Play all audios:
ABSTRACT The discovery of microRNAs (miRNAs) almost two decades ago established a new paradigm of gene regulation. During the past ten years these tiny non-coding RNAs have been linked to
virtually all known physiological and pathological processes, including cancer. In the same way as certain key protein-coding genes, miRNAs can be deregulated in cancer, in which they can
function as a group to mark differentiation states or individually as bona fide oncogenes or tumour suppressors. Importantly, miRNA biology can be harnessed experimentally to investigate
cancer phenotypes or used therapeutically as a target for drugs or as the drug itself. Access through your institution Buy or subscribe This is a preview of subscription content, access via
your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this
article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in
* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS CHASING NON-EXISTENT “MICRORNAS” IN CANCER Article Open access 18
April 2025 MICRORNA-184 IN THE LANDSCAPE OF HUMAN MALIGNANCIES: A REVIEW TO ROLES AND CLINICAL SIGNIFICANCE Article Open access 24 November 2023 MICRORNA: TRENDS IN CLINICAL TRIALS OF CANCER
DIAGNOSIS AND THERAPY STRATEGIES Article Open access 10 July 2023 REFERENCES * Bartel, D. P. MicroRNAs: target recognition and regulatory functions. _Cell_ 136, 215–233 (2009). Article CAS
PubMed PubMed Central Google Scholar * Lee, R. C., Feinbaum, R. L. & Ambros, V. The _C. elegans_ heterochronic gene _lin-4_ encodes small RNAs with antisense complementarity to
_lin-14_. _Cell_ 75, 843–854 (1993). CAS PubMed Google Scholar * Wightman, B., Ha, I. & Ruvkun, G. Post-transcriptional regulation of the heterochronic gene _lin-14_ by _lin-4_
mediates temporal pattern formation in _C. elegans_. _Cell_ 75, 855–862 (1993). CAS PubMed Google Scholar * Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation.
_Cell_ 144, 646–674 (2011). CAS PubMed Google Scholar * Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes _miR15_ and _miR16_ at 13q14 in chronic lymphocytic
leukemia. _Proc. Natl Acad. Sci. USA_ 99, 15524–15529 (2002). THIS ARTICLE REPORTS MIRNA DEREGULATION IN CANCER AND IS THE FIRST EVIDENCE OF THE ROLE OF MIRNAS IN CANCER. ADS CAS PubMed
PubMed Central Google Scholar * Lu, J. et al. MicroRNA expression profiles classify human cancers. _Nature_ 435, 834–838 (2005). THIS ARTICLE SYSTEMATICALLY PROFILES MIRNAS IN CANCER AND
DEMONSTRATES THEIR POTENTIAL AS CLASSIFIERS. ADS CAS PubMed Google Scholar * O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated
microRNAs modulate E2F1 expression. _Nature_ 435, 839–843 (2005). ADS CAS PubMed Google Scholar * He, L. et al. A microRNA polycistron as a potential human oncogene. _Nature_ 435,
828–833 (2005). REFERENCES 7 AND 8 SHOW, FOR THE FIRST TIME, THAT MIRNAS CAN BE ACTIVELY INVOLVED IN THE MYC SIGNALLING PATHWAY. ADS CAS PubMed PubMed Central Google Scholar * Calin, G.
A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. _Proc. Natl Acad. Sci. USA_ 101, 2999–3004 (2004). ADS CAS PubMed PubMed
Central Google Scholar * Saito, Y. et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene _BCL6_ by chromatin-modifying drugs in human cancer cells. _Cancer
Cell_ 9, 435–443 (2006). CAS PubMed Google Scholar * Mayr, C., Hemann, M. T. & Bartel, D. P. Disrupting the pairing between _let-7_ and _Hmga2_ enhances oncogenic transformation.
_Science_ 315, 1576–1579 (2007). ADS CAS PubMed PubMed Central Google Scholar * Veronese, A. et al. Mutated β-catenin evades a microRNA-dependent regulatory loop. _Proc. Natl Acad. Sci.
USA_ 108, 4840–4845 (2011). ADS CAS PubMed PubMed Central Google Scholar * Diederichs, S. & Haber, D. A. Sequence variations of microRNAs in human cancer: alterations in predicted
secondary structure do not affect processing. _Cancer Res._ 66, 6097–6104 (2006). CAS PubMed Google Scholar * Kuchenbauer, F. et al. In-depth characterization of the microRNA
transcriptome in a leukemia progression model. _Genome Res._ 18, 1787–1797 (2008). CAS PubMed PubMed Central Google Scholar * Yanaihara, N. et al. Unique microRNA molecular profiles in
lung cancer diagnosis and prognosis. _Cancer Cell_ 9, 189–198 (2006). CAS PubMed Google Scholar * Calin, G. A. et al. A microRNA signature associated with prognosis and progression in
chronic lymphocytic leukemia. _N. Engl. J. Med._ 353, 1793–1801 (2005). CAS PubMed Google Scholar * Rosenfeld, N. et al. MicroRNAs accurately identify cancer tissue origin. _Nature
Biotechnol._ 26, 462–469 (2008). CAS Google Scholar * Xi, Y. et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded
samples. _RNA_ 13, 1668–1674 (2007). CAS PubMed PubMed Central Google Scholar * Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. _Proc.
Natl Acad. Sci. USA_ 105, 10513–10518 (2008). ADS CAS PubMed PubMed Central Google Scholar * Chang, T. C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis.
_Nature Genet._ 40, 43–50 (2008). CAS PubMed Google Scholar * Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. _Genes Dev._
20, 2202–2207 (2006). CAS PubMed PubMed Central Google Scholar * Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular
transformation and tumorigenesis. _Nature Genet._ 39, 673–677 (2007). CAS PubMed Google Scholar * Kumar, M. S. et al. _Dicer1_ functions as a haploinsufficient tumor suppressor. _Genes
Dev._ 23, 2700–2704 (2009). CAS PubMed PubMed Central Google Scholar * Merritt, W. M. et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. _N. Engl. J. Med._ 359,
2641–2650 (2008). CAS PubMed PubMed Central Google Scholar * Melo, S. A. et al. A _TARBP2_ mutation in human cancer impairs microRNA processing and DICER1 function. _Nature Genet._ 41,
365–370 (2009). CAS PubMed Google Scholar * Melo, S. A. et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. _Cancer Cell_ 18, 303–315 (2010).
CAS PubMed Google Scholar * Newman, M. A. & Hammond, S. M. Emerging paradigms of regulated microRNA processing. _Genes Dev._ 24, 1086–1092 (2010). CAS PubMed PubMed Central Google
Scholar * Mavrakis, K. J. et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. _Nature Cell Biol._ 12,
372–379 (2010). CAS PubMed Google Scholar * Portela, A. & Esteller, M. Epigenetic modifications and human disease. _Nature Biotechnol._ 28, 1057–1068 (2010). CAS Google Scholar *
Cao, Q. et al. Coordinated regulation of Polycomb Group complexes through microRNAs in cancer. _Cancer Cell_ 20, 187–199 (2011). CAS PubMed PubMed Central Google Scholar * Fabbri, M. et
al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. _Proc. Natl Acad. Sci. USA_ 104, 15805–15810 (2007). ADS CAS PubMed
PubMed Central Google Scholar * Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. _Science_ 322, 1695–1699 (2008). ADS
CAS PubMed PubMed Central Google Scholar * Hwang, H. W., Wentzel, E. A. & Mendell, J. T. A hexanucleotide element directs microRNA nuclear import. _Science_ 315, 97–100 (2007). ADS
CAS PubMed Google Scholar * Khraiwesh, B. et al. Transcriptional control of gene expression by microRNAs. _Cell_ 140, 111–122 (2010). CAS PubMed Google Scholar * Gebeshuber, C. A.,
Zatloukal, K. & Martinez, J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. _EMBO Rep._ 10, 400–405 (2009). CAS PubMed PubMed Central
Google Scholar * Small, E. M. & Olson, E. N. Pervasive roles of microRNAs in cardiovascular biology. _Nature_ 469, 336–342 (2011). ADS CAS PubMed PubMed Central Google Scholar *
Bueno, M. J. et al. Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway. _Blood_ 117, 6255–6266 (2011). CAS PubMed Google Scholar * Bui, T. V. & Mendell, J. T.
Myc: maestro of microRNAs. _Genes Cancer_ 1, 568–575 (2010). CAS PubMed PubMed Central Google Scholar * Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA
cluster. _Nature Genet._ 38, 1060–1065 (2006). CAS PubMed Google Scholar * Cairo, S. et al. Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. _Proc. Natl Acad.
Sci. USA_ 107, 20471–20476 (2010). ADS CAS PubMed PubMed Central Google Scholar * Kent, O. A. et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting
feed-forward pathway. _Genes Dev._ 24, 2754–2759 (2010). CAS PubMed PubMed Central Google Scholar * Johnson, S. M. et al. _RAS_ is regulated by the _let-7_ microRNA family. _Cell_ 120,
635–647 (2005). THIS ARTICLE REPORTS THE FIRST EVIDENCE OF AN ONCOGENE, KRAS, BEING TARGETED BY AN MIRNA. CAS PubMed Google Scholar * He, L., He, X., Lowe, S. W. & Hannon, G. J.
microRNAs join the p53 network–another piece in the tumour-suppression puzzle. _Nature Rev. Cancer_ 7, 819–822 (2007). THIS COMPREHENSIVE REVIEW DESCRIBES THE REGULATION OF THE MIR-34 FAMILY
BY THE TUMOUR SUPPRESSOR P53. CAS Google Scholar * Pichiorri, F. et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple
myeloma development. _Cancer Cell_ 18, 367–381 (2010). CAS PubMed PubMed Central Google Scholar * Xiao, J., Lin, H., Luo, X. & Wang, Z. miR-605 joins p53 network to form a
p53:miR-605:Mdm2 positive feedback loop in response to stress. _EMBO J._ 30, 524–532 (2011). CAS PubMed PubMed Central Google Scholar * Yamakuchi, M. et al. P53-induced microRNA-107
inhibits HIF-1 and tumor angiogenesis. _Proc. Natl Acad. Sci. USA_ 107, 6334–6339 (2010). ADS CAS PubMed PubMed Central Google Scholar * Chang, C. J. et al. p53 regulates
epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. _Nature Cell Biol._ 13, 317–323 (2011). CAS PubMed Google Scholar * Kim, T. et al. p53 regulates
epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. _J. Exp. Med._ 208, 875–883 (2011). ADS CAS PubMed PubMed Central Google Scholar * Swarbrick, A. et al.
miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in _MYCN_-amplified neuroblastoma. _Nature Med._ 16, 1134–1140 (2010). CAS PubMed Google Scholar
* Hu, W. et al. Negative regulation of tumor suppressor p53 by microRNA miR-504. _Mol. Cell_ 38, 689–699 (2010). CAS PubMed PubMed Central Google Scholar * Suzuki, H. I. et al.
Modulation of microRNA processing by p53. _Nature_ 460, 529–533 (2009). ADS CAS PubMed Google Scholar * Su, X. et al. TAp63 suppresses metastasis through coordinate regulation of Dicer
and miRNAs. _Nature_ 467, 986–990 (2010). ADS CAS PubMed PubMed Central Google Scholar * Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by
microRNA-10b in breast cancer. _Nature_ 449, 682–688 (2007). THIS STUDY DEMONSTRATES FOR THE FIRST TIME THAT MIRNAS ARE INVOLVED IN TUMOUR INVASION AND METASTASIS. ADS CAS PubMed Google
Scholar * Tavazoie, S. F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. _Nature_ 451, 147–152 (2008). ADS CAS PubMed PubMed Central Google Scholar * Ma, L.
et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. _Nature Cell Biol._ 12, 247–256 (2010). CAS PubMed Google Scholar * Valastyan, S. et al. A
pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. _Cell_ 137, 1032–1046 (2009). CAS PubMed PubMed Central Google Scholar * Cano, A. & Nieto, M. A.
Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. _Trends Cell Biol._ 18, 357–359 (2008). CAS PubMed Google Scholar * Korpal, M. et al. Direct targeting of Sec23a
by miR-200s influences cancer cell secretome and promotes metastatic colonization. _Nature Med._ 17, 1101–1108 (2011). CAS PubMed Google Scholar * Martello, G. et al. A microRNA
targeting Dicer for metastasis control. _Cell_ 141, 1195–1207 (2010). CAS PubMed Google Scholar * Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg
effect: the metabolic requirements of cell proliferation. _Science_ 324, 1029–1033 (2009). ADS CAS PubMed PubMed Central Google Scholar * Godlewski, J. et al. MicroRNA-451 regulates
LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. _Mol. Cell_ 37, 620–632 (2010). CAS PubMed PubMed Central Google Scholar * Gao, P. et al. c-Myc suppression
of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. _Nature_ 458, 762–765 (2009). ADS CAS PubMed PubMed Central Google Scholar * Anand, S. et al.
MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. _Nature Med._ 16, 909–914 (2010). CAS PubMed Google Scholar * Mu, P. et al.
