Magma-compensated crustal thinning in continental rift zones

Magma-compensated crustal thinning in continental rift zones

Play all audios:

Loading...

ABSTRACT Continental rift zones are long, narrow tectonic depressions in the Earth’s surface where the entire lithosphere has been modified in extension1. Rifting can eventually lead to


rupture of the continental lithosphere and creation of new oceanic lithosphere or, alternatively, lead to formation of wide sedimentary basins around failed rift zones. Conventional models


of rift zones include three characteristic features: surface manifestation as an elongated topographic trough, Moho shallowing due to crustal thinning, and reduced seismic velocity in the


uppermost mantle due to decompression melting or heating from the Earth’s interior2,3,4. Here we demonstrate that only the surface manifestation is observed at the Baikal rift zone, whereas


the crustal and mantle characteristics can be ruled out by a new seismic profile across southern Lake Baikal in Siberia. Instead we observe a localized zone in the lower crust which has


exceptionally high seismic velocity and is highly reflective. We suggest that the expected Moho uplift was compensated by magmatic intrusion into the lower crust, producing the observed


high-velocity zone. This finding demonstrates a previously unknown role for magmatism in rifting processes with significant implications for estimation of stretching factors and modelling of


sedimentary basins around failed rift structures. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PREFERENTIAL LOCALIZED THINNING OF LITHOSPHERIC MANTLE IN THE MELT-POOR MALAWI


RIFT Article 20 July 2020 GEODYNAMICS OF CONTINENTAL RIFT INITIATION AND EVOLUTION Article 07 March 2023 BLIND MAGMATISM ABETS NONVOLCANIC CONTINENTAL RIFTING Article Open access 12 February


2024 REFERENCES * Olsen, K. H. (ed.) _Continental Rifts: Evolution, Structure, Tectonics_ (Elsevier, 1995) Google Scholar  * McKenzie, D. Some remarks on the development of sedimentary


basins. _Earth Planet. Sci. Lett._ 40, 25–32 (1978) Article  ADS  Google Scholar  * Wernicke, B. P. Uniform-sense normal simple shear of the continental lithosphere. _Can. J. Earth Sci._ 22,


108–125 (1985) Article  ADS  Google Scholar  * Ruppel, C. Extensional processes in continental lithosphere. _J. Geophys. Res. B_ 100, 24,187–24,215 (1995) Article  ADS  Google Scholar  *


Moore, T. C., Klitgord, K. D., Golmshtok, A. J. & Weber, E. Sedimentation and subsidence patterns in the central and north basins of Lake Baikal from seismic stratigraphy. _Geol. Soc.


Am. Bull._ 109, 746–766 (1997) Article  ADS  Google Scholar  * Zorin, Y. A. et al. The Baikal rift zone: The effect of mantle plumes on older structure. _Tectonophysics_ 371, 153–173 (2003)


Article  ADS  Google Scholar  * Petit, C. & Deverchere, J. Structure and evolution of the Baikal rift: A synthesis. _Geochem. Geophys. Geosyst._ 7 10.1029/2006GC001265 (2006) * Kiselev,


A. I. Volcanism of the Baikal rift zone. _Tectonophysics_ 143, 235–244 (1987) Article  ADS  CAS  Google Scholar  * Achauer, U. & Masson, F. Seismic tomography of continental rifts


revisited: From relative to absolute heterogeneities. _Tectonophysics_ 358, 17–37 (2002) Article  ADS  Google Scholar  * Windley, B. F. & Allen, M. B. Mongolian plateau: Evidence for a


late Cenozoic mantle plume under central Asia. _Geology_ 21, 295–298 (1993) Article  ADS  Google Scholar  * Petit, C., Koulakov, I. & Deverchere, J. Velocity structure around the Baikal


rift zone from teleseismic and local earthquake traveltimes and geodynamic implications. _Tectonophysics_ 296, 125–144 (1998) Article  ADS  Google Scholar  * Zhao, D. P., Lei, J. S., Inoue,


T., Yamada, A. & Gao, S. S. Deep structure and origin of the Baikal rift zone. _Earth Planet. Sci. Lett._ 243, 681–691 (2006) Article  ADS  CAS  Google Scholar  * Tapponier, P. &


Molnar, P. Active faulting and Cenezoic tectonics of the Tien Shan, Mongolia, and Baykal regions. _J. Geophys. Res._ 84, 3425–3459 (1979) Article  ADS  Google Scholar  * ten Brink, U. S.


