 13 Rogers’ group has pioneered epidermal electronics with controlled geometrical and spatial configurations in design of flexible
electronics.14, 15, 16 Hosono and co-workers demonstrated a class of amorphous oxide semiconductor films as transparent flexible transistors.17 Despite the enormous progress achieved so far,
it still remains a great challenge to produce inorganic semiconductors with extreme deformability in a scalable way. Moreover, efficient integration of these materials with improved
mechanical flexibility into flexible functional devices, especially on substrates with different textures and complex curvilinear surfaces, is far from well developed. SnO2, as an important
wide-bandgap semiconductor, has been widely explored as gas sensors18, 19 and solar-blind UV detectors,20, 21 whereas further applications in flexible electronics have been rarely reported
due to its poor mechanical properties. One solution is to synthesize and incorporate micro/nano-structures, such as wires, ribbons and bars, which can tolerate mechanical deformation to a
certain extent.22 However, some limitations, such as non-uniformity with low aspect ratios, unstable cross-junctions with high resistance and sophisticated assembly setups, are still
standing in the way of achieving sufficient and durable flexibility in practical applications. Accordingly, new strategies need to be developed, which should meet the requirements of
controlled synthesis of highly uniform nanostructures with tailored geometry, reliable interconnection with low junction resistance and facile integration with multiple flexible or curved
substrates. EXPERIMENTAL PROCEDURES SAMPLE PREPARATION AND CHARACTERIZATION SnO2 nanobelts were synthesized via a combination of sol-gel-based electrospinning and subsequent heat treatment.
The precursor solution was prepared by dissolving SnCl4·5H2O (0.1 g) in pure ethanol (3.8 ml), and then mixed with 5.0 wt.% polyvinyl butyral. The mixture solution was stirred till it turned
into a clear sol, and then delivered into a syringe with a stainless steel needle. A voltage of 12 kV was applied to the sol with a high-voltage power supply. Grounded aluminum foil was
placed below the syringe at a distance of 15 cm to collect nonwoven fiber mats. After a period of deposition time, the fiber mats were peeled off as a free-standing film and calcined in air
at 500 °C for 2 h at a heating rate of 5 °C min−1 to form SnO2 nanobelt networks. SnO2 films were prepared on 100-μm-thick polyethylene terephthalate (PET) substrates using a.c.
magnetosputtering (LJ-SP103C, LJ-UHV Technology Co. Ltd., Taiwan) with a power of 150 W at a pressure of 20 mtorr. The film thickness was ∼100 nm based on calculation. The samples were
characterized with field emission scanning electron microscopy (SEM, JSM-7001F, JEOL Ltd., Tokyo, Japan), transmission electron microscopy (TEM, JEM-2010, JEOL Ltd.) and X-ray diffraction
(XRD, D/max-2500, Rigaku Ltd., Tokyo, Japan). OPTOELECTRONIC AND OPTICAL TESTS Time-dependent on/off photoresponse was conducted on Keithley 4200-SCS measurement system. Samples were located
on a probe station in a shielded box. The current was monitored while UV light (Philips TUV 8 W, 254 nm) was turned on and off in a time interval of 2 min. The specular transmittance was
measured by using a UV–visible spectrophotometer (TU-1810PC, Purkinje General Corp., Beijing, China). The samples were transferred onto quartz substrates. The transmittance of a plain quartz
substrate was set as baseline. RESULTS AND DISCUSSION SYNTHESIS AND CHARACTERIZATION OF SNO2 NANOBELTS In this study, we managed to achieve extraordinary flexibility in conventionally
fragile SnO2 by fabricating a network of intertwined SnO2 nanobelts. Electrospinning, as one of the most efficient methods to produce ultralong 1D nanostructures with low cost and high
scalability,23, 24 was employed to synthesize the SnO2 nanobelts. Particularly, the size, morphology, geometry and chemical composition of electrospun nanostructures can be easily tuned by
adjusting the precursor constituents and operating parameters (e.g., applied voltage, working distance and the feeding rate of solution).23 Accordingly, we were able to produce continuous
nanofibers with a tailored ribbon-like shape. Ribbon-like nanostructures with rectangular cross-section could form during electrospinning through rapid solvent evaporation, which may cause a
dry skin on the surface of liquid jet and lead to subsequent nanofiber collapse.23, 25, 26 As shown in Supplementary Figure S1, the as-electrospun composite fibermats consist of continuous
nanobelts with smooth surfaces. Figure 1a shows the SEM images of a typical electrospun web after calcination. We can see that the as-obtained products preserve the highly uniform belt-like
structure with an average width of ∼250 nm and thickness of ∼35 nm (Supplementary Figure S2). XRD pattern (Supplementary Figure S3) shows that all the diffraction peaks can be well indexed
to rutile SnO2 (JCPDS card no. 77-0449). Further analysis with TEM, selected area electron diffraction (SAED) and high-resolution TEM (HRTEM) confirm that the as-synthesized nanobelts are
polycrystalline SnO2 with grains <10 nm (Supplementary Figure S4). MECHANICAL FLEXIBILITY OF SNO2 NANOBELT NETWORK The electropun nanobelt is continuous with length >1 cm
(Supplementary Figure S5), which results in an ultrahigh aspect ratio above 105. Such long nanobelts are likely to form a uniform and closely intertwined network over a large area without
any binder. As shown in the inset of Figure 1b, the free-standing SnO2 nanobelt web (area ∼1 cm × 2 cm) can be easily lifted and folded with forceps. The left SEM image in Figure 1b clearly
shows that the SnO2 nanobelt web can be bent down to a radius <10 μm without any fracture. Further observations on a single nanobelt (right panel of Figure 1b) demonstrate that each
nanobelt can tolerate extreme deformations with _r_ <200 nm (corresponding to a strain >10%), which endows the nanobelt network with superior mechanical flexibility over traditional
materials. Owing to the large aspect ratio, nanoscale ribbon-like geometry and a well-interconnected web configuration, our SnO2 nanobelt network presents remarkable mechanical flexibility
and durability. To examine its mechanical and optoelectronic properties, we transferred a 1 cm × 1 cm SnO2 nanobelt film onto a 100-μm-thick PET substrate. This whole process can be finished
manually under visual observation, which strongly demonstrates its operability and attractive cost-efficiency. A pair of electrodes with a gap distance of 2 mm was prepared on top with
silver paste or sputtered platinum. As shown in Figures 2a and c, the SnO2 nanobelt network can be bent to a radius of 1 mm without any obvious conductance degradation. After 1000 cycles of
bending to a radius of 2 mm, the resistance of nanobelt network increased by only 110% (Figure 2d). In contrast, the electrical resistance of sputtered SnO2 thin film increased sharply by
∼4500% after bending to 1 mm (Figures 2b and c), and ∼2400% after the first 100 cycles of bending to 2 mm (Figure 2d). The notable mechanical durability of SnO2 nanobelt network has also
been proved by monitoring the resistance change during the repeated dynamic bending test (Supplementary Figure S6 and Supplementary Video S1), which displays fully recovered electrical
conductance with consecutive bending cycles. The small temporary increase in resistance is likely due to the increased gap distance upon bending when nanobelts undergo a nanoscale
deformation to relax the applied stress. Whereas the electrical conductance of sputtered SnO2 thin film went through a rapid and irreversible decay after only the first three bending cycles
(Supplementary Figure S6 and Supplementary Video S2), which may result in catastrophic failure in practical application. FLEXIBLE OPTOELECTRONIC DEVICES BASED ON SNO2 NANOBELT NETWORK The
as-assembled photodetector based on SnO2 nanobelt network exhibits high-sensitive UV photoresponse with good reversibility and reproducibility, which is believed to arise from the high
surface-area-to-volume ratio and well-confined 1D electron transport channel.27 Since more surface trap states may form due to the large aspect ratio, a prolonged photocarrier lifetime and
thus enhanced photoconduction gain can be achieved.28 The results of bending test show that the nanobelt network can be bent to an extremely small radius (1 mm) and still function well
despite a marginal increase in the electrical resistance (Figure 2e). Besides, the photosensitivity of SnO2 nanobelt photodetector remains above 102 after bending to 1 mm (Supplementary
