Oxidative stress and stress signaling: menace of diabetic cardiomyopathy

Oxidative stress and stress signaling: menace of diabetic cardiomyopathy

Play all audios:

Loading...

ABSTRACT Cardiovascular disease is the most common cause of death in the diabetic population and is currently one of the leading causes of death in the United States and other industrialized countries. The health care expenses associated with cardiovascular disease are staggering, reaching more than US$350 billion in 2003. The risk factors for cardiovascular disease include high fat/cholesterol levels, alcoholism, smoking, genetics, environmental factors and hypertension, which are commonly used to gauge an individual's risk of cardiovascular disease and to track their progress during therapy. Most recently, these factors have become important in the early prevention of cardiovascular diseases. Oxidative stress, the imbalance between reactive oxygen species production and breakdown by endogenous antioxidants, has been implicated in the onset and progression of cardiovascular diseases such as congestive heart failure and diabetes-associated heart dysfunction (diabetic cardiomyopathy). Antioxidant therapy has shown promise in preventing the development of diabetic heart complications. This review focuses on recent advances in oxidative stress theory and antioxidant therapy in diabetic cardiomyopathy, with an emphasis on the stress signaling pathways hypothesized to be involved. Many of these stress signaling pathways lead to activation of reactive oxygen species, major players in the development and progression of diabetic cardiomyopathy. SIMILAR CONTENT BEING VIEWED BY OTHERS THE INTEGRATED STRESS RESPONSE IN ISCHEMIC DISEASES Article 06 November 2021 REACTIVE OXYGEN SPECIES IN HYPERTENSION Article 24 July 2024 OXIDATIVE STRESS AND THE ROLE OF REDOX SIGNALLING IN CHRONIC KIDNEY DISEASE Article 19 October 2023 ARTICLE PDF REFERENCES * Poulter N . Global risk of cardiovascular disease. _Heart_ 2003; 89: 2–5. Google Scholar  * Strandberg TE, Salomaa V . Factors related to the development of diabetes during a 20-year follow up. A prospective study in a homogeneous group of middle-aged men. _Nutr Metab Cardiovasc Dis_ 2000; 10: 239–46. CAS  PubMed  Google Scholar  * Garcia MJ, McNamara PM, Gordon T, Kannel WB . Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow–up study. _Diabetes_ 1974; 23: 105–11. CAS  PubMed  Google Scholar  * Sowers JR . Diabetes mellitus and cardiovascular disease in women. _Arch Intern Med_ 1998; 158: 617–21. CAS  PubMed  Google Scholar  * Pradhan AD, Skerrett PJ, Manson JE . Obesity, diabetes, and coronary risk in women. _J Cardiovasc Risk_ 2002; 9: 323–30. PubMed  Google Scholar  * Charpentier G, Genes N, Vaur L, Amar J, Clerson P, Cambou JP, _et al_. Control of diabetes and cardiovascular risk factors in patients with type 2 diabetes: a nationwide French survey. _Diabetes Metab_ 2003; 29: 152–8. CAS  PubMed  Google Scholar  * Li S, Culver B, Ren J . Benefit and risk of exercise on myocardial function in diabetes. _Pharmacol Res_ 2003; 48: 127–32. PubMed  Google Scholar  * Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, _et al_. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. _Nat Med_ 2003; 93: 294–9. Google Scholar  * Feldman EL . Oxidative stress and diabetic neuropathy: a new understanding of an old problem. _J Clin Invest_ 2003; 111: 431–3. CAS  PubMed  PubMed Central  Google Scholar  * Gilbert RE, Tsalamandris C, Bach LA, Panagiotopoulos S, O'Brien RC, Allen TJ, _et al_. Long-term glycemic control and the rate of progression of early diabetic kidney disease. _Kidney Int_ 1993; 44: 855–9. CAS  PubMed  Google Scholar  * Fein FS, Sonnenblick EH . Diabetic cardiomyopathy. _Cardiovasc Drugs Ther_ 1994; 8: 65–73. CAS  PubMed  Google Scholar  * Ren J, Davidoff AJ . Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. _Am J Physiol Heart Circ Physiol_ 1997; 272: H148–58. CAS  Google Scholar  * Wold LW, Relling DP, Colligan PB, Scott GI, Hintz KK, Ren BH, _et al_. Characterization of contractile function in diabetic hypertensive cardiomyopathy in adult rat ventricular myocytes. _J Mol Cell Cardiol_ 2001; 33: 1719–26. CAS  PubMed  Google Scholar  * Poirier P, Garneau C, Marois L, Bogaty P, Dumesnil JG . Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. _Diabetes Care_ 2001; 24: 5–10. CAS  PubMed  Google Scholar  * Buyukgebiz A, Saylam G, Dundar B, Bober E, Unal N, Akcoral A . Dilated cardiomyopathy as the first early complications in a 14 year-old girl with diabetes mellitus type 1. _J Pediatr Endocrinol Metab_ 2000; 13: 1143–6. CAS  PubMed  Google Scholar  * Depre C, Young ME, Ying J, Ahuja HS, Han Q, Garza N, _et al_. Streptozotocin induced changes in cardiac gene expression in the absence of severe contractile dysfunction. _J Mol Cell Cardiol_ 2000; 32: 985–96. CAS  PubMed  Google Scholar  * Kang YJ . Molecular and cellular mechanisms of cardiotoxicity. _Environ Health Perspect_ 2001; 109: 27–34. CAS  PubMed  PubMed Central  Google Scholar  * Ren J, Bode AM . Altered cardiac excitation–contraction coupling in ventricular myocytes from spontaneously diabetic BB rats. _Am J Physiol Heart Circ Physiol_ 2000; 279: H238–44. CAS  Google Scholar  * Norby FL, Wold LE, Duan J, Hintz KK, Ren J . IGF-I attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes. _Am J Physiol Endocrinol Metab_ 2002; 283: E658–66. CAS  Google Scholar  * Norby FL, Aberle NS, Kajstura J, Anversa P, Ren J . Transgenic overexpression of insulin–like growth factor I prevents streptozotocin–induced cardiac contractile dysfunction and beta–adrenergic response in ventricular myocytes. _J Endocrinol_ 2004; 180: 175–82. CAS  Google Scholar  * Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS, _et al_. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. _Diabetes_ 2001; 50: 1414–24. CAS  Google Scholar  * Sowers JR, Williams M, Epstein M, Bakris G . Hypertension in patients with diabetes. Strategies for drug therapy to reduce complications. _Postgrad Med_ 2000; 107: 47–54. CAS  PubMed  Google Scholar  * Spector KS . Diabetic cardiomyopathy. _Clin Cardiol_ 1998; 21: 885–7. CAS  PubMed  Google Scholar  * Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A . New type of cardiomyopathy associated with diabetic glomerulosclerosis. _Am J Cardiol_ 1972; 30: 595–602. CAS  PubMed  Google Scholar  * Pierce GN, Russell JC . Regulation of intracellular Ca2+ in the heart during diabetes. _Cardiovasc Res_ 1997; 34: 41–7. CAS  PubMed  Google Scholar  * Chatham JC, Forder JR, McNeill JH . _The heart in diabetes_. Norwell: MA Kluwer Academic Publishers; 1996. Google Scholar  * Schaffer SW, Mozafferi M . Abnormal mechanical function in diabetes: relation to myocardial calcium handling. _Coron Artery Dis_ 1996; 7: 109–15. CAS  PubMed  Google Scholar  * Dincer UD, Bidasee KR, Guner S, Tay A, Ozcelikay AT, Altan VM . The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. _Diabetes_ 2001; 50: 455–61. CAS  PubMed  Google Scholar  * Tamada A, Hattori Y, Houzen H, Yamada Y, Sakuma I, Kitabatake A, _et al_. Effects of beta-adrenoreceptor stimulation on contractility, [Ca2+]i, and Ca2+ current in diabetic rat cardiomyocytes. _Am J Physiol Heart Circ Physiol_ 1998; 274: H1849–57. CAS  Google Scholar  * Idris I, Gray S, Donnelly R . Protein kinase C activation: isozymes-specific effects on metabolism and cardiovascular complications in diabetes. _Diabetologia_ 2001; 44: 659–73. CAS  PubMed  Google Scholar  * Given MB, Jie O, Zhao X, Giles TD, Greenberg SS . Protein kinase C isozymes in skeletal muscles during the early stage of genetic and streptozotocin diabetes. _Proc Soc Exp Biol Med_ 1998; 218: 382–9. CAS  PubMed  Google Scholar  * Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, _et al_. Impact of diabetes on cardiac structure and function: the strong heart study. _Circulation_ 2000; 101: 2271–6. CAS  PubMed  Google Scholar  * Liu JE, Palmieri V, Roman MJ, Bella JN, Fabsitz R, Howard BV, _et al_. The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. _J Am Coll Cardiol_ 2001; 37: 1943–9. CAS  PubMed  Google Scholar  * Rutter MK, Parise H, Benjamin EJ, Levy D, Larson MG, Meigs JB, _et al_. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex–related differences in the Framingham Heart Study. _Circulation_ 2003; 107: 448–54. CAS  PubMed  Google Scholar  * Schannwell CM, Schneppenheim M, Perings SM, Zimmermann T, Plehn G, Strauer BE . Alterations of left ventricular function in women with insulin–dependent diabetes mellitus during pregnancy. _Diabetologia_ 2003; 46: 267–75. CAS  PubMed  Google Scholar  * Dutta K, Podolin DA, Davidson MB, Davidoff AJ . Cardiomyocyte dysfunction in sucrose–fed rats is associated with insulin resistance. _Diabetes_ 2001; 50: 1186–92. CAS  PubMed  Google Scholar  * Zarich SW, Nesto RW . Diabetic cardiomyopathy. _Curriculum Cardiol_ 1989; 118: 1000–12. CAS  Google Scholar  * Fraser GE, Luk R, Thompson S, Smith H, Carter S, Sharpe N . Comparison of echocardiography variables between Type 1 diabetics and normal control. _Am J Cardiol_ 1995; 75: 141–5. CAS  PubMed  Google Scholar  * Raev DC . Which left ventricular function is impaired earlier in the evaluation of diabetic cardiomyopathy. _Diabetes Care_ 1994; 17: 633–9. CAS  PubMed  Google Scholar  * Celentano A, Vaccaro O, Tammaro P, Galderisi M, Crivaro M, Oliviero M, _et al_. Early abnormalities of cardiac function in non-insulin-dependent diabetes mellitus and impaired glucose tolerance. _Am J Cardiol_ 1995; 76: 1173–6. CAS  PubMed  Google Scholar  * Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, _et al_. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. _Circulation_ 1999; 100: 1134–46. CAS  PubMed  Google Scholar  * Brownlee M . Biochemistry and molecular cell biology of diabetic complications. _Nature_ 2001; 414: 813–20. CAS  Google Scholar  * Cai L, Kang YJ . Oxidative stress and diabetic cardiomyopathy: a brief review. _Cardiovasc Toxicol_ 2001; 1: 181–93. CAS  PubMed  Google Scholar  * Ramasamy R, Oates PJ, Schaefer S . Aldose reductase inhibition protects diabetic and nondiabetic rat hearts from ischemic injury. _Diabetes_ 1997; 46: 292–300. CAS  PubMed  Google Scholar  * Hwang YC, Bakr S, Ellery CA, Oates PJ, Ramasamy R . Sorbitol dehydrogenase: a novel target for adjunctive protection of ischemic myocardium. _FASEB J_ 2003; 17: 2331–3. CAS  PubMed  Google Scholar  * Ramasamy R . Aldose reductase: a novel target for cardioprotective interventions. _Curr Drug Targets_ 2003; 4: 625–32. CAS  PubMed  Google Scholar  * Chandra D, Jackson EB, Ramana KV, Kelley R, Srivastava SK, Bhatnagar A . Nitric oxide prevents aldose reductase activation and sorbitol accumulation during diabetes. _Diabetes_ 2002; 51: 3095–101. CAS  PubMed  Google Scholar  * Lee AY, Chung SS . Contributions of polyol pathway to oxidative stress in diabetic cataract. _FASEB J_ 1999; 13: 23–30. CAS  PubMed  Google Scholar  * Makita Z, Vlassara H, Rayfield E, Cartwright K, Friedman E, Rodby R, _et al_. Hemoglobin–AGE: a circulating marker of advanced glycosylation. _Science_ 1992; 258: 651–3. CAS  PubMed  Google Scholar  * Wolffenbuttel BH, Giordano D, Founds HW, Bucala R . Long–term assessment of glucose control by haemoglobin–AGE measurement. _Lancet_ 1996; 347: 513–5. CAS  PubMed  Google Scholar  * Bierhaus A, Illmer T, Kasper M, Luther T, Quehenberger P, Tritschler H, _et al_. Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. _Circulation_ 1997; 96: 2262–71. CAS  PubMed  Google Scholar  * Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP . AGEs and their interation with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. _Cardiovasc Res_ 1998; 37: 586–600. CAS  PubMed  Google Scholar  * Schmidt AM, Stern DM . RAGE: a new target for the prevention and treatment of the vascular and inflammatory complications of diabetes. _Trends Endocrinol Metab_ 2000; 11: 368–75. CAS  PubMed  Google Scholar  * Esposito C, Gerlach H, Brett J, Stern D, Vlassara H . Endothelial receptor–mediated binding of glucose–modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. _J Exp Med_ 1989; 170: 1387–407. CAS  PubMed  Google Scholar  * Li J, Schmidt AM . Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. _J Biol Chem_ 1997; 272: 16 498–506. Google Scholar  * Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D . Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. _Arterioscler Thromb_ 1994; 14: 1521–8. CAS  Google Scholar  * Ritthaler U, Deng Y, Zhang Y, Greten J, Abel M, Sido B, _et al_. Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease. _Am J Pathol_ 1995; 146: 688–94. CAS  PubMed  PubMed Central  Google Scholar  * Yan SD, Stern D, Schmidt AM . What's the RAGE? The receptor for advanced glycation end products (RAGE) and the dark side of glucose. _Eur J Clin Invest_ 1997; 27: 179–81. CAS  PubMed  Google Scholar  * Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, _et al_. Advanced glycation end products increase retinal vascular endot–helial growth factor expression. _J Clin Invest_ 1998; 101: 1219–24. CAS  PubMed  PubMed Central  Google Scholar  * Soudis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G . Retardation by aminoguanidine of development of albuminura, mesangial expansion, and tissue fluorescence in streptozotocin-induced diabetic rat. _Diabetes_ 1991; 40: 1328–34. Google Scholar  * Nakamura S . Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. _Diabetes_ 1997; 46: 895–9. CAS  PubMed  Google Scholar  * Hammes HP . Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. _Proc Natl Acad Sci USA_ 1991; 88: 11555–9. CAS  PubMed  Google Scholar  * Park L . Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. _Nature Med_ 1998; 4: 1025–31. CAS  PubMed  Google Scholar  * Koya D, King GL . Protein kinase C activation and the development of diabetic complications. _Diabetes_ 1998; 47: 859–66. CAS  PubMed  Google Scholar  * Portilla D . Etomoxir-induced PPARalpha-modulated enzymes protect during acute renal failure. _Am J Physiol Renal Physiol_ 2000; 278: F667–75. CAS  PubMed  Google Scholar  * Keogh RJ, Dunlop ME, Larkins RG . Effect of inhibition of aldose reductase on glucose flux, diacylglycerol formation, protein kinase C, and phospholipase A2 activation. _Metabolism_ 1997; 46: 41–7. CAS  PubMed  Google Scholar  * Stevens MJ, Obrosova I, Feldman EL, Greene DA . The sorbitol-osmotic and sorbitol-redox hypothesis. In: LeRoith D, Taylor SI, Olefsky JM, editors. _Diabetes mellitus: a fundamental and clinical text_. Philadelphia: Lippincott Williams & Wilkins; 2000. p 972–83. Google Scholar  * Lee AY, Chung SK, Chung SS . Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. _Proc Natl Acad Sci USA_ 1995; 92: 2780–4. CAS  PubMed  Google Scholar  * Yamaoka T, Nishimura C, Yamashita K, Itakura M, Yamada T, Fujimoto J, _et al_. Acute onset of diabetic pathological changes in transgenic mice with human aldose reductase cDNA. _Diabetologia_ 1995; 38: 255–61. CAS  PubMed  Google Scholar  * Yagihashi S, Yamagishi S, Wada R, Sugimoto K, Baba M, Wong HG, _et al_. Galactosemic neuropathy in transgenic mice for human aldose reductase. _Diabetes_ 1996; 45: 56–9. CAS  PubMed  Google Scholar  * Singh SB, Malamas MS, Hohman TC, Nilakantan R, Carper DA, Kitchen D . Molecular modeling of the aldose reductase–inhibitor complex based on the X–ray crystal structure and studies with single-site-directed mutants. _J Med Chem_ 2000; 43: 1062–70. CAS  PubMed  Google Scholar  * Du XL . Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plas–minogen activator inhibitor-1 expression by increasing Sp1 glycosylation. _Proc Natl Acad Sci USA_ 2000; 97: 12222–6. CAS  PubMed  Google Scholar  * Kakkar R, Kalra J, Mantha SV, Prasad K . Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. _Mol Cell Biochem_ 1995; 151: 113–9. CAS  PubMed  Google Scholar  * Ohuwa T, Sato Y, Naoi M . Hydroxyl radical formation in diabetic rats induced by streptozotocin. _Life Sci_ 1995; 56: 1789–98. Google Scholar  * Bayes JW, Thorpe SR . Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. _Diabetes_ 1999; 48: 1–9. Google Scholar  * Kowluru RA, Engerman RL, Kern TS . Diabetes–induced metabolic abnormalities in myocardium: effect of antioxidant therapy. _Free Radical Res_ 2000; 32: 67–74. CAS  Google Scholar  * Ustinova EE, Barrett CJ, Sun SY, Schultz HD . Oxidative stress impairs cardiac chemoreflexes in diabetic rats. _Am J Physiol_ 2000; 279: 2176–87. Google Scholar  * Rosen P, Du X, Sui GZ . Molecular mechanisms of endothelial dysfunction in the diabetic heart. _Adv Exp Med Biol_ 2001; 498: 75–86. CAS  PubMed  Google Scholar  * Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, _et al_. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. _Nature_ 2000; 404: 787–90. CAS  Google Scholar  * Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP . The role of oxidative stress and NF-κB activation in late diabetic complications. _Biofactors_ 1999; 10: 157–67. CAS  PubMed  Google Scholar  * Mercurio F, Manning AM . NF-κB as a primary regulator of the stress response. _Oncogene_ 1999; 18: 6163–71. CAS  PubMed  Google Scholar  * Barnes PJ, Karin M . Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory disease. _N Engl J Med_ 1997; 336: 1066–71. CAS  PubMed  Google Scholar  * Baldwin AS Jr . The transcription factor NF-κB and human disease. _J Clin Invest_ 2001; 107: 3–6. CAS  PubMed  PubMed Central  Google Scholar  * Tak PP, Firestein GS . NF-κB: a key role in inflammatory disease. _J Clin Invest_ 2001; 107: 7–11. CAS  PubMed  PubMed Central  Google Scholar  * Tibbles LA, Woodgett JR . The stress–activated protein kinase pathways. _Cell Mol Life Sci_ 1999; 55: 1230–54. CAS  PubMed  Google Scholar  * Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY . High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c–Jun NH(2)-terminal kinase and caspase-3. _Circulation_ 2000; 101: 2618–24. CAS  PubMed  Google Scholar  * Natarajan R, Scott S, Bai W, Yerneni KKV, Nadler J . Angiotensin II signaling in vascular smooth muscle cells under high glucose conditions. _Hypertension_ 1999; 33: 378–84. CAS  PubMed  Google Scholar  * Dunlop ME, Muggli EE . Small heat shock protein alteration provides a mechanism to reduce mesangial cell contractility in diabetes and oxidative stress. _Kidney Intl_ 2000; 57: 464–75. CAS  Google Scholar  * Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, _et al_. Myocardial cell death in human diabetes. _Circ Res_ 2000; 87: 1123–32. CAS  PubMed  Google Scholar  * Stockklauser-Farber K, Ballhausen T, Laufer A, Rosen P . Influence of diabetes on cardiac nitric oxide synthase expression and activity. _Biochim Biophys Acta_ 2000; 1535: 10–20. CAS  PubMed  Google Scholar  * Tomita M, Mukae S, Geshi E, Umetsu K, Nakatani M, Katagiri T . Mitochondrial respiratory impairment in streptozotocin–induced diabetic rat heart. _Jpn Circ J_ 1996; 60: 673–82. CAS  PubMed  Google Scholar  * Kucharska J, Braunova Z, Ulicna O, Zlatos L, Gvozdjakova A . Deficit of coenzyme Q in heart and liver mitochondria of rats with streptozotocin-induced diabetes. _Physiol Res_ 2000; 49: 411–8. CAS  PubMed  Google Scholar  * Doroshow JH, Locker GY, Myers CE . Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. _J Clin Invest_ 1980; 65: 128–35. CAS  PubMed  PubMed Central  Google Scholar  * Chen Y, Saari JT, Kang YJ . Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. _Free Radical Biol Med_ 1994; 17: 529–36. CAS  Google Scholar  * Kersten JR, Schmeling TJ, Orth KG, Pagel PS, Warltier DC . Acute hyperglycemia abolishes ischemic preconditioning _in vivo_. _Am J Physiol_ 1998; 275: H721–5. CAS  PubMed  Google Scholar  * Joyeux M, Faure P, Godin-Ribuot D, Halimi S, Patel A, Yellon DM, _et al_. Heat stress fails to protect myocardium of streptozotocin-induced diabetic rats against infarction. _Cardiovasc Res_ 1999; 43: 939–46. CAS  PubMed  Google Scholar  * Elangovan V, Shohami E, Gati I, Kohen R . Increased hepatic lipid soluble antioxidant capacity as compared to other organs of streptozotocin-induced diabetic rats: a cyclic voltametry study. _Free Radical Res_ 2000; 32: 125–34. CAS  Google Scholar  * Ye G, Metreveli NS, Ren J, Epstein PN . Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. _Diabetes_ 2003; 52: 777–83. CAS  PubMed  Google Scholar  * Ye G, Metreveli NS, Donthi RV, Xia S, Xu M, Carlson EC, _et al_. Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. _Diabetes_ 2004; 53: 1336–43. CAS  PubMed  Google Scholar  * Alici B, Gumustas MK, Ozkara H, Akkus E, Demirel G, Yencilek F, _et al_. Apoptosis in the erectile tissues of diabetic and healthy rats. _BJU Int_ 2000; 85: 326–9. CAS  PubMed  Google Scholar  * Cai L, Chen S, Evans T, Deng DX, Mukherjee K, Chakrabarti S . Apoptotic germ-cell death and testicular damage in experimental diabetes: prevention by endothelin antagonism. _Urol Res_ 2000; 28: 342–7. CAS  PubMed  Google Scholar  * Srinivasan S, Stevens M, Wiley JW . Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. _Diabetes_ 2000; 49: 1932–8. CAS  PubMed  Google Scholar  * Fiordaliso F, Li B, Latini R, Sonnenblick EH, Anversa P, Leri A, _et al_. Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. _Lab Invest_ 2000; 80: 531–7. Google Scholar  * Privratsky JR, Wold LE, Sowers JR, Quinn MR, Ren J . AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. _Hypertension_ 2003; 42: 206–12. CAS  PubMed  Google Scholar  * Dzau VJ . Theodore Cooper Lecture: tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. _Hypertension_ 2001; 37: 1047–52. CAS  Google Scholar  * Nickenig G, Harrison DG . The AT1type angiotensin receptor in oxidative stress and atherogenesis, part I: oxidative stress and atherogenesis. _Circulation_ 2002; 105: 393–6. CAS  PubMed  Google Scholar  * Sowers JR . Hypertension, angiotensin II, and oxidative stress. _N Engl J Med_ 2002; 346: 1999–2001. PubMed  Google Scholar  * Mascareno E, Siddiqui MA . The role of Jak/STAT signaling in heart tissue renin-angiotensin system. _Mol Cell Biochem_ 2000; 212: 171–5. CAS  PubMed  Google Scholar  * Wang HD, Xu S, Johns DG, Du Y, Quinn MT, Cayatte AJ, _et al_. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. _Circ Res_ 2001; 88: 947–53. CAS  PubMed  Google Scholar  Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, Grand Forks, 58203, ND, USA Loren E Wold & Jun Ren * Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, 82071, WY, USA Asli F Ceylan-isik & Jun Ren Authors * Loren E Wold View author publications You can also search for this author inPubMed Google Scholar * Asli F Ceylan-isik View author publications You can also search for this author inPubMed Google Scholar * Jun Ren View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Jun Ren. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Wold, L., Ceylan-isik, A. & Ren, J. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy. _Acta Pharmacol Sin_ 26, 908–917 (2005). https://doi.org/10.1111/j.1745-7254.2005.00146.x Download citation * Received: 02 March 2005 * Accepted: 13 April 2005 * Issue Date: 01 August 2005 * DOI: https://doi.org/10.1111/j.1745-7254.2005.00146.x SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * diabetes * heart * cardiomyopathy * oxidative stress * signal transduction

ABSTRACT Cardiovascular disease is the most common cause of death in the diabetic population and is currently one of the leading causes of death in the United States and other industrialized


countries. The health care expenses associated with cardiovascular disease are staggering, reaching more than US$350 billion in 2003. The risk factors for cardiovascular disease include


high fat/cholesterol levels, alcoholism, smoking, genetics, environmental factors and hypertension, which are commonly used to gauge an individual's risk of cardiovascular disease and


to track their progress during therapy. Most recently, these factors have become important in the early prevention of cardiovascular diseases. Oxidative stress, the imbalance between


reactive oxygen species production and breakdown by endogenous antioxidants, has been implicated in the onset and progression of cardiovascular diseases such as congestive heart failure and


diabetes-associated heart dysfunction (diabetic cardiomyopathy). Antioxidant therapy has shown promise in preventing the development of diabetic heart complications. This review focuses on


recent advances in oxidative stress theory and antioxidant therapy in diabetic cardiomyopathy, with an emphasis on the stress signaling pathways hypothesized to be involved. Many of these


stress signaling pathways lead to activation of reactive oxygen species, major players in the development and progression of diabetic cardiomyopathy. SIMILAR CONTENT BEING VIEWED BY OTHERS


THE INTEGRATED STRESS RESPONSE IN ISCHEMIC DISEASES Article 06 November 2021 REACTIVE OXYGEN SPECIES IN HYPERTENSION Article 24 July 2024 OXIDATIVE STRESS AND THE ROLE OF REDOX SIGNALLING IN


CHRONIC KIDNEY DISEASE Article 19 October 2023 ARTICLE PDF REFERENCES * Poulter N . Global risk of cardiovascular disease. _Heart_ 2003; 89: 2–5. Google Scholar  * Strandberg TE, Salomaa V


. Factors related to the development of diabetes during a 20-year follow up. A prospective study in a homogeneous group of middle-aged men. _Nutr Metab Cardiovasc Dis_ 2000; 10: 239–46. CAS


  PubMed  Google Scholar  * Garcia MJ, McNamara PM, Gordon T, Kannel WB . Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow–up study. _Diabetes_ 1974;


23: 105–11. CAS  PubMed  Google Scholar  * Sowers JR . Diabetes mellitus and cardiovascular disease in women. _Arch Intern Med_ 1998; 158: 617–21. CAS  PubMed  Google Scholar  * Pradhan AD,


Skerrett PJ, Manson JE . Obesity, diabetes, and coronary risk in women. _J Cardiovasc Risk_ 2002; 9: 323–30. PubMed  Google Scholar  * Charpentier G, Genes N, Vaur L, Amar J, Clerson P,


Cambou JP, _et al_. Control of diabetes and cardiovascular risk factors in patients with type 2 diabetes: a nationwide French survey. _Diabetes Metab_ 2003; 29: 152–8. CAS  PubMed  Google


Scholar  * Li S, Culver B, Ren J . Benefit and risk of exercise on myocardial function in diabetes. _Pharmacol Res_ 2003; 48: 127–32. PubMed  Google Scholar  * Hammes HP, Du X, Edelstein D,


Taguchi T, Matsumura T, Ju Q, _et al_. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. _Nat Med_ 2003; 93: 294–9. Google


Scholar  * Feldman EL . Oxidative stress and diabetic neuropathy: a new understanding of an old problem. _J Clin Invest_ 2003; 111: 431–3. CAS  PubMed  PubMed Central  Google Scholar  *


Gilbert RE, Tsalamandris C, Bach LA, Panagiotopoulos S, O'Brien RC, Allen TJ, _et al_. Long-term glycemic control and the rate of progression of early diabetic kidney disease. _Kidney


Int_ 1993; 44: 855–9. CAS  PubMed  Google Scholar  * Fein FS, Sonnenblick EH . Diabetic cardiomyopathy. _Cardiovasc Drugs Ther_ 1994; 8: 65–73. CAS  PubMed  Google Scholar  * Ren J, Davidoff


AJ . Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. _Am J Physiol Heart Circ Physiol_ 1997; 272: H148–58. CAS  Google Scholar  * Wold LW, Relling DP,


Colligan PB, Scott GI, Hintz KK, Ren BH, _et al_. Characterization of contractile function in diabetic hypertensive cardiomyopathy in adult rat ventricular myocytes. _J Mol Cell Cardiol_


2001; 33: 1719–26. CAS  PubMed  Google Scholar  * Poirier P, Garneau C, Marois L, Bogaty P, Dumesnil JG . Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes:


importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. _Diabetes Care_ 2001; 24: 5–10. CAS  PubMed  Google Scholar  * Buyukgebiz A, Saylam G, Dundar


B, Bober E, Unal N, Akcoral A . Dilated cardiomyopathy as the first early complications in a 14 year-old girl with diabetes mellitus type 1. _J Pediatr Endocrinol Metab_ 2000; 13: 1143–6.


CAS  PubMed  Google Scholar  * Depre C, Young ME, Ying J, Ahuja HS, Han Q, Garza N, _et al_. Streptozotocin induced changes in cardiac gene expression in the absence of severe contractile


dysfunction. _J Mol Cell Cardiol_ 2000; 32: 985–96. CAS  PubMed  Google Scholar  * Kang YJ . Molecular and cellular mechanisms of cardiotoxicity. _Environ Health Perspect_ 2001; 109: 27–34.


CAS  PubMed  PubMed Central  Google Scholar  * Ren J, Bode AM . Altered cardiac excitation–contraction coupling in ventricular myocytes from spontaneously diabetic BB rats. _Am J Physiol


Heart Circ Physiol_ 2000; 279: H238–44. CAS  Google Scholar  * Norby FL, Wold LE, Duan J, Hintz KK, Ren J . IGF-I attenuates diabetes-induced cardiac contractile dysfunction in ventricular


myocytes. _Am J Physiol Endocrinol Metab_ 2002; 283: E658–66. CAS  Google Scholar  * Norby FL, Aberle NS, Kajstura J, Anversa P, Ren J . Transgenic overexpression of insulin–like growth


factor I prevents streptozotocin–induced cardiac contractile dysfunction and beta–adrenergic response in ventricular myocytes. _J Endocrinol_ 2004; 180: 175–82. CAS  Google Scholar  *


Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS, _et al_. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative


stress. _Diabetes_ 2001; 50: 1414–24. CAS  Google Scholar  * Sowers JR, Williams M, Epstein M, Bakris G . Hypertension in patients with diabetes. Strategies for drug therapy to reduce


complications. _Postgrad Med_ 2000; 107: 47–54. CAS  PubMed  Google Scholar  * Spector KS . Diabetic cardiomyopathy. _Clin Cardiol_ 1998; 21: 885–7. CAS  PubMed  Google Scholar  * Rubler S,


Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A . New type of cardiomyopathy associated with diabetic glomerulosclerosis. _Am J Cardiol_ 1972; 30: 595–602. CAS  PubMed  Google


Scholar  * Pierce GN, Russell JC . Regulation of intracellular Ca2+ in the heart during diabetes. _Cardiovasc Res_ 1997; 34: 41–7. CAS  PubMed  Google Scholar  * Chatham JC, Forder JR,


McNeill JH . _The heart in diabetes_. Norwell: MA Kluwer Academic Publishers; 1996. Google Scholar  * Schaffer SW, Mozafferi M . Abnormal mechanical function in diabetes: relation to


myocardial calcium handling. _Coron Artery Dis_ 1996; 7: 109–15. CAS  PubMed  Google Scholar  * Dincer UD, Bidasee KR, Guner S, Tay A, Ozcelikay AT, Altan VM . The effect of diabetes on


expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. _Diabetes_ 2001; 50: 455–61. CAS  PubMed  Google Scholar  * Tamada A, Hattori Y, Houzen H, Yamada Y, Sakuma I,


Kitabatake A, _et al_. Effects of beta-adrenoreceptor stimulation on contractility, [Ca2+]i, and Ca2+ current in diabetic rat cardiomyocytes. _Am J Physiol Heart Circ Physiol_ 1998; 274:


H1849–57. CAS  Google Scholar  * Idris I, Gray S, Donnelly R . Protein kinase C activation: isozymes-specific effects on metabolism and cardiovascular complications in diabetes.


_Diabetologia_ 2001; 44: 659–73. CAS  PubMed  Google Scholar  * Given MB, Jie O, Zhao X, Giles TD, Greenberg SS . Protein kinase C isozymes in skeletal muscles during the early stage of


genetic and streptozotocin diabetes. _Proc Soc Exp Biol Med_ 1998; 218: 382–9. CAS  PubMed  Google Scholar  * Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, _et al_.


Impact of diabetes on cardiac structure and function: the strong heart study. _Circulation_ 2000; 101: 2271–6. CAS  PubMed  Google Scholar  * Liu JE, Palmieri V, Roman MJ, Bella JN, Fabsitz


R, Howard BV, _et al_. The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. _J Am Coll Cardiol_ 2001; 37: 1943–9. CAS 


PubMed  Google Scholar  * Rutter MK, Parise H, Benjamin EJ, Levy D, Larson MG, Meigs JB, _et al_. Impact of glucose intolerance and insulin resistance on cardiac structure and function:


sex–related differences in the Framingham Heart Study. _Circulation_ 2003; 107: 448–54. CAS  PubMed  Google Scholar  * Schannwell CM, Schneppenheim M, Perings SM, Zimmermann T, Plehn G,


Strauer BE . Alterations of left ventricular function in women with insulin–dependent diabetes mellitus during pregnancy. _Diabetologia_ 2003; 46: 267–75. CAS  PubMed  Google Scholar  *


Dutta K, Podolin DA, Davidson MB, Davidoff AJ . Cardiomyocyte dysfunction in sucrose–fed rats is associated with insulin resistance. _Diabetes_ 2001; 50: 1186–92. CAS  PubMed  Google Scholar


  * Zarich SW, Nesto RW . Diabetic cardiomyopathy. _Curriculum Cardiol_ 1989; 118: 1000–12. CAS  Google Scholar  * Fraser GE, Luk R, Thompson S, Smith H, Carter S, Sharpe N . Comparison of


echocardiography variables between Type 1 diabetics and normal control. _Am J Cardiol_ 1995; 75: 141–5. CAS  PubMed  Google Scholar  * Raev DC . Which left ventricular function is impaired


earlier in the evaluation of diabetic cardiomyopathy. _Diabetes Care_ 1994; 17: 633–9. CAS  PubMed  Google Scholar  * Celentano A, Vaccaro O, Tammaro P, Galderisi M, Crivaro M, Oliviero M,


_et al_. Early abnormalities of cardiac function in non-insulin-dependent diabetes mellitus and impaired glucose tolerance. _Am J Cardiol_ 1995; 76: 1173–6. CAS  PubMed  Google Scholar  *


Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, _et al_. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association.


_Circulation_ 1999; 100: 1134–46. CAS  PubMed  Google Scholar  * Brownlee M . Biochemistry and molecular cell biology of diabetic complications. _Nature_ 2001; 414: 813–20. CAS  Google


Scholar  * Cai L, Kang YJ . Oxidative stress and diabetic cardiomyopathy: a brief review. _Cardiovasc Toxicol_ 2001; 1: 181–93. CAS  PubMed  Google Scholar  * Ramasamy R, Oates PJ, Schaefer


S . Aldose reductase inhibition protects diabetic and nondiabetic rat hearts from ischemic injury. _Diabetes_ 1997; 46: 292–300. CAS  PubMed  Google Scholar  * Hwang YC, Bakr S, Ellery CA,


Oates PJ, Ramasamy R . Sorbitol dehydrogenase: a novel target for adjunctive protection of ischemic myocardium. _FASEB J_ 2003; 17: 2331–3. CAS  PubMed  Google Scholar  * Ramasamy R . Aldose


reductase: a novel target for cardioprotective interventions. _Curr Drug Targets_ 2003; 4: 625–32. CAS  PubMed  Google Scholar  * Chandra D, Jackson EB, Ramana KV, Kelley R, Srivastava SK,


Bhatnagar A . Nitric oxide prevents aldose reductase activation and sorbitol accumulation during diabetes. _Diabetes_ 2002; 51: 3095–101. CAS  PubMed  Google Scholar  * Lee AY, Chung SS .


Contributions of polyol pathway to oxidative stress in diabetic cataract. _FASEB J_ 1999; 13: 23–30. CAS  PubMed  Google Scholar  * Makita Z, Vlassara H, Rayfield E, Cartwright K, Friedman


E, Rodby R, _et al_. Hemoglobin–AGE: a circulating marker of advanced glycosylation. _Science_ 1992; 258: 651–3. CAS  PubMed  Google Scholar  * Wolffenbuttel BH, Giordano D, Founds HW,


Bucala R . Long–term assessment of glucose control by haemoglobin–AGE measurement. _Lancet_ 1996; 347: 513–5. CAS  PubMed  Google Scholar  * Bierhaus A, Illmer T, Kasper M, Luther T,


Quehenberger P, Tritschler H, _et al_. Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. _Circulation_ 1997; 96:


2262–71. CAS  PubMed  Google Scholar  * Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP . AGEs and their interation with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE


concept. _Cardiovasc Res_ 1998; 37: 586–600. CAS  PubMed  Google Scholar  * Schmidt AM, Stern DM . RAGE: a new target for the prevention and treatment of the vascular and inflammatory


complications of diabetes. _Trends Endocrinol Metab_ 2000; 11: 368–75. CAS  PubMed  Google Scholar  * Esposito C, Gerlach H, Brett J, Stern D, Vlassara H . Endothelial receptor–mediated


binding of glucose–modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. _J Exp Med_ 1989; 170: 1387–407. CAS  PubMed 


Google Scholar  * Li J, Schmidt AM . Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. _J Biol Chem_ 1997; 272: 16 498–506.


Google Scholar  * Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D . Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular


dysfunction in the pathogenesis of vascular lesions. _Arterioscler Thromb_ 1994; 14: 1521–8. CAS  Google Scholar  * Ritthaler U, Deng Y, Zhang Y, Greten J, Abel M, Sido B, _et al_.


Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease. _Am J Pathol_ 1995; 146: 688–94. CAS  PubMed  PubMed Central  Google Scholar  * Yan SD,


Stern D, Schmidt AM . What's the RAGE? The receptor for advanced glycation end products (RAGE) and the dark side of glucose. _Eur J Clin Invest_ 1997; 27: 179–81. CAS  PubMed  Google


Scholar  * Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, _et al_. Advanced glycation end products increase retinal vascular endot–helial growth factor expression. _J Clin Invest_


1998; 101: 1219–24. CAS  PubMed  PubMed Central  Google Scholar  * Soudis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G . Retardation by aminoguanidine of development of albuminura,


mesangial expansion, and tissue fluorescence in streptozotocin-induced diabetic rat. _Diabetes_ 1991; 40: 1328–34. Google Scholar  * Nakamura S . Progression of nephropathy in spontaneous


diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. _Diabetes_ 1997; 46: 895–9. CAS  PubMed  Google Scholar  * Hammes HP . Aminoguanidine treatment inhibits the


development of experimental diabetic retinopathy. _Proc Natl Acad Sci USA_ 1991; 88: 11555–9. CAS  PubMed  Google Scholar  * Park L . Suppression of accelerated diabetic atherosclerosis by


the soluble receptor for advanced glycation endproducts. _Nature Med_ 1998; 4: 1025–31. CAS  PubMed  Google Scholar  * Koya D, King GL . Protein kinase C activation and the development of


diabetic complications. _Diabetes_ 1998; 47: 859–66. CAS  PubMed  Google Scholar  * Portilla D . Etomoxir-induced PPARalpha-modulated enzymes protect during acute renal failure. _Am J


Physiol Renal Physiol_ 2000; 278: F667–75. CAS  PubMed  Google Scholar  * Keogh RJ, Dunlop ME, Larkins RG . Effect of inhibition of aldose reductase on glucose flux, diacylglycerol


formation, protein kinase C, and phospholipase A2 activation. _Metabolism_ 1997; 46: 41–7. CAS  PubMed  Google Scholar  * Stevens MJ, Obrosova I, Feldman EL, Greene DA . The sorbitol-osmotic


and sorbitol-redox hypothesis. In: LeRoith D, Taylor SI, Olefsky JM, editors. _Diabetes mellitus: a fundamental and clinical text_. Philadelphia: Lippincott Williams & Wilkins; 2000. p


972–83. Google Scholar  * Lee AY, Chung SK, Chung SS . Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose


reductase gene in the lens. _Proc Natl Acad Sci USA_ 1995; 92: 2780–4. CAS  PubMed  Google Scholar  * Yamaoka T, Nishimura C, Yamashita K, Itakura M, Yamada T, Fujimoto J, _et al_. Acute


onset of diabetic pathological changes in transgenic mice with human aldose reductase cDNA. _Diabetologia_ 1995; 38: 255–61. CAS  PubMed  Google Scholar  * Yagihashi S, Yamagishi S, Wada R,


Sugimoto K, Baba M, Wong HG, _et al_. Galactosemic neuropathy in transgenic mice for human aldose reductase. _Diabetes_ 1996; 45: 56–9. CAS  PubMed  Google Scholar  * Singh SB, Malamas MS,


Hohman TC, Nilakantan R, Carper DA, Kitchen D . Molecular modeling of the aldose reductase–inhibitor complex based on the X–ray crystal structure and studies with single-site-directed


mutants. _J Med Chem_ 2000; 43: 1062–70. CAS  PubMed  Google Scholar  * Du XL . Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces


plas–minogen activator inhibitor-1 expression by increasing Sp1 glycosylation. _Proc Natl Acad Sci USA_ 2000; 97: 12222–6. CAS  PubMed  Google Scholar  * Kakkar R, Kalra J, Mantha SV, Prasad


K . Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. _Mol Cell Biochem_ 1995; 151: 113–9. CAS  PubMed  Google Scholar  * Ohuwa T, Sato Y, Naoi M . Hydroxyl radical


formation in diabetic rats induced by streptozotocin. _Life Sci_ 1995; 56: 1789–98. Google Scholar  * Bayes JW, Thorpe SR . Role of oxidative stress in diabetic complications: a new


perspective on an old paradigm. _Diabetes_ 1999; 48: 1–9. Google Scholar  * Kowluru RA, Engerman RL, Kern TS . Diabetes–induced metabolic abnormalities in myocardium: effect of antioxidant


therapy. _Free Radical Res_ 2000; 32: 67–74. CAS  Google Scholar  * Ustinova EE, Barrett CJ, Sun SY, Schultz HD . Oxidative stress impairs cardiac chemoreflexes in diabetic rats. _Am J


Physiol_ 2000; 279: 2176–87. Google Scholar  * Rosen P, Du X, Sui GZ . Molecular mechanisms of endothelial dysfunction in the diabetic heart. _Adv Exp Med Biol_ 2001; 498: 75–86. CAS  PubMed


  Google Scholar  * Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, _et al_. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic


damage. _Nature_ 2000; 404: 787–90. CAS  Google Scholar  * Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP . The role of oxidative stress and NF-κB activation in


late diabetic complications. _Biofactors_ 1999; 10: 157–67. CAS  PubMed  Google Scholar  * Mercurio F, Manning AM . NF-κB as a primary regulator of the stress response. _Oncogene_ 1999; 18:


6163–71. CAS  PubMed  Google Scholar  * Barnes PJ, Karin M . Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory disease. _N Engl J Med_ 1997; 336: 1066–71. CAS  PubMed


  Google Scholar  * Baldwin AS Jr . The transcription factor NF-κB and human disease. _J Clin Invest_ 2001; 107: 3–6. CAS  PubMed  PubMed Central  Google Scholar  * Tak PP, Firestein GS .