Genetic dissection of the miR-17∼92 cluster of microRNAs in Myc-induced B-cell lymphomas. _Genes Dev._ 23, 2806–2811 (2009). CAS PubMed PubMed Central Google Scholar * Olive, V. et al.
miR-19 is a key oncogenic component of mir-17-92. _Genes Dev._ 23, 2839–2849 (2009). CAS PubMed PubMed Central Google Scholar * Costinean, S. et al. Pre-B cell proliferation and
lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. _Proc. Natl Acad. Sci. USA_ 103, 7024–7029 (2006). THIS ARTICLE REPORTS OVEREXPRESSION OF A SINGLE MIRNA CAN CAUSE
CANCER _IN VIVO_. ADS CAS PubMed PubMed Central Google Scholar * O'Connell, R. M. et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a
myeloproliferative disorder. _J. Exp. Med._ 205, 585–594 (2008). CAS PubMed PubMed Central Google Scholar * Miska, E. A. et al. Most _Caenorhabditis elegans_ microRNAs are individually
not essential for development or viability. _PLoS Genet._ 3, e215 (2007). PubMed PubMed Central Google Scholar * Klein, U. et al. The DLEU2/miR-15a/16-1 cluster controls B cell
proliferation and its deletion leads to chronic lymphocytic leukemia. _Cancer Cell_ 17, 28–40 (2010). CAS PubMed Google Scholar * Medina, P. P., Nolde, M. & Slack, F. J. OncomiR
addiction in an _in vivo_ model of microRNA-21-induced pre-B-cell lymphoma. _Nature_ 467, 86–90 (2010). ADS CAS PubMed Google Scholar * Chan, J. A., Krichevsky, A. M. & Kosik, K. S.
MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. _Cancer Res._ 65, 6029–6033 (2005). CAS PubMed Google Scholar * Prosser, H. M., Koike-Yusa, H., Cooper, J. D., Law, F.
C. & Bradley, A. A resource of vectors and ES cells for targeted deletion of microRNAs in mice. _Nature Biotechnol._ 29, 840–845 (2011). CAS Google Scholar * Loya, C. M., Lu, C. S.,
Van Vactor, D. & Fulga, T. A. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. _Nature Methods_ 6, 897–903 (2009). CAS PubMed PubMed Central Google
Scholar * Zhu, Q. et al. A sponge transgenic mouse model reveals important roles for the miRNA-183/96/182 cluster in post-mitotic photoreceptors of the retina. _J. Biol. Chem._ 2865,
31749–31760 (2011). THIS ARTICLE REPORTS THE DEVELOPMENT OF THE FIRST SPONGE TRANSGENIC MOUSE THAT ALLOWS _IN VIVO_ INHIBITION OF ONE OR SEVERAL MIRNAS. Google Scholar * Kota, J. et al.
Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. _Cell_ 137, 1005–1017 (2009). THIS ARTICLE USES ADENOVIRUS-ASSOCIATED VECTORS TO DELIVER MIRNAS TO THE
LIVER AND TREAT CANCER. CAS PubMed PubMed Central Google Scholar * Czech, B. & Hannon, G. J. Small RNA sorting: matchmaking for Argonautes. _Nature Rev. Genet._ 12, 19–31 (2011). CAS
PubMed Google Scholar * Chicas, A. et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. _Cancer Cell_ 17, 376–387 (2010). CAS PubMed
PubMed Central Google Scholar * Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J. & Elledge, S. J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA
interference in mammalian cells. _Proc. Natl Acad. Sci. USA_ 102, 13212–13217 (2005). ADS CAS PubMed PubMed Central Google Scholar * Zuber, J. et al. Toolkit for evaluating genes
required for proliferation and survival using tetracycline-regulated RNAi. _Nature Biotechnol._ 29, 79–83 (2010). Google Scholar * Fellmann, C. et al. Functional identification of optimized
RNAi triggers using a massively parallel sensor assay. _Mol. Cell_ 41, 733–746 (2011). CAS PubMed PubMed Central Google Scholar * Premsrirut, P. K. et al. A rapid and scalable system
for studying gene function in mice using conditional RNA interference. _Cell_ 145, 145–158 (2011). CAS PubMed PubMed Central Google Scholar * Seibler, J. et al. Reversible gene knockdown
in mice using a tight, inducible shRNA expression system. _Nucleic. Acids Res._ 35, e54 (2007). PubMed PubMed Central Google Scholar * Hemann, M. T. et al. An epi-allelic series of p53
hypomorphs created by stable RNAi produces distinct tumor phenotypes _in vivo_. _Nature Genet._ 33, 396–400 (2003). CAS PubMed Google Scholar * Zender, L. et al. An oncogenomics-based _in
vivo_ RNAi screen identifies tumor suppressors in liver cancer. _Cell_ 135, 852–864 (2008). CAS PubMed PubMed Central Google Scholar * Westbrook, T. F. et al. A genetic screen for
candidate tumor suppressors identifies REST. _Cell_ 121, 837–848 (2005). CAS PubMed Google Scholar * Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in
murine liver carcinomas. _Nature_ 445, 656–660 (2007). CAS PubMed PubMed Central Google Scholar * Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal
interactions with the _Ras_ oncogene. _Cell_ 137, 835–848 (2009). CAS PubMed PubMed Central Google Scholar * Scholl, C. et al. Synthetic lethal interaction between oncogenic _KRAS_
dependency and STK33 suppression in human cancer cells. _Cell_ 137, 821–834 (2009). CAS PubMed Google Scholar * Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic
_KRAS_-driven cancers require TBK1. _Nature_ 462, 108–112 (2009). ADS CAS PubMed PubMed Central Google Scholar * Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in
acute myeloid leukaemia. _Nature_ 478, 524–528 (2011). ADS CAS PubMed PubMed Central Google Scholar * Gumireddy, K. et al. Small-molecule inhibitors of microRNA miR-21 function. _Angew.
Chem. Int. Ed. Engl._ 47, 7482–7484 (2008). CAS PubMed PubMed Central Google Scholar * Melo, S. et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by
enhancing TAR RNA-binding protein 2-mediated microRNA processing. _Proc. Natl. Acad. Sci. USA_ 108, 4394–4399 (2011). ADS CAS PubMed PubMed Central Google Scholar * Garzon, R.,
Marcucci, G. & Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges. _Nature Rev. Drug Discov._ 9, 775–789 (2010). CAS Google Scholar * Lanford, R. E. et
al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. _Science_ 327, 198–201 (2009). ADS PubMed PubMed Central Google Scholar * Obad, S. et al.
Silencing of microRNA families by seed-targeting tiny LNAs. _Nature Genet._ 43, 371–378 (2011). CAS PubMed Google Scholar * Bonci, D. et al. The miR-15a-miR-16-1 cluster controls prostate
cancer by targeting multiple oncogenic activities. _Nature Med._ 14, 1271–1277 (2008). CAS PubMed Google Scholar * Kumar, M. S. et al. Suppression of non-small cell lung tumor
development by the _let-7_ microRNA family. _Proc. Natl Acad. Sci. USA_ 105, 3903–3908 (2008). ADS CAS PubMed PubMed Central Google Scholar * Poliseno, L. et al. A coding-independent
function of gene and pseudogene mRNAs regulates tumour biology. _Nature_ 465, 1033–1038 (2010). THIS ELEGANT STUDY SHOWS HOW MRNA FROM GENES AND PSEUDOGENES CAN COMPETE FOR THE BINDING OF
MIRNAS, UNVEILING THE COMPLEXITY OF MIRNA REGULATORY NETWORKS. ADS CAS PubMed PubMed Central Google Scholar * Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors
that bypass Drosha processing. _Nature_ 448, 83–86 (2007). ADS CAS PubMed PubMed Central Google Scholar * Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A
dicer-independent miRNA biogenesis pathway that requires Ago catalysis. _Nature_ 465, 584–589 (2010). ADS CAS PubMed PubMed Central Google Scholar Download references ACKNOWLEDGEMENTS
We apologize to all colleagues whose work could not be cited owing to space restrictions. We thank L. Dow, A. Ventura, A. Saborowski and V. Aranda for their comments on the manuscript, and
G. Hannon and L. He for the many discussions. A.L. is supported by an EMBO Long-Term Fellowship. S.W.L. is a Howard Hughes Medical Institute investigator. AUTHOR INFORMATION AUTHORS AND
AFFILIATIONS * Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, 10065, New York, USA Amaia Lujambio & Scott W. Lowe *
Howard Hughes Medical Institute, MSKCC, 1275 York Avenue, New York, 10065, New York, USA Scott W. Lowe Authors * Amaia Lujambio View author publications You can also search for this author
inPubMed Google Scholar * Scott W. Lowe View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Scott W. Lowe. ETHICS
DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. ADDITIONAL INFORMATION Reprints and permissions information is available at www.nature.com/reprints
RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lujambio, A., Lowe, S. The microcosmos of cancer. _Nature_ 482, 347–355 (2012).
https://doi.org/10.1038/nature10888 Download citation * Published: 15 February 2012 * Issue Date: 16 February 2012 * DOI: https://doi.org/10.1038/nature10888 SHARE THIS ARTICLE Anyone you
share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the
Springer Nature SharedIt content-sharing initiative