& Taylor, M. H. Crustal structure of central Lake Baikal: Insights into intracontinental rifting. _J. Geophys. Res._ 107 (B7). 10.1029/2001JB000300 (2002) * Ionov, D. Mantle structure


and rifting processes in the Baikal-Mongolia region: Geophysical data and evidence from xenoliths in volcanic rocks. _Tectonophysics_ 351, 41–60 (2002) Article  ADS  CAS  Google Scholar  *


Gao, S. S., Liu, K. H. & Chen, C. Significant crustal thinning beneath the Baikal rift zone: New constraints from receiver function analysis. _Geophys. Res. Lett._ 31, L20610 (2004)


Article  ADS  Google Scholar  * Suvorov, V. D. et al. Structure of the crust in the Baikal rift zone and adjacent areas from Deep Seismic Sounding data. _Tectonophysics_ 351, 61–74 (2002)


Article  ADS  Google Scholar  * Thybo, H., Maguire, P. K. H., Birt, C. & Perchuc, E. Seismic reflectivity and magmatic underplating beneath the Kenya Rift. _Geophys. Res. Lett._ 27,


2745–2748 (2000) Article  ADS  Google Scholar  * Lyngsie, S. B., Thybo, H. & Lang, R. Rifting and lower crustal reflectivity: A case study of the intracratonic Dniepr-Donets rift zone,


Ukraine. _J. Geophys. Res._ 112 B12402 10.1029/2006JB004795 (2007) Article  ADS  Google Scholar  * Artemieva, I. M. & Mooney, W. D. Thermal thickness and evolution of Precambrian


lithosphere: A global study. _J. Geophys. Res._ 106 (B8). 16387–16414 (2001) Article  ADS  Google Scholar  * Gerya, T. V. & Burg, J. P. Intrusion of ultramafic magmatic bodies into the


continental crust: Numerical simulation. _Phys. Earth Planet. Inter._ 160, 124–142 (2007) Article  ADS  Google Scholar  * Prodehl, C. et al. Large-scale variation in lithospheric structure


along and across the Kenya Rift. _Nature_ 354, 223–227 (1991) Article  Google Scholar  * Green, W. V., Achauer, U. & Meyer, R. P. A three-dimensional seismic image of the crust and upper


mantle beneath the Kenya Rift. _Nature_ 354, 199–203 (1991) Article  ADS  Google Scholar  * Wilson, D. et al. Lithospheric structure of the Rio Grande rift. _Nature_ 433, 851–855 (2005)


Article  ADS  CAS  Google Scholar  * White, R. & McKenzie, D. Magmatism at rift zones — the generation of volcanic continental margins and flood basalts. _J. Geophys. Res._ 94 (B6).


7685–7729 (1989) Article  ADS  Google Scholar  * Barry, T. L. et al. Petrogenesis of Cenozoic basalts from Mongolia: Evidence for the role of asthenospheric versus metasomatized lithospheric


mantle sources. _J. Petrol._ 44, 55–91 (2003) Article  ADS  CAS  Google Scholar  * Raum, T. et al. Crustal structure and evolution of the southern Voring basin and Voring transform margin,


NE Atlantic. _Tectonophysics_ 415, 167–202 (2006) Article  ADS  Google Scholar  * White, R. S., Smith, L. K., Roberts, A. W., Christie, P. A. F. & Kusznir, N. J. Lower-crustal intrusion


on the North Atlantic continental margin. _Nature_ 452, 460–464 (2008) Article  ADS  CAS  Google Scholar  * Korenaga, J., Kelemen, P. B. & Holbrook, W. S. Methods for resolving the


origin of large igneous provinces from crustal seismology. _J. Geophys. Res._ 107 (B9). 10.1029/2001JB001030 (2002) * Furlong, K. P. & Fountain, D. M. Continental crustal underplating —


thermal considerations and seismic-petrologic consequences. _J. Geophys. Res._ 91 (B8). 8285–8294 (1986) Article  ADS  Google Scholar  * Delvaux, D. et al. Paleostress reconstructions and


geodynamics of the Baikal region, Central Asia. Part 2. Cenozoic rifting. _Tectonophysics_ 282, 1–38 (1997) Article  ADS  Google Scholar  * Jin, S. G., Park, P. H. & Zhu, W. Y.


Micro-plate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations. _Earth Planet. Sci. Lett._ 257, 486–496 (2007) Article  ADS  CAS  Google Scholar 


Download references ACKNOWLEDGEMENTS This study received support from the Carlsberg Foundation and the Danish Natural Science Research Council. The field work at Lake Baikal further received


support from the Russian Academy of Sciences, Siberian Branch, and the Polish Academy of Sciences. The seismic instruments were provided by the University of Copenhagen and the Technical


University of Vienna. We acknowledge discussions with R. S. White on melting processes, and comments received from I. Artemieva, I. Reid and W. Stratford on earlier versions of the


manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Geography and Geology, University of Copenhagen, Oester Voldgade 10, DK-1350 Copenhagen K, Denmark, H. Thybo & C.


A. Nielsen Authors * H. Thybo View author publications You can also search for this author inPubMed Google Scholar * C. A. Nielsen View author publications You can also search for this


author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to H. Thybo. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION This file contains Supplementary Notes, Supplementary


Figures S1-S4 with Legends and Supplementary Tables S1-S2 (PDF 3800 kb) POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE


FOR FIG. 4 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Thybo, H., Nielsen, C. Magma-compensated crustal thinning in continental rift zones. _Nature_


457, 873–876 (2009). https://doi.org/10.1038/nature07688 Download citation * Received: 14 May 2008 * Accepted: 09 December 2008 * Published: 01 February 2009 * Issue Date: 12 February 2009


* DOI: https://doi.org/10.1038/nature07688 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative