Play all audios:
ABSTRACT _PURPOSE_ To assess the reliability and validity of spectral-domain optical coherence tomography (SD-OCT) measurements of retinal vessel lumen diameters and wall thicknesses.
_METHODS_ SD-OCT was used to characterize the circular region around the optic disc of 40 eyes (20 subjects). The inner and outer sides (vitreal and choroidal sides) of the vessel wall and
the luminal diameter were measured using intensity graphs. _RESULTS_ Mean arterial and venous luminal diameters were 95.1±16.1 and 132.6±17.8 _μ_m, respectively. The wall thicknesses of
inner and outer sides of the artery were 23.9±4.9 and 21.2±3.5 _μ_m, respectively. The wall thicknesses of the inner and outer sides of the vein were 20.7±4.2 and 16.3±4.3 _μ_m,
respectively. There were significant differences between the inner and outer wall thicknesses in both the artery and vein (_P_<0.01). Intra- and interobserver intraclass correlation
coefficients (ICCs) for lumen measurements were >0.95, and for wall thicknesses were >0.85, except for the outer wall thickness measurements. The mean value of outer and inner wall
thicknesses showed good reproducibility, with ICCs of >0.85. _CONCLUSION_ Intensity graph-assisted measurements using SD-OCT provided more objective information in finding boundaries of
vessels. Luminal diameters and wall thicknesses obtained with OCT showed good overall reproducibility, with inner wall thicknesses being thicker, and with better reproducibility compared
with outer wall thicknesses, where ICC values were the lowest among the inner wall thicknesses, mean thicknesses of inner and outer walls, and luminal diameters. When using SD-OCT
measurements, caution is therefore advised when using only the outer wall as representative of the wall thicknesses. SIMILAR CONTENT BEING VIEWED BY OTHERS REFERENCE DATABASE OF TOTAL
RETINAL VESSEL SURFACE AREA DERIVED FROM VOLUME-RENDERED OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY Article Open access 07 March 2022 VALIDATION OF RELIABILITY, REPEATABILITY AND CONSISTENCY
OF THREE-DIMENSIONAL CHOROIDAL VASCULAR INDEX Article Open access 18 January 2024 SCAN SPEED AFFECTS QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY VASCULAR METRICS Article Open
access 22 November 2024 INTRODUCTION The retinal vasculature, which can be associated with systemic diseases,1, 2 can be directly visualized using noninvasive procedures. Historically, the
first measurement of retinal vessel diameters was a year after the development of the ophthalmoscope.3 Currently, assessment of retinal vessel parameters using fundus photography,4, 5
angiographic pictures,6 scanning laser Doppler flowmetry,7 Heidelberg retina angiograph images,8 or the combination of adaptive optics and optical coherence tomography (OCT)9 remains under
development. The standardized assessment of the arteriovenous ratio based on arterial and venous central equivalents was widely accepted and became the standard in epidemiologic studies.10
Recently, spectral-domain optical coherence tomography (SD-OCT) has been used for measuring the diameters of retinal blood vessels. Measurements of retinal wall thicknesses and diameters
based on circular scans showed high reproducibility with intervisit, intra- and interobserver intraclass correlation coefficients (ICCs) of >0.90.11 Other studies also reported high ICCs
of >0.95 in measuring retinal outer diameters and retinal lumen diameters in zone B. In the present study, we evaluated the reliability and validity of SD-OCT measurements of retinal
vessel lumen diameters, with special emphasis upon the differences between inner (towards the vitreous) and outer (towards the retinal pigment epithelium) sides of the vessel wall. MATERIALS
AND METHODS STUDY POPULATION We retrospectively reviewed the medical records of 40 eyes of 20 patients characterized by SD-OCT circular scans in both eyes at Severance Hospital, Yonsei
University College of Medicine, from January 2011 to July 2014. Criteria for inclusion were as follows: (1) patients <40 years of age, (2) patients without lens opacities, and (3) an
SD-OCT image with resolution sufficient to measure the largest or second largest retinal vessel in both eyes. Criteria for exclusion were as follows: (1) patients with an SD-OCT image of low
quality because of inflammation such as uveitis, high myopia, or lens opacity, and (2) patients with a pathologic disc, including papilledema, demyelinating nerve fiber, epiretinal membrane
around the disc, or mass lesion. All the study protocols adhered to the tenets of the Declaration of Helsinki, and the study was approved by the Institutional Review Board/Ethics Committee.
Written informed consent was waived. OCT IMAGING AND MEASUREMENTS SD-OCT (Heidelberg Engineering Inc., Heidelberg, Germany) was performed using an internal fixation target. The focus of the
camera was centered on the optic disc, and the fundus was visualized on the display. After obtaining OCT images of a circular scan, the vessels were dissected vertically using line volume
of interest (VOI), and then an intensity graph was obtained using the Medical Image Processing, Analysis and Visualization (MIPAV), Version 7.0.1 (http://mipav.cit.nih.gov; Center for
Information Technology, NIH, Bethesda, MD, USA). Supplementary Figure 1 shows the detailed procedure for the measurements. The length was measured based on calculating the distance of
point-to-point in the intensity graph. The scale factor was set according to the scale bar on the image, which was 200 _μ_m per 206 pixels (0.862 in, 7.27 cm using the MIPAV). ASSESSMENT OF
REPRODUCIBILITY The intraclass correlation coefficient (ICC) was used to determine reproducibility for selecting images sufficient to measure the largest or second largest artery and vein in
each patient’s OCT scan. To determine the reproducibility of vessel diameter measurements, a single retina specialist independently examined the (TH Rim) vessel diameters using the same OCT
scan from 40 arteries and 40 veins from 40 eyes of 20 subjects on separate days. The first examiner (TH Rim) marked the same vessel, measured by another observer, a radiologist (YS Choi),
who measured the vessel diameter on the same OCT scan from 40 arteries and 40 veins. STATISTICAL ANALYSES Vessel diameter parameters, including wall thickness, luminal diameter, and
wall-to-lumen ratio, were determined. Mean wall thicknesses of the artery and vein were determined by location of the inner and outer sides of the vessel wall. Luminal diameter and
wall-to-lumen ratios of the artery and vein were determined, and these parameters were compared with the right and left eye. Paired _t_-tests were used to compare quantitative data. To
determine the reliability of the measurements, within-subject standard deviation was calculated by using the square root of the mean within-subject variance. Intraobserver repeatability and
interobserver reproducibility were determined by ICCs. We classified ICCs of ≥0.81 as almost perfect reliability, and ICCs of ≥0.61 and <0.8 as substantial reliability. Bland and Altman
plots were used to assess intraobserver repeatability and interobserver reproducibility. All statistical tests were two-sided at 95% confidence interval (CI), and a _P_-value <0.05 was
considered statistically significant using the Stata/SE 13.1 software (StataCorp, College Station, TX, USA). RESULTS Figure 1 shows cross-sectional images along the retinal arteriole. Figure
1a is an infrared photograph. The red arrow represents the location of the B-scan. Figure 1b shows the cross-sectional B-scan of the arteriole in Figure 1a, and a magnified image of the
B-scan is shown in Figure 1c. The alignment was not perfectly parallel to the vessel direction; however, the reflectivity of the inner wall was less continuous compared with the outer wall,
and there was also an epiretinal membrane. The four red lines in Figure 1c represent the line VOI, and the intensity graphs from 1 to 4 were generated using the MIPAV. The highest peak
(farthest left) in the intensity graph of line 1 represents the reflectivity of the epiretinal membrane, and the next highest peak represents the inner wall, which overlapped with the peak
of the epiretinal membrane in the intensity graph of line 1. It was therefore difficult to discriminate the inner wall in the intensity graph of line 2 and the outer wall in the intensity
graph of line 3. Line 4 was the best line to discriminate the inner and outer walls; however, the junction of the lumen and inner wall was not sufficiently resolved for discrimination
(arrow). An overall decreasing tendency of intensity from the outer to inner retina was observed in all intensity graphs. Table 1 shows the parameters of the vessel walls. The thickness of
the inner wall was thicker compared with the outer wall in both the artery and vein (_P_<0.01), and the gap between the inner wall and outer wall was ~5 _μ_m for both the artery and vein.
