Play all audios:
ABSTRACT It has been suggested that proangiotensin-12 (proang-12), a novel angiotensin peptide recently discovered in rat tissues, may function as a component of the tissue renin-angiotensin
system (RAS). To investigate the role of proang-12 in the production of angiotensin II (Ang II), we measured its plasma and tissue concentrations in Wistar–Kyoto (WKY) and spontaneously
hypertensive (SHR) rats, with and without RAS inhibition. The 15-week-old male WKY and SHR rats were left untreated or were treated for 7 days with 30 mg kg−1 per day losartan, an
angiotensin receptor blocker, or with 20 mg kg−1 per day imidapril, an angiotensin-converting enzyme (ACE) inhibitor. Both treatments increased renin activity and the concentrations of
angiotensin I (Ang I) and Ang II in the plasma of WKY and SHR rats, but neither affected plasma proang-12 levels. In contrast to the comparatively low level of proang-12 seen in plasma,
cardiac and renal levels of proang-12 were higher than those of Ang I and Ang II. In addition, despite activation of the RAS in the systemic circulation, tissue concentrations of proang-12
were significantly reduced following treatment with losartan or imidapril. Similar reductions were also observed in the tissue concentrations of Ang II in both strains, without a reduction
in Ang I. These results suggest that tissue concentrations of proang-12 and Ang II are regulated independently of the systemic RAS in WKY and SHR rats, which is consistent with the notion
that proang-12 is a component of only the tissue RAS. SIMILAR CONTENT BEING VIEWED BY OTHERS RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM AND ITS RELATION TO HYPERTENSION Article 28 May 2025
IMPAIRED RENAL AUTOREGULATION AND PRESSURE-NATRIURESIS: ANY ROLE IN THE DEVELOPMENT OF HEART FAILURE IN NORMOTENSIVE AND ANGIOTENSIN II-DEPENDENT HYPERTENSIVE RATS? Article Open access 17
August 2023 ELEVATED URINARY ANGIOTENSINOGEN EXCRETION LINKS CENTRAL AND RENAL HEMODYNAMIC ALTERATIONS Article Open access 17 July 2023 INTRODUCTION The renin-angiotensin system (RAS) has a
crucial role in the regulation of blood pressure and fluid balance. It is well established that renin secreted from the kidneys cleaves angiotensinogen circulating in the blood to produce
angiotensin I (Ang I), which is in turn cleaved by angiotensin-converting enzyme (ACE) to produce angiotensin II (Ang II), a potent pressor peptide mediating the major actions of the
circulating (systemic) RAS.1, 2, 3 By contrast, much less is known about the tissue RAS, and many questions about the angiotensin processing cascade and the role of the tissue RAS in
regulating blood pressure and fluid balance remain unanswered.4, 5, 6, 7 Proangiotensin-12 (proang-12) is a 12-amino acid, C-terminal extended form of Ang I, which we recently isolated from
rat small intestine.8 _In vitro_, proang-12 constricts aortic strips and, when intravenously infused into rats, raises blood pressure. The vasoconstrictor and pressor effects of proang-12
are abolished by ACE inhibitors and angiotensin receptor blockers, which suggests ACE is involved in the conversion of proang-12 to Ang II.8, 9, 10 However, Prosser _et al._11, 12 reported
that chymase inhibition attenuates proang-12-induced cardiac damage caused by ischemia-reperfusion in rat hearts _ex vivo_, as well as proang-12-induced constriction of isolated rat
arteries. This suggests that chymase is also involved in the conversion of proang-12 to Ang II. Moreover, Ahmad _et al._13 demonstrated that ACE, neprilysin and chymase are all involved in
the metabolism of proang-12 in neonatal cardiac myocytes. Taken together, these findings suggest proang-12 may be metabolized or converted to Ang II by several enzymes. In addition,
proang-12 is also metabolized to two other angiotensin-related peptides, Ang(1–7)14 or Ang(1–9).15 In various tissues, including the heart and kidneys, the concentration of proang-12 is much
higher than those of Ang I and Ang II.8, 9, 16 By contrast, the concentration of proang-12 in plasma is lower than that of either Ang I or Ang II. This suggests that proang-12 may be a
component of only the tissue RAS in rats. To investigate the role of systemic renin in the production of proang-12, we previously measured tissue proang-12 concentrations in rats subjected
to bilateral nephrectomy17 or fed a low-salt diet.18 Both of these experiments showed that tissue proang-12 is regulated in a manner that is independent of the plasma renin activity.
Therefore, our aim in the present study was to clarify the role of proang-12 in the production of Ang II in tissue and blood. To accomplish this, we assessed the plasma and tissue
concentrations of Ang II, Ang I and proang-12 in Wistar–Kyoto (WKY) and spontaneously hypertensive (SHR) rats, with and without RAS inhibitor. METHODS ANIMAL AND RAS INHIBITORS The
15-week-old male WKY and SHR rats were purchased from Charles River Laboratories (Kanagawa, Japan). Losartan and imidapril were kindly provided by Merck (Whitehouse Station, NJ, USA) and
Mitsubishi Tanabe Pharma Corporation (Osaka, Japan), respectively. EXPERIMENTAL PROTOCOL The rats were maintained under a 12-h light/12-h dark cycle and specific pathogen-free conditions,
and were fed a normal diet. Before experimentation, the rats were randomly divided into three groups (_n_=6–8 in each group): the control group was left untreated; the losartan group
received 30 mg kg−1 losartan in their drinking water daily for 7 days; and the imidapril group received 20 mg kg−1 imidapril daily over the same period. We selected doses of both agents that
reportedly suppress the systemic RAS to a substantial degree.19, 20 Blood pressures were measured using the tail-cuff method (model BP-98A; Softron, Tokyo, Japan), before and after
treatment. At the end of the treatment period the rats were decapitated, and blood samples were collected into tubes containing 10 mg ml−1 EDTA and 500 KIU ml−1 aprotinin, and were then
immediately centrifuged for 10 min (3000 _g_ and 4 °C) to obtain the plasma. The present study was performed in accordance with the Animal Welfare Act and with the approval of the University
of Miyazaki Institutional Animal Care and Use Committee (2008-501-2). SAMPLE PREPARATION FOR RADIOIMMUNOASSAY (RIA) Samples were prepared for RIA as described previously.21, 22 After
decapitating the rats, tissues of interest were carefully resected and boiled for 10 min in 10 volumes of distilled H2O. Acetic acid was then added to the samples to a final concentration of
1.0 mol l−1, and the samples were homogenized using a Polytron mixer and then centrifuged for 20 min (12 000 r.p.m. at 4 °C). Finally, the plasma and tissue samples were separately applied
to a Sep-Pak C18 cartridge and eluted with 60% acetonitrile in 0.1% trifluoroacetic acid. The eluted samples were lyophilized and stored at −20 °C until used for RIA. MEASUREMENT OF
PROANG-12 AND OTHER COMPONENTS OF THE RAS To specifically detect proang-12 in tissues and plasma, we developed an RIA using antiserum raised against the C-terminal portion of the peptide.
The details of this RIA, including its cross-reactivity with other angiotensin peptides and comparison with a high-performance liquid chromatographic analysis of immunoreactive proang-12,
are provided elsewhere.8 The Ang I concentrations in tissues and plasma were determined using a specific RIA developed using an antibody raised against the C-terminus of Ang I (Miles). Ang
II concentrations were measured using a RIA developed against Ang II antiserum (Cortex Biochem., San Leandro, USA).8 The Ang I RIA cross-reacted with proang-12 at a level of 1.6%; there was
no cross-reaction with Ang II. The Ang II RIA showed no cross-reactivity with either proang-12 or Ang I. The angiotensinogen concentrations in plasma were determined using an ELISA purchased
from Immuno-Biological Laboratories (Gunma, Japan).21, 22 Plasma renin activity was determined using a GammaCoat Plasma Renin Activity kit from Kyowa Medex (Tokyo, Japan). Estimates of
renin activity were based on the plasma concentrations of generated Ang I following incubation at 37 °C. STATISTICAL ANALYSIS Data are presented as means±s.e. Comparisons of data from
multiple groups were made using ANOVA followed by the Tukey–Kramer test. Values of _P_<0.05 were considered significant. RESULTS Table 1 shows the systolic and diastolic blood pressures
and heart/body weight ratios of WKY and SHR rats, before and after treatment. Both systolic blood pressure and diastolic blood pressure were significantly lower than control in
imidapril-treated WKY rats, but not in WKY rats treated with losartan. Heart/body weight ratios in WKY rats were unaffected by either losartan or imidapril. In SHR rats, both losartan and
imidapril significantly reduced systolic blood pressure and diastolic blood pressure, as compared with control, and the heart/body weight ratios were slightly lower than control in the
losartan group and significantly lower in the imidapril group. Figure 1 shows the renin activity and angiotensinogen concentrations in plasma from WKY and SHR rats left untreated or treated
with a RAS inhibitor. We found that plasma renin activity was significantly higher than control in the losartan and imidapril groups of both strains (Figures 1a and b). The plasma
angiotensinogen concentration remained unchanged in the three groups of WKY rats (Figure 1c), but was significantly higher in losartan-treated SHR rats than in the untreated controls (Figure
1d). Plasma concentrations of proang-12, Ang I and Ang II in WKY and SHR rats are shown in Figure 2. RAS inhibition had no significant effect on plasma proang-12 concentrations in either
WKY or SHR rats (Figures 2a and b). On the other hand, plasma Ang I concentrations were significantly higher than control in both strains treated with losartan or imidapril (Figures 2c and
d). Although the effect was not statistically significant, we also observed substantial elevations in plasma Ang II concentrations in WKY rats treated with losartan or imidapril (Figure 2e),
and a significant elevation in plasma Ang II was seen in SHR rats treated with imidapril (Figure 2f). We also measured the tissue concentrations of proang-12, Ang I and Ang II in the
cardiac left ventricle and kidneys, two regions in which the tissue RAS is thought to be active (Figures 3 and 4). We noted a consistent tendency for both losartan and imidapril to reduce
left ventricular and renal levels of proang-12 and Ang II in both the WKY and SHR rats, but the effect was not always statistically significant (Figures 3a, b, e, f and 4a, b, e and f). By
contrast, losartan and imidapril had little, if any, effect on Ang I levels. The one exception was a small but significant rise in renal Ang I levels in WKY rats (Figures 3c, d and 4c and
d). DISCUSSION In the present study, plasma proang-12 concentrations were unaffected by pharmacological inhibition of the systemic RAS for 7 days using losartan or imidapril; this was
despite elevations in plasma renin activity and Ang I and Ang II levels. These results are consistent with our earlier finding that plasma proang-12 levels in rats were unaffected by
restricting sodium intake, though systemic RAS activity, including plasma renin activity, was significantly activated.18 Apparently, renin is not involved in the synthesis of proang-12,
which is consistent renin functioning exclusively to cleave angiotensinogen to produce Ang I.1, 23 It should be noted that the plasma concentrations of proang-12 are much lower than those of
Ang II and Ang I. Particularly in animals treated with imidapril, the plasma proang-12 concentration was less than 1% of the Ang I concentration, suggesting endogenous proang-12 does not
contribute the production of Ang II in plasma. In the present study, left ventricular and renal proang-12 concentrations were higher than the Ang II and Ang I concentrations in both SHR and
WKY rats. Moreover, the concentrations of proang-12 and Ang II in both heart and kidney showed similar changes in rats treated with an ACE inhibitor. On the other hand, the tissue levels of
Ang II did not correlate well with those of Ang I, which suggests tissue Ang II production is affected by proang-12, but not by Ang I. It was unexpected that imidapril would reduce tissue
levels of proang-12 and Ang II in both WKY and SHR rats under conditions in which ACE was inhibited. We cannot be certain of the exact mechanism underlying the suppression of local proang-12
production by the ACE inhibitor, but two possible explanations come to mind. One possibility is that ACE inhibitors or angiotensin receptor blockers reduce the expression of angiotensinogen
in cardiac and renal tissue. Wagner _et al._24 reported that plasma angiotensinogen is reduced in the stroke prone strain of SHR rats when the animals are treated with captopril or
losartan. Another possibility is that metabolism of proang-12 is catalyzed by several proteases. For example, proang-12 was recently shown to be digested by ACE2, chymase and neprilysin, in
addition to ACE. What's more, proang-12 is reportedly converted to Ang I, Ang II, Ang -(1–9) and Ang-(1–7) _ex vivo_,14, 15 and losartan, olmesartan and lisinopril all increase rat
cardiac ACE2 expression, leading to increases in Ang-(1–7) levels25, 26 and chymase activation.27 Thus, ACE inhibitors and angiotensin receptor blockers appear to activate endogenous
proteases that metabolize proang-12. It is somewhat surprising that imidapril treatment increased plasma Ang II levels, despite the reduction of blood pressure. Similarly, plasma Ang II
concentrations were previously reported to be significantly increased by enalapril28, 29 and imidapril,30 despite reductions in systolic blood pressure, left ventricular weight and left
ventricular Ang II concentration.31 The mechanism underlying these findings remains unclear, but one possible explanation is the presence of an ACE-independent pathway for Ang II production,
which may be activated during pharmacological ACE inhibition; for example, chymase is reportedly activated by captopril treatment.27 Another mechanism that could be involved in the
imidapril-induced reduction in blood pressure is ACE inhibitor-mediated activation of ACE2, leading to increases in Ang (1–7) levels.25 In addition, metabolism of bradykinin is strongly
inhibited by ACE inhibitors, and the resultant increases circulating bradykinin levels would lead to increases in nitric oxide and prostaglandin levels,32 which would in turn reduce blood
pressure. We also observed that tissue proang-12 levels were higher in WKY than SHR rats. This finding differs from that of an earlier study, which found that cardiac levels of proang-12
were higher in SHR than WKY rats, but that the reverse was true for renal proang-12 levels.16 We are uncertain what accounts for the difference between our findings and those earlier ones.
Perhaps it reflects the fact that the rats were bred in different colonies or that the extraction and assay procedures differed. In any case, the angiotensin peptides showed similar changes
in both strains, suggesting proang-12 is an important precursor of tissue Ang II. In future experiments, attention should be paid to the enzymes involved in the processing or conversion of
proang-12, and the role of proang-12 in regulating blood pressure and fluid balance. This is because those enzymes may be key regulators of the local production of both Ang II and proang-12
from angiotensinogen, which would make them key regulators of the tissue RAS. In addition, an understanding of the handling of renal/urinary angiotensinogen is necessary to further clarify
the biosynthesis of proang-12 in tissues. CONCLUSION The left ventricular and renal concentrations of proang-12 are reduced by losartan and imidapril in WKY and SHR rats, despite activation
of the circulation RAS. Whereas the circulation RAS involves a pathway via which Ang I is converted to Ang II, the tissue RAS involves conversion of proang-12 to Ang II. It is therefore
likely that tissue concentrations of proang-12 are regulated independently of the circulation RAS, and that proang-12 is a component of only the tissue RAS in rats. REFERENCES * Oparil S,
Haber E . The renin-angiotensin system (first of two parts). _N Engl J Med_ 1974; 291: 389–401. Article CAS Google Scholar * Dzau VJ . Significance of the vascular renin-angiotensin
pathway. _Hypertension_ 1986; 8: 553–559. Article CAS Google Scholar * Dzau VJ, Burt DW, Pratt RE . Molecular biology of the renin-angiotensin system. _Am J Physiol_ 1988; 255 (4 Pt 2):
F563–F573. CAS PubMed Google Scholar * Campbell DJ . Circulating and tissue angiotensin systems. _J Clin Invest_ 1987; 79: 1–6. Article CAS Google Scholar * Fischer-Ferraro C, Nahmod
VE, Goldstein DJ, Finkielman S . Angiotensin and renin in rat and dog brain. _J Exp Med_ 1971; 133: 353–361. Article CAS Google Scholar * Miyazaki M, Okunishi H, Okamura T, Toda N .
Elevated vascular angiotensin converting enzyme in chronic two-kidney, one clip hypertension in the dog. _J Hypertens_ 1987; 5: 155–160. Article CAS Google Scholar * Paul M, Poyan Mehr A,
Kreutz R . Physiology of local renin-angiotensin systems. _Physiol Rev_ 2006; 86: 747–803. Article CAS Google Scholar * Nagata S, Kato J, Sasaki K, Minamino N, Eto T, Kitamura K .
Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. _Biochem Biophys Res Commun_ 2006; 350: 1026–1031. Article CAS Google Scholar *
Varagic J, Trask AJ, Jessup JA, Chappell MC, Ferrario CM . New angiotensins. _J Mol Med_ 2008; 86: 663–671. Article CAS Google Scholar * Cummins PM . A new addition to the
renin-angiotensin peptide family: proAngiotensin-12 (PA12). _Cardiovasc Res_ 2009; 82: 7–8. Article CAS Google Scholar * Prosser HC, Forster ME, Richards AM, Pemberton CJ . Cardiac
chymase converts rat proAngiotensin-12 (PA12) to angiotensin II: effects of PA12 upon cardiac haemodynamics. _Cardiovasc Res_ 2009; 82: 40–50. Article CAS Google Scholar * Prosser HC,
Richards AM, Forster ME, Pemberton CJ . Regional vascular response to ProAngiotensin-12 (PA12) through the rat arterial system. _Peptides_ 2010; 31: 1540–1545. Article CAS Google Scholar
* Ahmad S, Varagic J, Westwood BM, Chappell MC, Ferrario CM . Uptake and metabolism of the novel Peptide Angiotensin-(1-12) by neonatal cardiac myocytes. _PLoS ONE_ 2011; 6: e15759. Article
CAS Google Scholar * Trask AJ, Jessup JA, Chappell MC, Ferrario CM . Angiotensin-(1-12) is an alternate substrate for angiotensin peptide production in the heart. _Am J Physiol Heart
Circ Physiol_ 2008; 294: H2242–H2247. Article CAS Google Scholar * Bujak-Gizycka B, Olszanecki R, Suski M, Madek J, Stachowicz A, Korbut R . Angiotensinogen metabolism in rat aorta:
robust formation of proangiotensin-12. _J Physiol Pharmacol_ 2010; 61: 679–682. CAS PubMed Google Scholar * Jessup JA, Trask AJ, Chappell MC, Nagata S, Kato J, Kitamura K, Ferrario CM .
Localization of the novel angiotensin peptide, angiotensin-(1-12), in heart and kidney of hypertensive and normotensive rats. _Am J Physiol Heart Circ Physiol_ 2008; 294: H2614–H2618.
Article CAS Google Scholar * Ferrario CM, Varagic J, Habibi J, Nagata S, Kato J, Chappell MC, Trask AJ, Kitamura K, Whaley-Connell A, Sowers JR . Differential regulation of
angiotensin-(1-12) in plasma and cardiac tissue in response to bilateral nephrectomy. _Am J Physiol Heart Circ Physiol_ 2009; 296: H1184–H1192. Article CAS Google Scholar * Nagata S, Kato
J, Kuwasako K, Kitamura K . Plasma and tissue levels of proangiotensin-12 and components of the renin-angiotensin system (RAS) following low- or high-salt feeding in rats. _Peptides_ 2010;
31: 889–892. Article CAS Google Scholar * Dai Q, Xu M, Yao M, Sun B . Angiotensin AT1 receptor antagonists exert anti-inflammatory effects in spontaneously hypertensive rats. _Br J
Pharmacol_ 2007; 152: 1042–1048. Article CAS Google Scholar * Katoh M, Egashira K, Kataoka C, Usui M, Koyanagi M, Kitamoto S, Ohmachi Y, Takeshita A, Narita H . Regression by ACE
inhibition of arteriosclerotic changes induced by chronic blockade of NO synthesis in rats. _Am J Physiol Heart Circ Physiol_ 2001; 280: H2306–H2312. Article CAS Google Scholar * Kobori
H, Katsurada A, Miyata K, Ohashi N, Satou R, Saito T, Hagiwara Y, Miyashita K, Navar LG . Determination of plasma and urinary angiotensinogen levels in rodents by newly developed ELISA. _Am
J Physiol Renal Physiol_ 2008; 294: F1257–F1263. Article CAS Google Scholar * Katsurada A, Hagiwara Y, Miyashita K, Satou R, Miyata K, Ohashi N, Navar LG, Kobori H . Novel sandwich ELISA
for human angiotensinogen. _Am J Physiol Renal Physiol_ 2007; 293: F956–F960. Article CAS Google Scholar * Inagami T, Misono K, Michelakis AM . Definitive evidence for similarity in the
active site of renin and acidic protease. _Biochem Biophys Res Commun_ 1974; 56: 503–509. Article CAS Google Scholar * Wagner J, Drab M, Bohlender J, Amann K, Wienen W, Ganten D . Effects
of AT1 receptor blockade on blood pressure and the renin-angiotensin system in spontaneously hypertensive rats of the stroke prone strain. _Clin Exp Hypertens_ 1998; 20: 205–221. Article
CAS Google Scholar * Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI, Gallagher PE . Effect of angiotensin-converting enzyme inhibition and angiotensin II
receptor blockers on cardiac angiotensin-converting enzyme 2. _Circulation_ 2005; 111: 2605–2610. Article CAS Google Scholar * Agata J, Ura N, Yoshida H, Shinshi Y, Sasaki H, Hyakkoku M,
Taniguchi S, Shimamoto K . Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme. _Hypertens Res_ 2006; 29: 865–874. Article CAS
Google Scholar * Wei CC, Hase N, Inoue Y, Bradley EW, Yahiro E, Li M, Naqvi N, Powell PC, Shi K, Takahashi Y, Saku K, Urata H, Dell′italia LJ, Husain A . Mast cell chymase limits the
cardiac efficacy of Ang I-converting enzyme inhibitor therapy in rodents. _J Clin Invest_ 2010; 120: 1229–1239. Article CAS Google Scholar * Mento PF, Wilkes BM . Plasma angiotensins and
blood pressure during converting enzyme inhibition. _Hypertension_ 1987; 9 (6 Pt 2): III42–III48. CAS PubMed Google Scholar * Koji T, Onishi K, Dohi K, Okamoto R, Tanabe M, Kitamura T,
Ito M, Isaka N, Nobori T, Nakano T . Addition of angiotensin II receptor antagonist to an ACE inhibitor in heart failure improves cardiovascular function by a bradykinin-mediated mechanism.
_J Cardiovasc Pharmacol_ 2003; 41: 632–639. Article CAS Google Scholar * Matsumoto N, Ishimitsu T, Okamura A, Seta H, Takahashi M, Matsuoka H . Effects of imidapril on left ventricular
mass in chronic hemodialysis patients. _Hypertens Res_ 2006; 29: 253–260. Article CAS Google Scholar * Nagano M, Higaki J, Mikami H, Nakamaru M, Higashimori K, Katahira K, Tabuchi Y,
Moriguchi A, Nakamura F, Ogihara T . Converting enzyme inhibitors regressed cardiac hypertrophy and reduced tissue angiotensin II in spontaneously hypertensive rats. _J Hypertens_ 1991; 9:
595–599. Article CAS Google Scholar * Aihara E, Kagawa S, Hayashi M, Takeuchi K . ACE inhibitor and AT1 antagonist stimulate duodenal HCO3-secretion mediated by a common
pathway—involvement of PG, NO and bradykinin. _J Physiol Pharmacol_ 2005; 56: 391–406. CAS PubMed Google Scholar Download references ACKNOWLEDGEMENTS The present study was supported in
part by Grants-in-aid for Scientific Research from the Japan Society for the Promotion of Science. We are grateful to Merck and Mitsubishi Tanabe Pharma Corporation for kindly providing the
RAS inhibitors. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan Sayaka Nagata,
Maki Asami & Kazuo Kitamura * Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan Johji Kato & Kenji Kuwasako Authors * Sayaka Nagata View author publications
You can also search for this author inPubMed Google Scholar * Johji Kato View author publications You can also search for this author inPubMed Google Scholar * Kenji Kuwasako View author
publications You can also search for this author inPubMed Google Scholar * Maki Asami View author publications You can also search for this author inPubMed Google Scholar * Kazuo Kitamura
View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Sayaka Nagata. ETHICS DECLARATIONS COMPETING INTERESTS The authors
declare no conflict of interest. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Nagata, S., Kato, J., Kuwasako, K. _et al._ Plasma and tissue
concentrations of proangiotensin-12 in rats treated with inhibitors of the renin-angiotensin system. _Hypertens Res_ 35, 234–238 (2012). https://doi.org/10.1038/hr.2011.165 Download citation
* Received: 25 February 2011 * Revised: 19 July 2011 * Accepted: 11 August 2011 * Published: 13 October 2011 * Issue Date: February 2012 * DOI: https://doi.org/10.1038/hr.2011.165 SHARE
THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to
clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * angiotensin * ACE inhibitor * angiotensin receptor blocker * proangiotensin-12 * renin