Figure S7). For comparison, due to the greatly reduced surface area with less carrier traps, the UV photoresponse of sputtered SnO2 thin film shows a much lower sensitivity of ∼10, and the
electrical conduction under both dark and UV illumination decrease abruptly by ∼90% upon bending to 1 mm (Supplementary Figure S8). MECHANISM OF HIGH FLEXIBILITY OF SNO2 NANOBELT NETWORK The
superior mechanical flexibility of nanobelt network can be further confirmed through direct observation on the microstructural change after bending test. As shown in Figure 3a, SnO2
nanobelts remain a well interconnected and continuous network without detectable fracture after bending to 3 mm. In contrast, numerous cracks on different scales appear in the sputtered SnO2
film, along with channeling and debonding (Figure 3b, and Supplementary Figure S9). This would lead to a catastrophic failure as cracks propagate through the whole film. To examine the
mechanical flexibility of nanobelts under extreme deformations, we transferred them onto a piece of aluminum foil and folded it. As shown in Supplementary Figure S10, the nanobelt network
preserves its integrity after unfolding. Only a few broken nanobelts are found along the crease, where the maximum strain occurred. The extraordinary flexibility observed in the SnO2
nanobelt network originates from the unique ribbon-like nanostructure and the well-interconnected web configuration, which enable the network to maintain its structural integrity upon
bending by releasing the applied stress in a nanoscale level. The nanobelt can withstand severe mechanical deformation due to its nanometer rectangular geometry. For a belt with thickness of
_t_, which is bent to a radius of curvature _r_, the peak strain _ɛ_ can be estimated by the following equation:29 As for our SnO2 nanobelt with _t_ ∼35 nm, the bending radius will be <5
μm in order to create a tensile strain about 0.5%, which is far beyond the requirements for most practical applications, where _r_ ∼1 cm is often sufficient.22 Besides, the contact area
between nanobelts is much larger than that between nanofibers, which may further enhance the cross-junction stability of the intertwined nanobelt network. In the meanwhile, the
polycrystalline nanobelt itself shows good mechanical properties. It is known that nanocrystalline materials usually exhibit a high strength due to the Hall–Petch effect, and grain-boundary
sliding is proposed to be the dominant deformation mechanism at grain sizes <50 nm.30 In our experiment, the average grain size of electrospun SnO2 nanobelts is <10 nm as discussed
earlier. Such nanocrystalline nanobelts with ultrafine grains are supposed to tolerate severe deformation due to the enhanced strength and superplasticity caused by grain-boundary sliding.
SPECULAR TRANSPARENCY AND OPTICAL SIMULATION OF SNO2 NANOBELT NETWORK Optical transparency is another important performance parameter since transparent electronics are playing an
increasingly important role in a wide range of areas, such as transparent displays, invisible sensors and energy conversion/storage field.31, 32, 33 As shown in Figure 4a, over 80% optical
transmittance can be obtained in the SnO2 nanobelt network. Figure 4b presents an example of a highly transparent photodetector made of the SnO2 nanobelt network. The interaction between an
incident light field and the nanobelt can be understood by simulation. As shown in Figures 4c and d, the nanobelt provides excellent light transmission with low scattering and absorption
cross-sections. Particularly, the scattering cross-section is smaller than the geometrical cross-section of the nanobelt due to its sub-wavelength size effect. Figure 4c shows that the
nanobelt has little light absorption in the visible regime. In addition, the scattering cross-section decreases at longer wavelength since the light wavelength becomes larger than the
nanobelt geometrical size, which results in reduced non-resonant sub-wavelength scattering. Note that the transparency of electrospun nanofiber webs can be further improved by reducing the
deposition time as reported in our previous studies,34 while higher mechanical flexibility can also be achieved in the nanobelt network with a smaller thickness due to the relatively low
strain under the same bending radius. Herein, the nanobelt structure offers attractive advantages as flexible optoelectronics. Compared to nanofibers, the nanobelt network is supposed to
have better mechanical flexibility and enhanced photoresponse owing to the tailored rectangular geometry with increased surface area, which demonstrates reliable electrical and
optoelectronic performances under a bending radius down to 1 mm. Therefore, this ceramic nanobelt network holds great potential in highly transparent and flexible electronics. FACILE
ASSEMBLY OF FLEXIBLE OPTOELECTRONIC DEVICES ON MULTIPLE SUBSTRATES In combination of the outstanding mechanical flexibility and high optical transparency, we are able to construct a series
of conformable and ‘invisible’ photodetectors. Since the nanobelt network can be manipulated in a macroscopic level as a free-standing web, we can easily transfer them onto different
substrates, including paper, textiles, tree leaves and glass bottles. As shown in Figure 5 and Supplementary Figure S11, the devices formed on these soft or curved substrates can work as
high-performance UV photodetectors, which demonstrate great reliability even after bending to a small radius of 2 mm (the photoresponse performance is influenced by the physical
characteristics of different substrates). CONCLUSION To summarize, we have achieved high mechanical flexibility and optical transparency in inorganic semiconductors with a new nanobelt
network design. Taking advantage of the closely intertwined web configuration as well as the well-tailored ribbon-like geometry, the nanobelt network exhibits remarkable mechanical
flexibility and optical transparency. The free-standing nanobelt network can be easily transferred and integrated into flexible functional electronics in a cost-effective and scalable way,
which enables us to construct conformable and ‘invisible’ UV photodetectors on various flexible and/or curved substrates. Our work presents a new strategy for designing and integrating
multifunctional ceramics with high mechanical flexibility and optical transparency, which holds great potential in soft optoelectronics, such as photovoltaic systems, paper-like electronics
and wearable health monitors. REFERENCES * Duan, X. F., Huang, Y., Cui, Y., Wang, J. F. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and
optoelectronic devices. _Nature_ 409, 66–69 (2001). Article CAS Google Scholar * Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting-diodes made from cadmium selenide
nanocrystals and a semiconducting polymer. _Nature_ 370, 354–357 (1994). Article CAS Google Scholar * Coe, S., Woo, W. K., Bawendi, M. & Bulovic, V. Electroluminescence from single
monolayers of nanocrystals in molecular organic devices. _Nature_ 420, 800–803 (2002). Article CAS Google Scholar * Feldmann, C., Justel, T., Ronda, C. R. & Schmidt, P. J. Inorganic
luminescent materials: 100 years of research and application. _Adv. Funct. Mater._ 13, 511–516 (2003). Article CAS Google Scholar * Medintz, I. L., Clapp, A. R., Mattoussi, H., Goldman,
E. R., Fisher, B. & Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. _Nat. Mater._ 2, 630–638 (2003). Article CAS Google Scholar * Chen, J., Xu, L.
N., Li, W. Y. & Gou, X. L. alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. _Adv. Mater._ 17, 582–586 (2005). Article CAS Google Scholar * Wang, X. D., Song,
J. H., Liu, J. & Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. _Science_ 316, 102–105 (2007). Article CAS Google Scholar * Peng, H. L., Dang, W. H., Cao, J.,
Chen, Y. L., Wu, W., Zheng, W. S., Li, H., Shen, Z. X. & Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. _Nat. Chem._ 4, 281–286
(2012). Article CAS Google Scholar * Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Ahn, J. H., Kim, P., Choi, J. Y. & Hong, B. H. Large-scale pattern growth of graphene
films for stretchable transparent electrodes. _Nature_ 457, 706–710 (2009). Article CAS Google Scholar * Duan, X. F., Niu, C. M., Sahi, V., Chen, J., Parce, J. W., Empedocles, S. &
Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. _Nature_ 425, 274–278 (2003). Article CAS Google Scholar * Cao, Q., Kim, H. S.,
Pimparkar, N., Kulkarni, J. P., Wang, C. J., Shim, M., Roy, K., Alam, M. A. & Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.