The luminal diameter of the largest or second largest vein was 132.6±17.8 _μ_m and that of the artery was 95.1±16.1 _μ_m. The wall-to-lumen ratio was calculated separately using the inner,
outer and mean of the inner and outer wall thicknesses. The wall-to-lumen ratio of the artery was 0.218±0.045, and that of the vein was 0.117±0.027, based on the inner wall. The difference
of the wall-to-lumen ratio between the inner and outer walls was ~0.05 in both artery and vein. All parameters were the same between the right and left eyes. Table 2 shows the intraobserver
repeatability of measurements of the retinal lumen, inner and outer wall thicknesses, and mean of the inner and outer wall thicknesses of the artery and vein. The intraobserver ICCs for the
parameters including lumen and wall thicknesses were between 0.850 and 0.980, which represented very good measurement reliability, with the exception of the arteriolar outer wall thickness
of 0.712. Table 3 shows the interobserver reproducibility of measurements. The interobserver reproducibility was slightly lower compared with the intraobserver reproducibility. The
interobserver ICCs were between 0.841–0.973, which represented very good reliability of measurements, with the exception of the arteriolar outer wall thickness of 0.681. Figures 2 and 3 show
the Bland–Atman plots, which show good agreement of both intra- and interobserver measurements of all parameters. The mean difference between two examinations by one observer ranged from
−0.025 to 1.281, and the mean difference between two examinations by different observers ranged from −0.296 to 0.542. DISCUSSION In the present study, we demonstrated that an intensity
graph-assisted vessel measurement using SD-OCT provided an accurate determination of the boundaries of vessel structures. Based on ICCs and the Bland–Atman plot, we confirmed the reliability
and validity of SD-OCT measurements of the retinal vessel wall thickness and lumen of both the artery and vein. Furthermore, based on the intensity graph using the MIPAV, the thicknesses of
the inner and outer walls were different. Measurement of vessels using SD-OCT is currently being developed as a methodology to accurately determine vessel parameters. Normal retinal vessels
appear as oval-shaped configurations with four distinct hyperreflectivities, with a double ‘C’ pattern, which may result from blood flow within retinal vessels, based on experimental
animals and the glass tube model.11, 12, 13 Two previous reports differed with respect to the measure points in infrared images. Muraoka _et al_11 used zone A and reported that the OCT beam
was projected perpendicular to the retinal surface in a circular scan, with vertical sections of all major retinal vessels reliably obtained with a single scan. However, Zhu _et al_14
reported that SD-OCT measurements of vessels in zone B were more accurate compared with in zone A. Currently, discriminating the junction of the wall and lumen, or wall and adjacent
structure, may be more important compared with other preceding issues. To overcome the variability of measurements by each examiner, we employed an intensity graph using line VOI in the
MIPAV. As shown in Figure 1 and 4, the intensity graph provided more objective information of the boundary, which has been elusive in the original SD-OCT images, and which may depend on
individual examiners. Furthermore, we suggest that the most accurate conclusions can be obtained by combining information from both the intensity graph and the SD-OCT circular B-scan images.
Figure 1 and 4 were used differently to assess the vessel; however, we could obtain partial information from Figure 1. As shown in this figure, the degree of hyperreflectivity of inner and
outer walls was different; the inner wall was less continuous compared with the outer wall. Vessel measurements using SD-OCT are sometimes difficult because the hyper-reflective tissues
around the vessel, such as the epiretinal membrane, can confuse discrimination of the anterior surface of the inner wall (line 1 in Figure 1), and the inner or outer wall reflectivity is
sometimes difficult to find (lines 2 and 3, respectively, in Figure 1), or the margin between the lumen and wall is sometimes unclear (arrow in line 4 in Figure 1 denotes margin). The
different discontinuities of hyperreflectivity between the inner and outer walls may suggest different situations in the circular scan. In the circular scan of Figure 4, there are two
circular hyper-reflections at the inner wall in line 1, and the small circle designated by the arrow in the magnified image in Figure 1a may reflect the inner wall peak. The inner wall in
line 2 looks like the alphabet letter ‘U’, which could contribute to inaccuracies in measurements of inner wall thicknesses. However, the intensity graph of line 2 shows a clearer peak of
the inner wall. The best cross-section and intensity graph is line 3 in Figure 4, which clearly discriminates the inner and outer walls, as well as the luminal diameter. The intensity graph
in Figure 4 shows that the inner wall thickness was thicker compared with the outer wall thickness, which may have resulted from a decrease of light penetration, with a resultant decrease in
reflectivity. A slight decrease of peak height corresponding to the outer wall compared with the inner wall is shown in line 1. However, in lines 2 and 3, the intensity was decreasing with
depth. Different sizes of the inner and outer walls were also reported in previous studies.11, 14 The inner walls were thicker compared with the outer walls, with 75% in arteries (30/40,
data not shown) and 82.5% in veins (33/40, data not shown). In general, the inner wall was more intense and thicker compared with the outer wall because of decreases in light intensity at
increasing distances. Previous studies involving direct measurements of vessel diameters using the Image J software (National Institutes of Health, Bethesda, MD, USA) reported high
repeatability and reproducibility.11, 14 In our study, the intra- and interobserver ICCs for OCT vessel diameter measurements were also highly repeatable and reproducible, especially in
measuring the luminal diameter, the ICCs were >0.90. Other parameter measurements also had relatively good ICCs of >0.80. However, the measurement of arterial wall thicknesses of the
outer wall was relatively inaccurate, with an intraobserver ICC of 0.712 and an interobserver ICC of 0.681. Repeatability was relatively low in measuring the outer wall compared with the
inner wall, or lumen, because the reflectivity peak was relatively small and there may have been a relatively large change in length from the small change of line VOI location. However, the
inaccuracy of the outer wall could be overcome by using the mean value of the inner and outer wall thicknesses, with ICCs ≥0.85. There was a difference between the inner and outer walls. The
inner wall thicknesses obtained with OCT were thicker and more reproducible compared with the outer wall thicknesses. Outer wall thicknesses had fair reproducibility; however, caution is
advised when using the outer wall alone as a standard for wall thickness in SD-OCT measurements because of relatively poor repeatability compared with measurements of the inner walls or
lumen diameters. A recent study reported almost perfect reproducibility of retinal vessel diameter measurements based on direct measurement using the Image J software (National Institutes of
Health), with ICCs ranging from 0.944 to 0.982 in one study,11 and 0.968 to 0.981 in another study.14 Although our ICCs were lower compared with previous reports, they still represented the
usefulness of measuring diameters using SD-OCT, and represented the value of using a standard vessel parameter with high validity. The Bland–Altman plot (Figure 2 and 3) shows that the
interclass 95% limits of agreement width for intraobserver repeatability were greater than that for interobserver reproducibility. In terms of expertise in ophthalmology specialties,
interobserver reproducibility was calculated based on two examinations performed by two observers (T Rim and YS Choi). The first observer was a retinal specialist, and the second observer
was a neuroradiologist. Although the radiologist was familiar with black and white test results, it was the first time the neuroradiologist read the retinal SD-OCT images. Thus, if proper
training is available in future studies, it is possible that an ophthalmologist may not be necessary in interpreting measurements of vessel diameters. We believe a circular scan is not
sufficient to measure all vessel diameters. However, a circular scan can provide at least one or more high-resolution images. In most cases, we can measure the diameter of the largest artery
and vein using a clear image. However, sometimes, it is impossible to measure the largest artery or vein because of crossing of the artery and vein, or because of an inaccurate
cross-section that is not perpendicular to the circle scan. Because of these reasons, we chose the largest or second largest artery and vein, which had sufficient resolution for
measurements. As mentioned in a previous report,14 measurement in zone B will increase the test time and may cause the patient to become too fatigued to cooperate. For this reason, the
circular scan mode is already part of a commercial SD-OCT, thus the problem of low-quality circular scan can be overcome by selecting a few vessels and by increasing the number of scans. In
terms of the real length, errors can arise from the individual properties of the eye such as lens opacity and refractive error, or from the imaging system involving fundus photographs,
infrared images, image processing, magnification scale and vessel diameter changes during the cardiac cycle. These factors result in difficulties in comparing diameter measurements using the
different methods. Thus, our study only used SD-OCT measurements. Histological studies reported that arteries adjacent to the optic disc had a luminal diameter of ~0.1 mm, their walls were
~18 _μ_m, and the principal branches of the central retinal vein had luminal diameters of ~0.2 mm. In our study, the luminal diameter was 95.1±16.1 _μ_m for arteries and 132.6±17.8 _μ_m for
veins. Previous studies using SD-OCT measurements reported the arterial and venous luminal diameters (inner diameters) were 87.8±9.4 and 113.7±12.5, respectively, which were shorter compared
with our results. The arteriolar and venous wall thicknesses using the outer wall were 20.2±3.0 _μ_m and 15.4±3.3 _μ_m, respectively. Previous studies reported that arterial and venous wall
thicknesses averaged 17.4±2.4 _μ_m, and 13.7±2.1 _μ_m, respectively, which were also thicker compared with our wall thicknesses, even if we used the outer wall. The previous study selected
the four largest retinal arteries and veins, and mean values were calculated from these vessels. In our study, we chose only one vessel of the largest or second largest artery and vein,
depending on their image qualities. Note that upper arterial wall thickness was 25.0±3.5 _μ_m in our study, which was much larger compared with the histological measurements. The clinical
significance of retinal vessels as a cardiovascular risk factor has been generally accepted.15, 16, 17, 18, 19, 20 Therefore, the assessment of vessel diameters is highly desirable. OCT
technologies have greatly improved; however, future OCT technologies such as the combination of adaptive optics and OCT will have a higher resolution that will enable observation at the
cellular level in the near future.21 Vessel measurement via fundus photography also has advantages, including simple and semiautomated measurement. However, the accuracy of fundus
photography may be lower compared with that of OCT.22 Our new methodology involving intensity graph-assisted vessel measurements using SD-OCT may provide a new direction for future software
development, which may in turn lead to automated vessel wall quantification on intensity graphs from SD-OCT scans. Thus, SD-OCT itself could be used as an alternative, noninvasive tool for
assessing retinal vessels as a cardiovascular risk factor. The strength of the present study was that the intensity graph-assisted measurements of vessel parameters could be a more objective
measurement compared with a direct measurement using the Image J software (National Institutes of Health). The major limitation of our study was the lack of a comparison with previously
validated vessel diameter measurements such as ‘IVAN’. It is essential to increase the reliability of measurements compared with conventional methods, but it was sometimes difficult to
obtain complete information via the circular scan of OCT images of the top six arteries or veins by size. Thus, further studies are needed involving comparisons of arteriovenous ratios among
selected subjects using high-quality images. The intereye correlation may have duplicated the effect on the value of the vessel parameter; therefore, the parameters of the vessel wall may
have also affected by the participant factor. In this case, if one participant had a retinal vessel with a relatively large diameter, this could affect the mean value of retinal vessel
parameter by a factor of two. The four major vessels from the disc in one eye showed different characteristics when measuring parameters. Therefore, each vessel may be able to be applied
independently on a limited basis when accessing the reliability based on ICC. In addition, our study was comprised of a relatively small sample size, which resulted in a reduced
representation of parameters such as arterial diameter. In conclusion, in the present study we have introduced new methodology involving intensity graph-assisted vessel measurements using
SD-OCT, which provided more objective information in identifying vessel structure boundaries, compared with direct measurements using the Image J software (National Institutes of Health).