NF-κB: a key role in inflammatory disease. _J Clin Invest_ 2001; 107: 7–11. CAS  PubMed  PubMed Central  Google Scholar  * Tibbles LA, Woodgett JR . The stress–activated protein kinase


pathways. _Cell Mol Life Sci_ 1999; 55: 1230–54. CAS  PubMed  Google Scholar  * Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY . High glucose-induced apoptosis in human endothelial cells is


mediated by sequential activations of c–Jun NH(2)-terminal kinase and caspase-3. _Circulation_ 2000; 101: 2618–24. CAS  PubMed  Google Scholar  * Natarajan R, Scott S, Bai W, Yerneni KKV,


Nadler J . Angiotensin II signaling in vascular smooth muscle cells under high glucose conditions. _Hypertension_ 1999; 33: 378–84. CAS  PubMed  Google Scholar  * Dunlop ME, Muggli EE .


Small heat shock protein alteration provides a mechanism to reduce mesangial cell contractility in diabetes and oxidative stress. _Kidney Intl_ 2000; 57: 464–75. CAS  Google Scholar  *


Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, _et al_. Myocardial cell death in human diabetes. _Circ Res_ 2000; 87: 1123–32. CAS  PubMed  Google Scholar  *


Stockklauser-Farber K, Ballhausen T, Laufer A, Rosen P . Influence of diabetes on cardiac nitric oxide synthase expression and activity. _Biochim Biophys Acta_ 2000; 1535: 10–20. CAS  PubMed


  Google Scholar  * Tomita M, Mukae S, Geshi E, Umetsu K, Nakatani M, Katagiri T . Mitochondrial respiratory impairment in streptozotocin–induced diabetic rat heart. _Jpn Circ J_ 1996; 60:


673–82. CAS  PubMed  Google Scholar  * Kucharska J, Braunova Z, Ulicna O, Zlatos L, Gvozdjakova A . Deficit of coenzyme Q in heart and liver mitochondria of rats with streptozotocin-induced


diabetes. _Physiol Res_ 2000; 49: 411–8. CAS  PubMed  Google Scholar  * Doroshow JH, Locker GY, Myers CE . Enzymatic defenses of the mouse heart against reactive oxygen metabolites:


alterations produced by doxorubicin. _J Clin Invest_ 1980; 65: 128–35. CAS  PubMed  PubMed Central  Google Scholar  * Chen Y, Saari JT, Kang YJ . Weak antioxidant defenses make the heart a


target for damage in copper-deficient rats. _Free Radical Biol Med_ 1994; 17: 529–36. CAS  Google Scholar  * Kersten JR, Schmeling TJ, Orth KG, Pagel PS, Warltier DC . Acute hyperglycemia


abolishes ischemic preconditioning _in vivo_. _Am J Physiol_ 1998; 275: H721–5. CAS  PubMed  Google Scholar  * Joyeux M, Faure P, Godin-Ribuot D, Halimi S, Patel A, Yellon DM, _et al_. Heat


stress fails to protect myocardium of streptozotocin-induced diabetic rats against infarction. _Cardiovasc Res_ 1999; 43: 939–46. CAS  PubMed  Google Scholar  * Elangovan V, Shohami E, Gati


I, Kohen R . Increased hepatic lipid soluble antioxidant capacity as compared to other organs of streptozotocin-induced diabetic rats: a cyclic voltametry study. _Free Radical Res_ 2000; 32:


125–34. CAS  Google Scholar  * Ye G, Metreveli NS, Ren J, Epstein PN . Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production.


_Diabetes_ 2003; 52: 777–83. CAS  PubMed  Google Scholar  * Ye G, Metreveli NS, Donthi RV, Xia S, Xu M, Carlson EC, _et al_. Catalase protects cardiomyocyte function in models of type 1 and


type 2 diabetes. _Diabetes_ 2004; 53: 1336–43. CAS  PubMed  Google Scholar  * Alici B, Gumustas MK, Ozkara H, Akkus E, Demirel G, Yencilek F, _et al_. Apoptosis in the erectile tissues of


diabetic and healthy rats. _BJU Int_ 2000; 85: 326–9. CAS  PubMed  Google Scholar  * Cai L, Chen S, Evans T, Deng DX, Mukherjee K, Chakrabarti S . Apoptotic germ-cell death and testicular


damage in experimental diabetes: prevention by endothelin antagonism. _Urol Res_ 2000; 28: 342–7. CAS  PubMed  Google Scholar  * Srinivasan S, Stevens M, Wiley JW . Diabetic peripheral


neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. _Diabetes_ 2000; 49: 1932–8. CAS  PubMed  Google Scholar  * Fiordaliso F, Li B, Latini R, Sonnenblick EH, Anversa


P, Leri A, _et al_. Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. _Lab Invest_ 2000; 80: 531–7. Google Scholar  * Privratsky JR, Wold LE, Sowers JR,


Quinn MR, Ren J . AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. _Hypertension_ 2003; 42: 206–12. CAS  PubMed


  Google Scholar  * Dzau VJ . Theodore Cooper Lecture: tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. _Hypertension_ 2001; 37: 1047–52. CAS  Google Scholar 


* Nickenig G, Harrison DG . The AT1type angiotensin receptor in oxidative stress and atherogenesis, part I: oxidative stress and atherogenesis. _Circulation_ 2002; 105: 393–6. CAS  PubMed 


Google Scholar  * Sowers JR . Hypertension, angiotensin II, and oxidative stress. _N Engl J Med_ 2002; 346: 1999–2001. PubMed  Google Scholar  * Mascareno E, Siddiqui MA . The role of


Jak/STAT signaling in heart tissue renin-angiotensin system. _Mol Cell Biochem_ 2000; 212: 171–5. CAS  PubMed  Google Scholar  * Wang HD, Xu S, Johns DG, Du Y, Quinn MT, Cayatte AJ, _et al_.


Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. _Circ Res_ 2001; 88: 947–53. CAS  PubMed  Google Scholar  Download references


AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, Grand Forks, 58203, ND, USA Loren E Wold & Jun Ren *


Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, 82071, WY, USA Asli F Ceylan-isik & Jun Ren Authors * Loren E Wold View author publications


You can also search for this author inPubMed Google Scholar * Asli F Ceylan-isik View author publications You can also search for this author inPubMed Google Scholar * Jun Ren View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Jun Ren. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE


CITE THIS ARTICLE Wold, L., Ceylan-isik, A. & Ren, J. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy. _Acta Pharmacol Sin_ 26, 908–917 (2005).


https://doi.org/10.1111/j.1745-7254.2005.00146.x Download citation * Received: 02 March 2005 * Accepted: 13 April 2005 * Issue Date: 01 August 2005 * DOI:


https://doi.org/10.1111/j.1745-7254.2005.00146.x SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is


not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * diabetes * heart * cardiomyopathy * oxidative


stress * signal transduction