_Nature_ 454, 495–500 (2008). Article CAS Google Scholar * Ridley, B. A., Nivi, B. & Jacobson, J. M. All-inorganic field effect transistors fabricated by printing. _Science_ 286,
746–749 (1999). Article CAS Google Scholar * Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. _Science_ 310, 86–89
(2005). Article CAS Google Scholar * Kim, D. H., Lu, N. S., Ma, R., Kim, Y. S., Kim, R. H., Wang, S. D., Wu, J., Won, S. M., Tao, H., Islam, A., Yu, K. J., Kim, T. I., Chowdhury, R.,
Ying, M., Xu, L. Z., Li, M., Chung, H. J., Keum, H., McCormick, M., Liu, P., Zhang, Y. W., Omenetto, F. G., Huang, Y. G., Coleman, T. & Rogers, J. A. Epidermal electronics. _Science_
333, 838–843 (2011). Article CAS Google Scholar * Khang, D. Y., Jiang, H. Q., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics
on rubber substrates. _Science_ 311, 208–212 (2006). Article CAS Google Scholar * Sun, Y. G., Choi, W. M., Jiang, H. Q., Huang, Y. G. Y. & Rogers, J. A. Controlled buckling of
semiconductor nanoribbons for stretchable electronics. _Nat. Nanotechnol._ 1, 201–207 (2006). Article CAS Google Scholar * Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M. &
Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. _Nature_ 432, 488–492 (2004). Article CAS Google Scholar * Xu,
C. N., Tamaki, J., Miura, N. & Yamazoe, N. Grain-size effects on gas sensitivity of porous SnO2-based elements. _Sensor Actuat. B-chem._ 3, 147–155 (1991). Article CAS Google Scholar
* Gopel, W. & Schierbaum, K. D. SnO2 sensors-current status and future-prospects. _Sensor Actuat. B-chem._ 26, 1–12 (1995). Article Google Scholar * Liu, Z. Q., Zhang, D. H., Han, S.,
Li, C., Tang, T., Jin, W., Liu, X. L., Lei, B. & Zhou, C. W. Laser ablation synthesis and electron transport studies of tin oxide nanowires. _Adv. Mater._ 15, 1754–1757 (2003). Article
CAS Google Scholar * Mathur, S., Barth, S., Shen, H., Pyun, J. C. & Werner, U. Size-dependent photoconductance in SnO2 nanowires. _Small._ 1, 713–717 (2005). Article CAS Google
Scholar * Baca, A. J., Ahn, J. H., Sun, Y. G., Meitl, M. A., Menard, E., Kim, H. S., Choi, W. M., Kim, D. H., Huang, Y. & Rogers, J. A. Semiconductor wires and ribbons for
high-performance flexible electronics. _Angew. Chem. Int. Edit._ 47, 5524–5542 (2008). Article CAS Google Scholar * Li, D. & Xia, Y. N. Electrospinning of nanofibers: Reinventing the
wheel? _Adv. Mater._ 16, 1151–1170 (2004). Article CAS Google Scholar * Greine, A. & Wendorff, J. H. Electrospinning: A fascinating method for the preparation of ultrathin fibres.
_Angew. Chem. Int. Edit._ 46, 5670–5703 (2007). Article Google Scholar * Fong, H., Liu, W. D., Wang, C. S. & Vaia, R. A. Generation of electrospun fibers of nylon 6 and nylon
6-montmorillonite nanocomposite. _Polymer. (Guildf)._ 43, 775–780 (2002). Article CAS Google Scholar * Krishnappa, R. V. N., Desai, K. & Sung, C. M. Morphological study of electrospun
polycarbonates as a function of the solvent and processing voltage. _J. Mater. Sci._ 38, 2357–2365 (2003). Article CAS Google Scholar * Peng, L. F., Hu, L. & Fang, X. S.
Low-dimensional nanostructure ultraviolet photodetectors. _Adv. Mater._ 25, 5321–5328 (2013). Article CAS Google Scholar * Liu, S., Ye, J. F., Cao, Y., Shen, Q., Liu, Z. F., Qi, L. M.