Furthermore, measurements of vessel parameters, including the lumen and wall using SD-OCT, showed good reliability. However, reproducibility of outer wall thicknesses was the lowest compared
with other vessel parameters, including lumen diameter, inner wall thickness, and the mean value of the inner and outer wall thicknesses. Therefore, an average value of the inner wall and
outer walls, or the inner wall alone, were best in assessing the vessel, but caution is advised in using only the outer wall alone as representative of wall thickness. REFERENCES * Ong YT,
Wong TY, Klein R, Klein BE, Mitchell P, Sharrett AR _et al_. Hypertensive retinopathy and risk of stroke. _Hypertension_ 2013; 62 (4): 706–711. Article CAS Google Scholar * Wong TY,
Mitchell P . Hypertensive retinopathy. _N Engl J Med_ 2004; 351 (22): 2310–2317. Article CAS Google Scholar * Mikuni M . Eine Methode zur Messung der Netzhautgefäßweite. _Klin Monatsbl
Augenheilkd_ 1959; 135: 205–211. CAS Google Scholar * Rassam SM, Patel V, Brinchmann-Hansen O, Engvold O, Kohner EM . Accurate vessel width measurement from fundus photographs: a new
concept. _Br J Ophthalmol_ 1994; 78 (1): 24–29. Article CAS Google Scholar * Bracher D, Dozzi M, Lotmar W . Measurement of vessel width on fundus photographs. _Albrecht Von Graefes Arch
Klin Exp Ophthalmol_ 1979; 211 (1): 35–48. Article CAS Google Scholar * Sandor T, Rhie FH, Soeldner JS, Gleason RE, Rand LI . Reproducibility of the densitometric analysis of fluorescein
angiograms. _Int J Biomed Comput_ 1981; 12 (5): 401–418. Article CAS Google Scholar * Raff U, Harazny JM, Titze SI, Schmidt BM, Michelson G, Schmieder RE . Salt intake determines retinal
arteriolar structure in treatment resistant hypertension independent of blood pressure. _Atherosclerosis_ 2012; 222 (1): 235–240. Article CAS Google Scholar * Formaz F, Riva CE, Geiser M
. Diffuse luminance flicker increases retinal vessel diameter in humans. _Curr Eye Res_ 1997; 16 (12): 1252–1257. Article CAS Google Scholar * Miller DT, Kocaoglu OP, Wang Q, Lee S .
Adaptive optics and the eye (super resolution OCT). _Eye_ 2011; 25 (3): 321–330. Article CAS Google Scholar * Hubbard LD, Brothers RJ, King WN, Clegg LX, Klein R, Cooper LS _et al_.
Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. _Ophthalmology_ 1999; 106 (12):
2269–2280. Article CAS Google Scholar * Muraoka Y, Tsujikawa A, Kumagai K, Akiba M, Ogino K, Murakami T _et al_. Age- and hypertension-dependent changes in retinal vessel diameter and
wall thickness: an optical coherence tomography study. _Am J Ophthalmol_ 2013; 156 (4): 706–714. Article Google Scholar * Muraoka Y, Tsujikawa A, Murakami T, Ogino K, Kumagai K, Miyamoto K
_et al_. Morphologic and functional changes in retinal vessels associated with branch retinal vein occlusion. _Ophthalmology_ 2013; 120 (1): 91–99. Article Google Scholar * Cimalla P,
Walther J, Mittasch M, Koch E . Shear flow-induced optical inhomogeneity of blood assessed _in vivo_ and _in vitro_ by spectral domain optical coherence tomography in the 1.3 mum wavelength
range. _J Biomed Opt_ 2011; 16 (11): 116020. Article Google Scholar * Zhu TP, Tong YH, Zhan HJ, Ma J . Update on retinal vessel structure measurement with spectral-domain optical coherence
tomography. _Microvasc Res_ 2014; 95: 7–14. Article Google Scholar * Graham EM . The investigation of patients with retinal vascular occlusion. _Eye_ 1990; 4 (Part 3): 464–468. Article
Google Scholar * Hayreh SS . Duke-elder lecture. Systemic arterial blood pressure and the eye. _Eye_ 1996; 10 (Part 1): 5–28. Article Google Scholar * Leung H, Wang JJ, Rochtchina E, Wong
TY, Klein R, Mitchell P . Dyslipidaemia and microvascular disease in the retina. _Eye_ 2005; 19 (8): 861–868. Article CAS Google Scholar * Varma DD, Cugati S, Lee AW, Chen CS . A review
of central retinal artery occlusion: clinical presentation and management. _Eye_ 2013; 27 (6): 688–697. Article CAS Google Scholar * Rim TH, Kim DW, Han JS, Chung EJ . Retinal vein
occlusion and the risk of stroke development: a 9-year nationwide population-based study. _Ophthalmology_ 2015; 122 (6): 1187–1194. Article Google Scholar * Wang J, Zhao M, Li SJ, Wang DZ
. Retinal artery lesions and long-term outcome in Chinese patients with acute coronary syndrome. _Eye_ 2015; 29 (5): 643–648. Article CAS Google Scholar * Keane PA, Sadda SR . Imaging
chorioretinal vascular disease. _Eye_ 2010; 24 (3): 422–427. Article CAS Google Scholar * Drexler W, Morgner U, Ghanta RK, Kartner FX, Schuman JS, Fujimoto JG . Ultrahigh-resolution
ophthalmic optical coherence tomography. _Nat Med_ 2001; 7 (4): 502–507. Article CAS Google Scholar Download references ACKNOWLEDGEMENTS This work was supported by a grant from the Korean
Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI13C0715). AUTHOR INFORMATION Author notes * T H Rim and Y S Choi: These authors contributed equally
to this work. AUTHORS AND AFFILIATIONS * Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea T H Rim, S
S Kim, M-j Kang & S H Byeon * Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea Y S Choi * Department of Cardiology, Severance
Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, South Korea J Oh & S Park Authors * T H Rim View author publications You can
also search for this author inPubMed Google Scholar * Y S Choi View author publications You can also search for this author inPubMed Google Scholar * S S Kim View author publications You can
also search for this author inPubMed Google Scholar * M-j Kang View author publications You can also search for this author inPubMed Google Scholar * J Oh View author publications You can
also search for this author inPubMed Google Scholar * S Park View author publications You can also search for this author inPubMed Google Scholar * S H Byeon View author publications You can
also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to S H Byeon. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no conflict of interest.
ADDITIONAL INFORMATION Supplementary Information accompanies this paper on Eye website SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE 1 (JPG 1245 KB) SUPPLEMENTARY FIGURE 1 LEGENDS (DOC 37
KB) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Rim, T., Choi, Y., Kim, S. _et al._ Retinal vessel structure measurement using spectral-domain
optical coherence tomography. _Eye_ 30, 111–119 (2016). https://doi.org/10.1038/eye.2015.205 Download citation * Received: 11 March 2015 * Accepted: 16 August 2015 * Published: 23 October
2015 * Issue Date: January 2016 * DOI: https://doi.org/10.1038/eye.2015.205 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link
Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative