The role of reactive oxygen species and autophagy in safingol-induced cell death

The role of reactive oxygen species and autophagy in safingol-induced cell death

Play all audios:

Loading...

ABSTRACT Safingol is a sphingolipid with promising anticancer potential, which is currently in phase I clinical trial. Yet, the underlying mechanisms of its action remain largely unknown. We


reported here that safingol-induced primarily accidental necrotic cell death in MDA-MB-231 and HT-29 cells, as shown by the increase in the percentage of cells stained positive for


7-aminoactinomycin D, collapse of mitochondria membrane potential and depletion of intracellular ATP. Importantly, safingol treatment produced time- and concentration-dependent reactive


oxygen species (ROS) generation. Autophagy was triggered following safingol treatment, as reflected by the formation of autophagosomes, acidic vacuoles, increased light chain 3-II and Atg


biomarkers expression. Interestingly, scavenging ROS with _N_-acetyl-L-cysteine could prevent the autophagic features and reverse safingol-induced necrosis. Our data also suggested that


autophagy was a cell repair mechanism, as suppression of autophagy by 3-methyladenine or bafilomycin A1 significantly augmented cell death on 2-5 _μ_ M safingol treatment. In addition,


Bcl-xL and Bax might be involved in the regulation of safingol-induced autophagy. Finally, glucose uptake was shown to be inhibited by safingol treatment, which was associated with an


increase in p-AMPK expression. Taken together, our data suggested that ROS was the mediator of safingol-induced cancer cell death, and autophagy is likely to be a mechanism triggered to


repair damages from ROS generation on safingol treatment. SIMILAR CONTENT BEING VIEWED BY OTHERS HERNANDEZINE INDUCES AUTOPHAGIC CELL DEATH IN HUMAN PANCREATIC CANCER CELLS VIA ACTIVATION OF


THE ROS/AMPK SIGNALING PATHWAY Article Open access 25 October 2022 CONJUGATED FATTY ACIDS DRIVE FERROPTOSIS THROUGH CHAPERONE-MEDIATED AUTOPHAGIC DEGRADATION OF GPX4 BY TARGETING


MITOCHONDRIA Article Open access 06 December 2024 OXIDATIVE CELL DEATH IN CANCER: MECHANISMS AND THERAPEUTIC OPPORTUNITIES Article Open access 01 August 2024 MAIN Oxidative stress occurs in


cells when an imbalance exists to favor the production of reactive oxygen species (ROS), such as superoxide (O2•−), hydroxyl radical (HO•) and hydrogen peroxide (H2O2) over antioxidant


defenses.1 Oxidative stress has been implicated in a number of human physiological and pathological processes, including cancer, ischemic injury, neurodegenerative diseases, chronic


inflammation, type II diabetes and arteriosclerosis. ROS is recognized as a central mediator in deciding the fate of a cell, depending on the extent of oxidative damage.2 Under physiological


conditions, low levels of ROS activate various cellular signaling molecules, such as tyrosine kinase, mitogen-activated protein kinase, small Ras proteins, nuclear factor kappa B (NF-κB)


and hypoxia-inducible factor α, leading to growth adaptation and survival.2 In contrast, excessive production of ROS causes irreversible damage to lipids, DNA and proteins, thus provoking


cell death through several modes, including apoptosis and necrosis.2 Cancer cells with their higher metabolic rate even at basal conditions would result in high intracellular ROS


concentrations. This in turn makes cancer cells under increased oxidative stress and more vulnerable to ROS-mediated insults and cell death. Apoptosis is the best-described type of


programmed cell death, which is characterized by distinct morphologic features, such as cell membrane blebbing, reduction of cellular volume, activation of caspases, chromatin condensation


and nuclear fragmentation.3 Necrosis, on the other hand, is less well-characterized and associated with features including rupture of cell plasma membrane, loss of mitochondria membrane


potential (MMP), depletion of adenosine triphosphate (ATP) levels and overproduction of ROS.3 For a long time, necrosis is considered as an accidental form of cell death. However,


accumulating evidence over the last decade supports a sequence of events that characterize necrosis, which could involve death receptors and receptor-interacting protein 1 (RIP1) kinase.4


Recently, ROS is also shown to regulate autophagy,5 a catabolic process, which is not only involved in energy homeostasis, organelle turnover and development, but also in cancer cell death.3


Various ROS-generating drugs have proven to be effective in cancer research by causing mitochondria damage and cell death. Safingol ((2S, 3S)-2-amino-1,3-octadecanediol) is a saturated


analog of sphingosine that belongs to the family of sphingolipids.6, 7, 8 Safingol is currently under a phase I clinical trial in combination with cisplatin for the treatment of advanced


solid tumors.9 In addition, several _in vitro_ and _in vivo_ studies demonstrated that safingol augmented the efficacy of other chemotherapeutic agents, including fenretinide,


1-_β_-D-arabinofuranosylcytosine, cisplatin, vinblastine, irinotecan and mitomycin-C in a variety of tumor cell lines.7, 10, 11, 12, 13, 14, 15 Despite of the accumulating evidence


suggesting the therapeutic potential of safingol, the underlying mechanism of safingol remains largely unknown. The cytotoxic effect of safingol was previously shown to be attributed to the


inhibition of sphingosine kinase, thus preventing the formation of sphingosine-1-phosphate, which is involved in cell proliferation, invasion and angiogenesis.6 In addition, safingol was


also reported to inhibit protein kinase C (PKC) by displacing phorbol dibutyrate from PKC regulatory domain.8, 16 However, we15 and others10, 17 have shown that PKC inhibition may not be the


primary mechanism by which safingol induces cell death, particularly at clinically achievable concentrations (⩽10 _μ_ M). Recent investigations shed new light that safingol could induce


cell death associated with autophagic features.17, 18 Furthermore, modulations of Bcl-2 family proteins, such as Bim and Bcl-xL19 as well as endonuclease G from mitochondria were also


implicated in safingol-induced cell death at 10–50 _μ_ M safingol.19, 20 At present, there are two main questions remain unanswered. First, the role of ROS in safingol-treated cancer cells


is yet to be explored. Several reports have demonstrated that safingol induced ROS production in fungi and plant cells,21, 22 yet no studies have been performed in human cancer cells.


Moreover, bioactive lipids, such as ceramide were reported to induce ROS production in lymphoid cells.23 Second, the role and regulation of autophagy in safingol-treated cells remain


elusive, as modulation or inhibition of safingol-induced autophagy has not been correlated with an increase or decrease in cell death. A recent breakthrough revealed that Bcl-2 family


proteins including Bcl-2, Bcl-xL and Bax regulate autophagy,24, 25 despite the well-established role of these proteins in apoptosis. Increasing evidence shows a link between ROS and


autophagy, in which ROS generation could trigger autophagy.5 Therefore, in this study, we sought to elucidate the role of ROS and autophagy in determining the fate of safingol-treated cells.


Here, we identify that ROS has a critical role in causing cell death by necrosis in safingol-treated cells, and autophagy is induced as a cell repair mechanism to counteract the damaging


effect caused by ROS. RESULTS SAFINGOL INDUCED NECROSIS IN MDA-MB-231 AND HT-29 CELLS Previously, safingol was shown to induce cell death in a caspase-independent manner,17, 19, 20, 26 and


we could obtain similar results in MDA-MB-231 and HT-29 cells with specific inhibitors to caspases 8 and 9 and pan-caspase inhibitor (data not shown). In order to characterize the mechanism


by which safingol exerts its cell killing effect, we performed flow cytometric analysis after staining the cells with annexin V-FITC/7-aminoactinomycin D (7AAD). Paraformaldehyde 2% was


included as a positive control for inducing necrosis in cells. No significant increase in the percentage of cells stained positive for annexin V-FITC was observed in MDA-MB-231 and HT-29


cells after a 48-h exposure to safingol (Figure 1a). In contrast, concentration-dependent increase in the percentage of cells stained positive for 7AAD was observed (Figure 1a), indicating a


loss of cell membrane integrity that is suggestive of necrotic cell death. A shorter treatment time of 24 h with 10 _μ_ M safingol yielded similar results (Figure 1 inset), indicating that


plasma membrane permeabilization, as reflected by 7AAD positivity, occurred early on as opposed to delayed occurrence that is associated with late-stage apoptosis. As the loss of MMP and


depletion of ATP have been described as the hallmarks of necrosis,3, 4 we further performed measurements on these two biochemical events. Remarkable loss of MMP in HT-29 cells was observed


after a 48-h exposure to 10 _μ_ M safingol (Figure 1b). Significant depletion of cellular ATP was also observed in both cell lines with 10 _μ_ M safingol (Figure 1c). Taken together, these


data suggest that necrosis, rather than apoptosis, is the main mode through which cancer cell death occurred on safingol treatment. We further examined whether the execution of necrotic cell


death is a programmed event that involves RIP1 kinase. Cells were exposed to safingol with or without necrostatin-1, a small molecule inhibitor of RIP1 kinase.27 Our results indicated that


necrostatin-1 did not prevent safingol-induced cell death (Figure 1d), thus suggesting an accidental form of necrotic cell death. EXPOSURE TO SAFINGOL TRIGGERED ROS GENERATION In light of


previous findings that safingol could induce ROS generation in fungi and plant cells,21, 22 we were interested to probe if ROS would be generated in cancer cells on safingol treatment.


MDA-MB-231 and HT-29 cells were loaded with the ROS probe, 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA), and H2O2 was included as a positive control. As shown in Figure 2,


safingol-induced ROS generation in a time- and concentration-dependent manner, as reflected by the increase in fluorescence intensity. The highest amount of ROS was generated after 8 h of


exposure to 10 _μ_ M safingol, with ∼11- and 7-fold increases over untreated control in MDA-MB-231 and HT-29 cells, respectively (Figures 2a and b). ROS TRIGGERED INDUCTION OF AUTOPHAGY IN


MDA-MB-231 AND HT-29 CELLS On the basis of the results presented in Figure 2, we postulated that autophagy would be triggered in the cancer cells on safingol treatment, as ROS could induce


cellular damages.2 As demonstrated through the ultrastructural morphology using transmission electron microscopy, safingol-treated MDA-MB-231 and HT-29 cells displayed characteristic


autophagosomes, as well as cytoplasmic vacuoles (Figure 3a). Concentration-dependent formation of acidic vesicular organelles (AVOs) could be observed in safingol-treated cells when stained


with the lysosomo-tropic agent, acridine orange,28 and formation of AVO was markedly suppressed in both cell lines in the presence of 1 mM 3-methyladenine (3-MA), the most commonly used


autophagy inhibitor29 (Figure 3b). Induction of autophagy is further supported by the conversion of light chain 3 (LC3)-I to LC3-II in a concentration- and time-dependent manner on safingol


treatment in the two cell lines (Figures 3c and d). A trend of increasing expression of the Atg proteins (Atg 5, 7 and 12) in MDA-MB-231 and HT-29 cells over the course of 48 h was also


observed on safingol treatment (Figure 3d). Importantly, in the presence of the ROS scavenger, _N_-acetyl-L-cysteine (NAC), marked reduction in the formation of AVO and in the conversion of


LC3-I to LC3-II could be demonstrated in MDA-MB-231 and HT-29 cells (Figures 4a and b). Taken together, our results have demonstrated that safingol is capable of inducing autophagy, which


are in line with two recent reports,17, 18 and that autophagy is induced as a result of ROS generation on safingol treatment. THE ROLE OF AUTOPHAGY AND ROS IN SAFINGOL-TREATED MDA-MB-231 AND


HT-29 CELLS Increased autophagic activity has been suggested to associate with cell death despite a lack of causative relationship of these two events.3 On the other hand, cell death could


be accelerated when autophagy is suppressed, suggesting a pro-survival role of autophagy.3 To assess the role of autophagy in safingol-induced cancer cell death, we have used two different


pharmacological inhibitors of autophagy, 3-MA and bafilomycin A1 (BA1), which act at different points of the autophagic pathway.29, 30 Viability was >85% of control when the cancer cells


were exposed to 3-MA or BA1 alone. Suppression of autophagy by the inhibitors did not block cell death brought about by 2 or 5 _μ_ M safingol (Figure 5a). On the contrary, significant


augmentation in cell death was observed on autophagy suppression. At the highest concentration of safingol tested (10 _μ_ M), the presence of 3-MA or BA1 did not impart any significant


effect on cell viability (Figure 5a). These findings suggest that low concentrations (2–5 _μ_ M) of safingol induced low levels of ROS and damage whereby the autophagic pathway could


possibly degrade the damaged cellular components. In contrast, it is possible that a high concentration of safingol-induced significant levels of ROS and damage that is beyond repair.


Further studies correlating the amount of oxidized cellular proteins with the induction of autophagy would provide further insights into the catabolic role of autophagy on safingol


treatment. To further substantiate the role ROS has in safingol-induced cancer cell death, we examined the viability of MDA-MB-231 and HT-29 cells in the presence and absence of the ROS


scavenger, NAC. Indeed, on removal of ROS by NAC, the percentage of safingol-treated cells stained positive for 7AAD was significantly reduced from 86.9 to 14.6% for MDA-MB-231 and from 68.4


to 42.4% for HT-29 (Figure 5b). Taken together, our data indicate that ROS have an important role in mediating safingol-induced autophagy and necrotic cell death. BCL-XL AND BAX REGULATES


SAFINGOL-INDUCED AUTOPHAGY On the basis of the recent findings that Bcl-2 homologues regulate autophagy by binding directly to beclin-1, which is an autophagy-inducing protein that contains


a Bcl-2 homology 3 domain,24, 31 we examined the involvement of beclin-1, Bcl-xL and Bax in safingol-induced autophagy. Specifically, the ratios of beclin-1/Bcl-xL expression were determined


instead of the changes in expression levels of the individual proteins, as the ratio of beclin-1/Bcl-xL expression is important to the regulation of autophagy – a mechanism that is


analogous to the regulation of apoptosis by the Bcl-2 protein family, which is based on the ratio of pro-apoptotic/anti-apoptotic proteins. From Figure 6a, significant increases in the ratio


of beclin-1/Bcl-xL were observed at 24 and 48 h for MDA-MB-231 cells and at 48 h for HT-29 cells. A concomitant increase in Bax expression was also observed. Stemming from the results in


Figure 6a, we hypothesized that the use of gossypol, which is an inhibitor of Bcl-xL could possibly suppress the Bcl-xL-mediated inhibitory effect on autophagy and thereby promoting the


occurrence of autophagy. Results from Figure 6b are consistent with this notion, whereby an increase in AVO formation could be observed in the presence of gossypol when the cells were


treated with safingol. In light of the results presented in Figures 2-5, autophagy is likely to be a catabolic process triggered by ROS overproduction on safingol treatment, we thus further


hypothesized that inhibition of Bcl-xL by gossypol would have less suppressive effect on autophagy, which in turn would possibly result in more catabolism of ROS-damaged cellular components


and promotion of cell survival. Consistent with this hypothesis, it was found that gossypol-treated cells became less sensitive to safingol treatment, as reflected by significant increases


in IC50 values (Figure 6c). However, the regulatory mechanism of autophagy is complex that involves multiple signaling pathways, and it is possible that the use of gossypol could affect


other molecular signals that contribute to the regulation of autophagy in addition to modulation of Bcl-xL. SAFINGOL REDUCED GLUCOSE UPTAKE Our results thus far suggest that ROS generation


mediates safingol-induced cancer cell death. It is therefore of interest to investigate how safingol induced ROS generation in these cells. Previously, sphingolipids have been shown to


inhibit glucose uptake,32, 33 which could in turn induce oxidative stress.34 These reports provided the basis for us to hypothesize that safingol, a synthetic sphingolipid, might be able to


inhibit glucose uptake. Using a fluorescent derivative of glucose, 2-(_N_-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), the uptake was probed in MDA-MB-231 and HT-29


cells. Our results showed that 10 _μ_ M safingol significantly inhibited 2-NBDG uptake in both cell lines as early as 2 h (Figure 7a), preceding the generation of ROS (Figure 2). Considering


the finding that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are critical energy sensors that also have a role in autophagy regulation,35 the effect of


safingol on the phosphorylation of AMPK and mTOR was examined. As shown in Figure 7b, 10 _μ_ M safingol caused a rapid and significant increase in AMPK phosphorylation at 2 h in both cell


lines, which is in line with the observation that safingol inhibited glucose uptake (Figure 7a). The expression of phosphorylated mTOR was initially increased in safingol-treated MDA-MB-231


and HT-29 cells, which was subsequently reduced at 24 and 48 h (Figure 7b). The initial increase in phosphorylated mTOR is intriguing and warrants further investigation, which could shed new


light on the possible involvement of other signals that regulate the expression of phosphorylated mTOR during autophagy induction in addition to AMPK. DISCUSSION To our knowledge, this is


the first report showing that ROS have a key role in safingol-treated human cancer cell lines, MDA-MB-231 and HT-29. Interestingly, such ROS production could also trigger autophagy, which


appeared to be a repair mechanism. We have also shown that glucose uptake is inhibited by safingol, which is an event preceding ROS generation. On the basis of these findings, we propose a


model depicting the possible mechanism of action of safingol in MDA-MB-231 and HT-29 cells (Figure 8). Regardless of how and where ROS are generated, a rise in ROS levels has two potential


consequences: damage to cellular components and triggering various signaling pathways.1 Here, we show that accumulation of ROS is essential for safingol-induced cell death as such death can


be largely prevented by NAC. However, in _Aspergillus nidulans_, Cheng _et al._21 reported that the fungicidal activity of safingol does not require ROS, despite a rapid accumulation of ROS


was observed. Such discrepancy is likely due to the difference in cancer cell response compared with that of fungi. In addition, we found that ROS generation is a relatively early event,


suggesting that ROS could be the mediator leading to the loss of MMP, possibly by triggering the opening of the mitochondria permeability transition pore that subsequently leads to cell


death. Our results also demonstrated that safingol-treated cells undergo accidental necrotic cell death, as reflected by the caspase-independent cell death, rupture of plasma membrane


integrity, loss of MMP and depletion of ATP, but not the involvement of RIP1 kinase. By targeting a non-apoptotic cell death pathway, safingol might provide an alternative strategy for


developing combination therapies, in particular to eliminate cells, which are resistant to apoptotic cell death. In line with two previous studies,17, 18 our results have demonstrated that


safingol induced autophagy, possibly being regulated by Bcl-2 family proteins. The downregulation of Bcl-xL and upregulation of Bax observed in our study is consistent with the finding that


arsenic trioxide induced autophagy in U118 human glioma cells in the absence of apoptosis, despite being regulated by Bcl-2 family proteins.36 Parallel with this, studies have illustrated


the binding of Bcl-xL and Bcl-2 to beclin-1, thus preventing autophagy.24 On the other hand, Bax activation has been shown to induce autophagy, which is Atg 5-, Atg7- and Atg10-dependent.25


Although safingol-induced autophagy has been clearly demonstrated, it is yet to unveil whether such autophagy directly contributes to death or is a failed effort to preserve cell viability.


Our results suggest the latter, where autophagy functions possibly as a mechanism to remove damaged organelles and proteins in response to safingol-induced oxidative stress. In addition to


supporting the current knowledge that ROS regulates autophagy,5 our data are also in line with findings that demonstrated the protective role of autophagy induced by sphingolipids in cell


death, especially during nutrient starvation.37 Consistent with our study, short-chain fatty acids were shown to induce ROS production, which led to AMPK activation and consequential mTOR


inhibition.38 Our results offer an explanation that glucose uptake inhibition by safingol could be one of the factors leading to an increase in AMPK phosphorylation in parallel with ROS


generation. Under metabolic stresses, such as glucose deprivation, AMPK is activated to increase catabolism, either by direct phosphorylation of metabolic enzymes or regulation of


transcription.39 Similarly, glucose deprivation was shown to initiate oxidative stress and increase mitochondria production of ROS, as demonstrated in lung cancer cells A549, brain cells,


retina cells and adrenal cells.34 Although several _in vivo_ studies supported the upstream role of ROS in activating AMPK,40 this remains to be determined in safingol-treated cells. AMPK is


not only known as an energy sensor, but also reported to have a role in inducing autophagy through the suppression of mTOR.35 However, in our study, the initial increase in phosphorylated


mTOR is intriguing that warrants further investigation, which could yield new insights into the signals in the regulation of phosphorylated mTOR expression during autophagy induction. Of


note, it has been shown that the PI3k/Akt/mTOR pathway was involved in regulating safingol-induced autophagy.17 Thus, the PI3k/Akt pathway could be involved in regulating p-mTOR expression


in addition to AMPK. The direct effect of AMPK and mTOR on safingol-induced autophagy could be further studied with pharmacological activators and inhibitors of AMPK and mTOR so as to tease


out the contribution of AMPK-mTOR signaling in safingol-induced autophagy and necrosis. In summary, our studies provide experimental evidence that ROS have a key role in mediating the


cytotoxicity of safingol in cancer cells. It is worthwhile to note that depending on the magnitude and the duration of exposure, ROS can elicit different responses. Safingol at 2 and 5 _μ_ M


resulted in low levels of ROS production, and autophagy was possibly induced to remove oxidatively damaged organelles. However, at 10 _μ_ M safingol treatment, high levels of ROS were


produced and possibly exceeded the cells’ repair capacity and thus leading to cell death by necrosis. Together, these data suggest that safingol may be an attractive agent to combine with


apoptotic- and ROS-generating anticancer drugs at appropriate concentrations to treat potential drug-resistant cancers. It is anticipated that such combinations of drugs may show synergistic


effect by executing different modes of cell death. MATERIALS AND METHODS REAGENTS Safingol was purchased from Sigma-Aldrich (St. Louis, MO, USA) and dissolved in ethanol. Stock solutions of


2 mg/ml were stored at −20 °C and freshly diluted with medium to the appropriate concentrations before use in experiments. All other chemicals used in the study were purchased from


Sigma-Aldrich unless otherwise stated. CELL CULTURES Two human cancer cell lines, MDA-MB-231 and HT-29, were purchased from American Type Culture Collection (Manassas, VA, USA). Stock


cultures of both cancer cell lines were maintained as monolayer in 75-cm2 tissue culture flasks (Iwaki, Japan). MDA-MB-231 cells were cultured in Roswell Park Memorial Institute 1640


(RPMI-1640) medium while HT-29 in Iscove's modified Dulbecco's medium. All media were supplemented with 10% v/v fetal bovine serum (HyClone Laboratories, Logan, UT, USA), 0.3 g/l


L-glutamine, 100 U/ml penicillin and 100 _μ_g/ml streptomycin. The cell lines were maintained in a humidified, 5% CO2 incubator at 37 °C and sub-cultured twice weekly using 0.25% v/v


trypsin/EDTA (GIBCO, Grand Island, NY, USA). All experiments were performed using cells in exponential growth phase from passage 5 to 20 post-thawing from frozen stock. CELL VIABILITY ASSAY


Viability of the cancer cells following drug treatment was determined using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. In brief, cells were


plated at 5000 per well in 96-well plates and allowed to adhere overnight before exposure to safingol±inhibitors/agents. The plates were then incubated for specified period at 37 °C. At the


end of the incubation, 50 _μ_l MTT (1 mg/ml in media) was added to cells and incubated for 4 h. Subsequently, the MTT-containing medium was removed, and the purple formazan precipitate was


solubilized in DMSO with shaking. Absorbance reading (λ=570 nm) was measured using a microtiter plate reader (Tecan, Infinite 200 PRO, Tecan Group Ltd, Mannedorf, Switzerland). All assays


were done at least three times unless otherwise stated. Cancer cell viability was calculated based on the absorbance readings using the following equation:


viability=((Abstest–Absblank)/(Absvehiclecontrol–Absblank)) × 100%, where Abstest, Absblank, Absvehiclecontrol represent the absorbance readings from the drug-treated wells, the medium only


wells and the vehicle control wells, respectively. FLOW CYTOMETRY WITH ANNEXIN V-FITC/7AAD STAINING In brief, 1.5 × 106 cells were seeded and treated with various concentrations of


safingol±10 mM NAC in MDA-MB-231 and 2.5 mM NAC in HT-29 cells for 48 h. 2% paraformaldehyde was used as a positive control for inducing cell death with necrotic features. After drug


exposure, cells were harvested, washed with ice-cold phosphate-buffered saline (PBS), and stained with annexin V-FITC/7AAD kit (Beckman Coulter, Villepinte, France) for 15 min in dark. In


all, 450 _μ_l of binding buffer were added to terminate the reaction. The samples were kept on ice before subjected to flow cytometric analysis. Stained samples were analyzed on the Dako


flow cytometer (Dako Cytomation Cyan LX, Dako Corp., Carpinteria, CA, USA) and 10 000 events were collected. Data were plotted with Summit V4.3 Build 2445 software (Dako Colorado Inc., Fort


Collins, CO, USA). MMP MEASUREMENT In all, 1.5 × 106 cells were seeded in T-75 flasks and treated for 8, 24 and 48 h with 10 _μ_ M safingol. Then, 1 × 105 cells were harvested and incubated


with 100 _μ_l 5,5′,6,6′ tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) at a final concentration of 1 _μ_g/ml for 30 min at 37 °C. In healthy cells, JC-1 stains the


mitochondria red whereas in cells with collapsed MMP, JC-1 remains in the cytoplasm and emits green fluorescence. After staining, cells were washed twice with ice-cold PBS and subjected to


flow cytometry analyses using Dako flow cytometer model CyAn ADP, and 10 000 events were collected. Data were plotted with Summit V4.3 Build 2445 software. ATP MEASUREMENT In total, 105


cells per well were plated in black 96-well plates and allowed to adhere for 24 h. Following 48-h treatment with 2, 5 and 10 _μ_ M safingol, ATP levels were measured using the ATP


bioluminescence assay kit HSII (Roche Diagnostics, Indianapolis, IN, USA) according to the manufacturer's instruction. ROS MEASUREMENT ROS measurement was performed using H2DCFDA


according to the manufacturer's instructions. In brief, each 96-well plates was seeded with 2 × 104 cells per well and allowed to adhere overnight. In all, 2, 5 and 10 _μ_ M safingol


was added for the indicated period. H2O2 was used as a positive control. Following the drug treatment, media was removed and cells were loaded with 5 _μ_ M H2DCFDA diluted in clear media for


30 min at 37 °C. Cells were washed three times with clear media and fluorescence intensity (excitation=485 nm; emission=530 nm) was measured using a microtiter plate reader (Tecan, Infinite


M2000). Morphology of cells was photographed using Nikon ECLIPSE TE2000-U (Nikon Instruments Inc., Melville, NY, USA) microscope. Finally, 100 _μ_l of premixed WST-1 cell proliferation


reagent (Clontech Laboratories Inc., Mountain View, CA, USA) was added to determine the cell viability. Abs was measured at λ=440 nm in a microplate reader (Tecan, Infinite 2000). Folds


increased in ROS production was calculated using the following equation: (_F_test–_F_blank)/(_F_control–_F_blank), where _F_test, _F_blank, _F_control represent the fluorescence readings


from the drug-treated wells, the unstained cells and the stained control wells, respectively. ELECTRON MICROSCOPY Briefly, cells were treated with safingol for 24 and 48 h, harvested by


trypsinization, washed twice with PBS and pre-fixed with ice-cold 2.5% v/v glutaraldehyde and 2% v/v paraformaldehyde in buffer for 3 h. After washing three times with PBS, cells were


post-fixed in 1% osmium tetroxide in dark for 2 h. A series of graded dehydration was carried out, followed by embedding of cells in Spurr's resin. In all, 90 nm thin sections were cut,


stained with Hiraoka staining kit (Polyscience Inc., Warrington, PA, USA) and viewed with PHILIPS CM10 (Phillips Electronics, Mahway, NJ, USA) transmission electron microscope. ACRIDINE


ORANGE STAINING Staining of cells with acridine orange was performed according to published procedures.28 In brief, acridine orange at a final concentration of 1 mg/ml was added to


treated-cells for a period of 20 min at 37 °C. Then, cells were washed twice with PBS. Images of cells were obtained using Olympus FluoView FV300 (Olympus Inc., Melville, NY, USA) confocal


microscope. WESTERN BLOTTING Cells were exposed safingol for the specified concentrations and duration. In some experiments, cells were treated in the presence of NAC. After drug treatment,


cells were washed with ice-cold PBS and lysed in ice-cold cell lysis buffer (20 mM Tris pH 7.5, 150 mM NaCl, 10 mM EDTA, 1% w/v NP-40, 20 mM sodium fluoride, 5 mM sodium pyrophosphate, 1 mM


sodium vanadate, 10% v/v glycerol, 1 × protease inhibitor cocktail) just before use. Protein concentration was determined using the Bio-Rad Protein Assay Kit (Bio-Rad Laboratories, Hercules,


CA, USA). Proteins were separated by electrophoresis carried out on 1.5-mm thick, 6 to 12% sodium dodecyl sulfate-polyacrylamide gels using Bio-Rad's Powerpac HC Apparatus (Bio-Rad


Laboratories, Singapore) and electroblotted onto nitrocellulose membranes in ice-cold transfer buffer (39 mM glycine, 48 mM Tris base, 20% v/v methanol). The membranes were subsequently


blocked with 5% w/v bovine serum albumin (BSA; Sigma-Aldrich) in Tris-buffered saline with 0.1% v/v Tween 20 (TBS/T) for 2 h. The membranes were then probed with primary antibodies overnight


at 4 °C. Primary rabbit polyclonal LC3-II, beclin-1, Bcl-xL, Bax, p-AMPKα (Thr 172) and p-mTOR (Ser2448) antibodies were purchased from Cell Signaling Technology, Inc. (Danvers, MA, USA)


and diluted with TBS/T in 1 : 1000 ratio containing 5% w/v BSA. Membranes were probed with horseradish peroxidase-conjugated goat anti-rabbit antibody (Pierce Biotechnology, Rockford, IL,


USA) for another hour, followed by detection with chemi-luminescence Supersignal West Dura Extended Duration Substrate (Pierce Biotechnology, Rockford, IL, USA). _β_-Actin was included as


the loading control. The intensities of the individual bands were determined by densitometry (Image J 1.43u, National Institutes of Health, Bethesda, MD, USA). GLUCOSE UPTAKE ASSAY Cells


were plated at 2 × 104 per well and allowed to adhere overnight. On the following day, cell culture medium was removed and replaced by glucose-free medium for 24 h. Then, safingol at 10 _μ_


M was added to cells for the indicated time. At the end of safingol treatment, 0.3 mM of 2-NBDG (Invitrogen, Eugene, OR, USA) diluted in Hanks-buffered salt solution (HBSS) was added into


each well for 30 min at 37 °C. The 2-NBDG uptake reaction was stopped by removing the medium and washing the cells twice with HBSS. Images of cells were obtained using Olympus FluoView FV300


confocal microscope. STATISTICAL ANALYSIS All data values were reported as mean±S.E.M. Statistical differences were determined using the Student's _t_-test or one-way analysis of


variance with Dunnett's test used for _post hoc_ multiple comparisons. _P-_values of <0.05 were considered to be statistically significant. ABBREVIATIONS * ROS: reactive oxygen


species * MMP: mitochondria membrane potential * ATP: adenosine triphosphate * RIP1: receptor-interacting protein 1 * PKC: protein kinase C * 7AAD: 7-aminoactinomycin D * MTT:


3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide * JC-1: 5,5′,6,6′ tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide * H2O2: hydrogen peroxide * H2DCFDA:


2′,7′-dichlorodihydrofluorescein diacetate * NAC: _N_-acetyl-L-cysteine * LC3: light chain 3 * 2-NBDG: 2-(_N_-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose * AVO: acidic vesicular


organelle * 3-MA: 3-methyladenine * BA1: bafilomycin A1 REFERENCES * Finkel T, Holbrook NJ . Oxidants, oxidative stress and the biology of ageing. _Nature_ 2000; 408: 239–247. Article  CAS


  PubMed  Google Scholar  * Azad MB, Chen Y, Gibson SB . Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. _Antioxid Redox Signal_


2009; 11: 777–790. CAS  PubMed  Google Scholar  * Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH _et al_. Classification of cell death: recommendations of the


Nomenclature Committee on Cell Death 2009. _Cell Death Differ_ 2009; 16: 3–11. Article  CAS  PubMed  Google Scholar  * Festjens N, Vanden Berghe T, Vandenabeele P . Necrosis, a


well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. _Biochim Biophys Acta_ 2006; 1757: 1371–1387. Article  CAS  PubMed  Google


Scholar  * Scherz-Shouval R, Elazar Z . ROS, mitochondria and the regulation of autophagy. _Trends Cell Biol_ 2007; 17: 422–427. Article  CAS  PubMed  Google Scholar  * Buehrer B, Bell R .


Sphingosine kinase: properties and cellular functions. _Adv Lipid Res_ 1993; 26: 59–67. CAS  PubMed  Google Scholar  * Schwartz G, Farsi K, Maslak P, Kelsen D, Spriggs D . Potentiation of


apoptosis by flavopiridol in mitomycin-C-treated gastric and breast cancer cells. _Clin Cancer Res_ 1997; 3: 1467–1472. CAS  PubMed  Google Scholar  * Kedderis L, Bozigian H, Kleeman J, Hall


R, Palmer T, Harrison SJ _et al_. Toxicity of the protein kinase C inhibitor safingol administered alone and in combination with chemotherapeutic agents. _Fundam Appl Toxicol_ 1995; 25:


201–217. Article  CAS  PubMed  Google Scholar  * Carvajal RD . A phase I clinical trial of safingol followed by cisplatin: promising activity in refractory adrenocortical cancer with novel


pharmacology. _Proc Am Soc Clin Oncol_ 2006; 24: 13044. Google Scholar  * Hoffmann T, Leenen K, Hafner D, Balz V, Gerharz C, Grund A _et al_. Antitumor activity of protein kinase C


inhibitors and cisplatin in human head and neck squamous cell carcinoma lines. _Anticancer Drugs_ 2002; 13: 93–100. Article  CAS  PubMed  Google Scholar  * Jarvis W, Fornari FJ, Tombes R,


Erukulla R, Bittman R, Schwartz G _et al_. Evidence for involvement of mitogen-activated protein kinase, rather than stress-activated protein kinase, in potentiation of


1-beta-D-arabinofuranosylcytosine-induced apoptosis by interruption of protein kinase C signaling. _Mol Pharmacol_ 1998; 54: 844–856. Article  CAS  PubMed  Google Scholar  * Maurer B, Melton


L, Billups C, Cabot M, Reynolds C . Synergistic cytotoxicity in solid tumor cell lines between N-(4-hydroxyphenyl)retinamide and modulators of ceramide metabolism. _J Natl Cancer Inst_


2000; 92: 1897–1909. Article  CAS  PubMed  Google Scholar  * Sachs C, Safa A, Harrison S, Fine R . Partial inhibition of multidrug resistance by safingol is independent of modulation of


P-glycoprotein substrate activities and correlated with inhibition of protein kinase C. _J Biol Chem_ 1995; 270: 26639–26648. Article  CAS  PubMed  Google Scholar  * Schwartz G,


Haimovitz-Friedman A, Dhupar S, Ehleiter D, Maslak P, Lai L _et al_. Potentiation of apoptosis by treatment with the protein kinase C-specific inhibitor safingol in mitomycin C-treated


gastric cancer cells. _J Natl Cancer Inst_ 1995; 87: 1394–1399. Article  CAS  PubMed  Google Scholar  * Ling LU, Lin H, Tan KB, Chiu GN . The role of protein kinase C in the synergistic


interaction of safingol and irinotecan in colon cancer cells. _Int J Oncol_ 2009; 35: 1463–1471. CAS  PubMed  Google Scholar  * Hannun Y, Loomis C, Merrill AJ, Bell R . Sphingosine


inhibition of protein kinase C activity and of phorbol dibutyrate binding _in vitro_ and in human platelets. _J Biol Chem_ 1986; 261: 12604–12609. CAS  PubMed  Google Scholar  * Coward J,


Ambrosini G, Musi E, Truman JP, Haimovitz-Friedman A, Allegood JC _et al_. Safingol (L-threo-sphinganine) induces autophagy in solid tumor cells through inhibition of PKC and the PI3-kinase


pathway. _Autophagy_ 2009; 5: 184–193. Article  CAS  PubMed  Google Scholar  * Morales P, Dillehay D, Moody S, Pallas D, Pruett S, Allgood J _et al_. Safingol toxicology after oral


administration to TRAMP mice: demonstration of safingol uptake and metabolism by N-acylation and N-methylation. _Drug Chem Toxicol_ 2007; 30: 197–216. Article  CAS  PubMed  Google Scholar  *


Noda T, Iwai S, Hamada M, Fujita Y, Yura Y . Induction of apoptosis of detached oral squamous cell carcinoma cells by safingol. Possible role of Bim, focal adhesion kinase and endonuclease


G. _Apoptosis_ 2009; 14: 287–297. Article  CAS  PubMed  Google Scholar  * Hamada M, Sumi T, Iwai S, Nakazawa M, Yura Y . Induction of endonuclease G-mediated apopotosis in human oral


squamous cell carcinoma cells by protein kinase C inhibitor safingol. _Apoptosis_ 2006; 11: 47–56. Article  CAS  PubMed  Google Scholar  * Cheng J, Park TS, Chio LC, Fischl AS, Ye XS .


Induction of apoptosis by sphingoid long-chain bases in Aspergillus nidulans. _Mol Cell Biol_ 2003; 23: 163–177. Article  CAS  PubMed  PubMed Central  Google Scholar  * Shi L, Bielawski J,


Mu J, Dong H, Teng C, Zhang J _et al_. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. _Cell Res_ 2007; 17:


1030–1040. Article  CAS  PubMed  Google Scholar  * Villena J, Henriquez M, Torres V, Moraga F, Diaz-Elizondo J, Arredondo C _et al_. Ceramide-induced formation of ROS and ATP depletion


trigger necrosis in lymphoid cells. _Free Radic Biol Med_ 2008; 44: 1146–1160. Article  CAS  PubMed  Google Scholar  * Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N _et al_.


Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. _Cell_ 2005; 122: 927–939. Article  CAS  PubMed  Google Scholar  * Yee KS, Wilkinson S, James J, Ryan KM, Vousden KH .


PUMA- and Bax-induced autophagy contributes to apoptosis. _Cell Death Differ_ 2009; 16: 1135–1145. Article  CAS  PubMed  Google Scholar  * Amin H, Ergin M, Denning M, Quevedo M, Alkan S .


Characterization of apoptosis induced by protein kinase C inhibitors and its modulation by the caspase pathway in acute promyelocytic leukaemia. _Br J Haematol_ 2000; 110: 552–562. Article 


CAS  PubMed  Google Scholar  * Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X _et al_. Identification of RIP1 kinase as a specific cellular target of necrostatins. _Nat Chem


Biol_ 2008; 4: 313–321. Article  CAS  PubMed  PubMed Central  Google Scholar  * Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I . Induction of autophagic cell death in malignant glioma cells


by arsenic trioxide. _Cancer Res_ 2003; 63: 2103–2108. CAS  PubMed  Google Scholar  * Seglen PO, Gordon PB . 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation


in isolated rat hepatocytes. _Proc Natl Acad Sci USA_ 1982; 79: 1889–1892. Article  CAS  PubMed  PubMed Central  Google Scholar  * Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R,


Tashiro Y . Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. _Cell Struct Funct_


1998; 23: 33–42. Article  CAS  PubMed  Google Scholar  * Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G _et al_. Protection against fatal Sindbis virus encephalitis by


beclin, a novel Bcl-2-interacting protein. _J Virol_ 1998; 72: 8586–8596. CAS  PubMed  PubMed Central  Google Scholar  * Murray D, Hill M, Nelson D . Inhibitory action of sphingosine,


sphinganine and dexamethasone on glucose uptake: studies with hydrogen peroxide and phorbol ester. _Life Sci_ 1990; 46: 1843–1849. Article  CAS  PubMed  Google Scholar  * Nelson D, Murray D


. Sphingolipids inhibit insulin and phorbol ester stimulated uptake of 2-deoxyglucose. _Biochem Biophys Res Commun_ 1986; 138: 463–467. Article  CAS  PubMed  Google Scholar  * Isaev NK,


Stelmashook EV, Dirnagl U, Plotnikov EY, Kuvshinova EA, Zorov DB . Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons. _Biochemistry (Mosc)_


2008; 73: 149–155. Article  CAS  Google Scholar  * Meijer AJ, Codogno P . AMP-activated protein kinase and autophagy. _Autophagy_ 2007; 3: 238–240. Article  CAS  PubMed  Google Scholar  *


Cheng TJ, Wang YJ, Kao WW, Chen RJ, Ho YS . Protection against arsenic trioxide-induced autophagic cell death in U118 human glioma cells by use of lipoic acid. _Food Chem Toxicol_ 2007; 45:


1027–1038. Article  CAS  PubMed  Google Scholar  * Lavieu G, Scarlatti F, Sala G, Carpentier S, Levade T, Ghidoni R _et al_. Regulation of autophagy by sphingosine kinase 1 and its role in


cell survival during nutrient starvation. _J Biol Chem_ 2006; 281: 8518–8527. Article  CAS  PubMed  Google Scholar  * Tang Y, Chen Y, Jiang H, Nie D . The role of short-chain fatty acids in


orchestrating two types of programmed cell death in colon cancer. _Autophagy_ 2011; 7: 235–237. Article  PubMed  Google Scholar  * Hardie DG . AMP-activated/SNF1 protein kinases: conserved


guardians of cellular energy. _Nat Rev Mol Cell Biol_ 2007; 8: 774–785. Article  CAS  PubMed  Google Scholar  * Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WGT, Schlattner U _et al_.


Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin _in vivo_. Role of mitochondrial reactive nitrogen species. _J Biol Chem_ 2004; 279: 43940–43951. Article 


CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by Singapore's Ministry of Education through the National University of Singapore (NUS)


Academic Research Fund FRC-Tier 1 grant (R-148-000-098-112). LU Ling and KB Tan are supported by NUS graduate research scholarship. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department


of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore L-U Ling, K-B Tan, H Lin & G N C Chiu Authors * L-U Ling View author publications You can also


search for this author inPubMed Google Scholar * K-B Tan View author publications You can also search for this author inPubMed Google Scholar * H Lin View author publications You can also


search for this author inPubMed Google Scholar * G N C Chiu View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to G N C


Chiu. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no conflict of interest. ADDITIONAL INFORMATION Edited by A Finazzi-Agró RIGHTS AND PERMISSIONS This work is licensed under


the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Ling, LU., Tan, KB., Lin, H. _et al._ The role of reactive oxygen species and autophagy in safingol-induced cell death. _Cell Death Dis_ 2,


e129 (2011). https://doi.org/10.1038/cddis.2011.12 Download citation * Received: 18 August 2010 * Revised: 26 January 2011 * Accepted: 02 February 2011 * Published: 10 March 2011 * Issue


Date: March 2011 * DOI: https://doi.org/10.1038/cddis.2011.12 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * ROS * autophagy * necrosis *


safingol * glucose uptake inhibition