& Guo, X. F. Tunable hybrid photodetectors with superhigh responsivity. _Small._ 5, 2371–2376 (2009). Article CAS Google Scholar * Suo, Z., Ma, E. Y., Gleskova, H. & Wagner, S.
Mechanics of rollable and foldable film-on-foil electronics. _Appl. Phys. Lett._ 74, 1177–1179 (1999). Article CAS Google Scholar * Meyers, M. A., Mishra, A. & Benson, D. J.
Mechanical properties of nanocrystalline materials. _Prog. Mater. Sci._ 51, 427–556 (2006). Article CAS Google Scholar * Gorrn, P., Sander, M., Meyer, J., Kroger, M., Becker, E.,
Johannes, H. H., Kowalsky, W. & Riedl, T. Towards see-through displays: Fully transparent thin-film transistors driving transparent organic light-emitting diodes. _Adv. Mater._ 18,
738–741 (2006). Article Google Scholar * Yang, Y., Jeong, S., Hu, L. B., Wu, H., Lee, S. W. & Cui, Y. Transparent lithium-ion batteries. _Proc. Natl Acad. Sci. USA_ 108, 13013–13018
(2011). Article CAS Google Scholar * Wang, A., Babcock, J. R., Edleman, N. L., Metz, A. W., Lane, M. A., Asahi, R., Dravid, V. P., Kannewurf, C. R., Freeman, A. J. & Marks, T. J.
Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: clues for optimizing transparent conductors. _Proc. Natl Acad. Sci. USA_ 98, 7113–7116 (2001).
Article CAS Google Scholar * Wu, H., Hu, L. B., Rowell, M. W., Kong, D. S., Cha, J. J., McDonough, J. R., Zhu, J., Yang, Y. A., McGehee, M. D. & Cui, Y. Electrospun metal nanofiber
webs as high-performance transparent electrode. _Nano. Lett._ 10, 4242–4248 (2010). Article CAS Google Scholar Download references ACKNOWLEDGEMENTS This work was supported by National
Basic Research of China (Grant No. 2013CB632702) and NSF of China (Grant No. 51302141). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * State Key Laboratory of New Ceramics and Fine
Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, PR, China Siya Huang, Hui Wu, Chunsong Zhao & Wei Pan * Department of Electrical and Computer
Engineering, University of Wisconsin, Madison, WI, USA Ming Zhou & Zongfu Yu * Department of Physics, Zhejiang University, Hangzhou, PR, China Zhichao Ruan Authors * Siya Huang View
author publications You can also search for this author inPubMed Google Scholar * Hui Wu View author publications You can also search for this author inPubMed Google Scholar * Ming Zhou View
author publications You can also search for this author inPubMed Google Scholar * Chunsong Zhao View author publications You can also search for this author inPubMed Google Scholar * Zongfu
Yu View author publications You can also search for this author inPubMed Google Scholar * Zhichao Ruan View author publications You can also search for this author inPubMed Google Scholar *
Wei Pan View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Hui Wu or Wei Pan. ETHICS DECLARATIONS COMPETING
INTERESTS The authors declare no conflict of interest. ADDITIONAL INFORMATION Supplementary Information accompanies the paper on the NPG Asia Materials website SUPPLEMENTARY INFORMATION
SUPPLEMENTARY FIGURES (DOC 3435 KB) SUPPLEMENTARY VIDEO S1 (MOV 11848 KB) SUPPLEMENTARY VIDEO S2 (MOV 11059 KB) RIGHTS AND PERMISSIONS This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Reprints and permissions ABOUT THIS ARTICLE
CITE THIS ARTICLE Huang, S., Wu, H., Zhou, M. _et al._ A flexible and transparent ceramic nanobelt network for soft electronics. _NPG Asia Mater_ 6, e86 (2014).
https://doi.org/10.1038/am.2013.83 Download citation * Received: 02 November 2013 * Revised: 13 November 2013 * Accepted: 17 November 2013 * Published: 14 February 2014 * Issue Date:
February 2014 * DOI: https://doi.org/10.1038/am.2013.83 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable
link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * electrospinning * flexible electronics *
nanobelts * tin oxides