Formation of a topological non-fermi liquid in mnsi

Formation of a topological non-fermi liquid in mnsi

Play all audios:

Loading...

ABSTRACT Fermi liquid theory provides a remarkably powerful framework for the description of the conduction electrons in metals and their ordering phenomena, such as superconductivity,


ferromagnetism, and spin- and charge-density-wave order. A different class of ordering phenomena of great interest concerns spin configurations that are topologically protected, that is,


their topology can be destroyed only by forcing the average magnetization locally to zero1. Examples of such configurations are hedgehogs (points at which all spins are either pointing


inwards or outwards) and vortices. A central question concerns the nature of the metallic state in the presence of such topologically distinct spin textures. Here we report a high-pressure


study of the metallic state at the border of the skyrmion lattice in MnSi, which represents a new form of magnetic order composed of topologically non-trivial vortices2. When long-range


magnetic order is suppressed under pressure, the key characteristic of the skyrmion lattice—that is, the topological Hall signal due to the emergent magnetic flux associated with the


topological winding—is unaffected in sign or magnitude and becomes an important characteristic of the metallic state. The regime of the topological Hall signal in temperature, pressure and


magnetic field coincides thereby with the exceptionally extended regime of a pronounced non-Fermi-liquid resistivity3,30. The observation of this topological Hall signal in the regime of the


NFL resistivity suggests empirically that spin correlations with non-trivial topological character may drive a breakdown of Fermi liquid theory in pure metals. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print


issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS MECHANISM OF THE INSULATOR-TO-METAL TRANSITION AND SUPERCONDUCTIVITY IN THE SPIN LIQUID CANDIDATE NAYBSE2 UNDER PRESSURE Article Open access 14 February 2022


HIGH-TEMPERATURE SHORT-RANGE ORDER IN MN3RHSI Article Open access 21 July 2020 ANOMALOUS ENHANCEMENT OF THE NERNST EFFECT AT THE CROSSOVER BETWEEN A FERMI LIQUID AND A STRANGE METAL Article


16 January 2023 REFERENCES * Chaikin, P. & Lubensky, T. _Principles of Condensed Matter Physics_ Chs 9, 10 (Cambridge Univ. Press, 1995) Book  Google Scholar  * Mühlbauer, S. et al.


Skyrmion lattice in a chiral magnet. _Science_ 323, 915–919 (2009) Article  ADS  Google Scholar  * Pfleiderer, C., Julian, S. R. & Lonzarich, G. G. Non-Fermi liquid nature of the normal


state of itinerant-electron ferromagnets. _Nature_ 414, 427–430 (2001) Article  CAS  ADS  Google Scholar  * Janoschek, M. et al. Fluctuation-induced first-order phase transition in


Dzyaloshinskii-Moriya helimagnets. _Phys. Rev. B_ (in the press); preprint available at http://arxiv.org/abs/1205.4780 (2012) * Landau, L. D. & Lifshitz, E. M. _Course of Theoretical


Physics_ Vol. 8, Sec. 52 (Pergamon, 1980) Google Scholar  * Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. _Nature_ 465, 901–904 (2010) Article  CAS  ADS 


Google Scholar  * Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. _Nature Mater._ 10, 106–109 (2011) Article  CAS  ADS  Google


Scholar  * Münzer, W. et al. Skyrmion lattice in the doped semiconductor Fe1–_x_ Co _x_ Si. _Phys. Rev. B_ 81, 041203 (2010) Article  ADS  Google Scholar  * Seki, S., Yu, X., Ishiwata, S.


& Tokura, Y. Observation of skyrmions in a multiferroic material. _Science_ 336, 198–201 (2012) Article  CAS  ADS  Google Scholar  * Adams, T. et al. Long-wavelength helimagnetic order


and skyrmion lattice phase in Cu2OSeO3 . _Phys. Rev. Lett._ 108, 237204 (2012) Article  CAS  ADS  Google Scholar  * Pfleiderer, C. et al. Partial order in the non-Fermi liquid phase of MnSi.


_Nature_ 427, 227–231 (2004) Article  CAS  ADS  Google Scholar  * Pfleiderer, C., Böni, P., Keller, T., Rößler, U. K. & Rosch, A. Non-Fermi liquid metal without quantum criticality.


_Science_ 316, 1871–1874 (2007) Article  CAS  ADS  Google Scholar  * Uemura, Y. J. et al. Phase separation and suppression of critical dynamics at quantum transitions of itinerant magnets:


MnSi and (Sr1–_x_ Ca _x_ )RuO3 . _Nature Phys._ 3, 29–35 (2007) Article  CAS  ADS  Google Scholar  * Lonzarich, G. G. & Taillefer, L. Effect of spin fluctuations on the magnetic equation


of state of ferromagnetic or nearly ferromagnetic metals. _J. Phys. C_ 18, 4339–4371 (1985) Article  CAS  ADS  Google Scholar  * Tewari, S., Belitz, D. & Kirkpatrick, T. R. Blue quantum


fog: chiral condensation in quantum helimagnets. _Phys. Rev. Lett._ 96, 047207 (2006) Article  ADS  Google Scholar  * Binz, B., Vishwanath, A. & Aji, V. Theory of the helical spin


crystal: a candidate for the partially ordered state of MnSi. _Phys. Rev. Lett._ 96, 207202 (2006) Article  CAS  ADS  Google Scholar  * Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C.


Spontaneous skyrmion ground states in magnetic metals. _Nature_ 442, 797–801 (2006) Article  ADS  Google Scholar  * Kirkpatrick, T. R. & Belitz, D. Columnar fluctuations as a source of


non-Fermi-liquid behavior in weak metallic magnets. _Phys. Rev. Lett._ 104, 256404 (2010) Article  CAS  ADS  Google Scholar  * Ritz, R. et al. Giant generic topological Hall resistivity in


MnSi under pressure. _Phys. Rev. B_ (submitted) * Lee, M., Onose, Y., Tokura, Y. & Ong, N. P. Hidden constant in the anomalous hall effect of high-purity magnet MnSi. _Phys. Rev. B_ 75,


172403 (2007) Article  ADS  Google Scholar  * Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. _Phys. Rev. Lett._ 102, 186602 (2009) Article  CAS  ADS  Google Scholar  *


Lee, M., Kang, W., Onose, Y., Tokura, Y. & Ong, N. Unusual Hall effect anomaly in MnSi under pressure. _Phys. Rev. Lett._ 102, 186601 (2009) Article  ADS  Google Scholar  * Thessieu, C.,


Pfleiderer, C., Stepanov, A. N. & Flouquet, J. Field dependence of the magnetic quantum phase transition in MnSi. _J. Phys. Condens. Matter_ 9, 6677–6687 (1997) Article  CAS  ADS 


Google Scholar  * Pfleiderer, C., Reznik, D. & Pintschovius, L. &. Haug, J. Magnetic field and pressure dependence of small angle neutron scattering in MnSi. _Phys. Rev. Lett._ 99,


156406 (2007) Article  CAS  ADS  Google Scholar  * Belitz, D. & Kirkpatrick, T. R. Fluctuation-driven quantum phase transitions in clean itinerant ferromagnets. _Phys. Rev. Lett._ 89,


247202 (2002) Article  CAS  ADS  Google Scholar  * Conduit, G. J., Green, A. G. & Simons, B. D. Inhomogeneous phase formation on the border of itinerant ferromagnetism. _Phys. Rev.


Lett._ 103, 207201 (2009) Article  CAS  ADS  Google Scholar  * Smith, R. P. et al. Marginal breakdown of the Fermi-liquid state on the border of metallic ferromagnetism. _Nature_ 455,


1220–1223 (2008) Article  CAS  ADS  Google Scholar  * Neubauer, A. et al. Ultra-high vacuum compatible image furnace. _Rev. Sci. Instrum._ 82, 013902 (2011) Article  CAS  ADS  Google Scholar


  * Pfleiderer, C., McMullan, G. J., Julian, S. R. & Lonzarich, G. G. Magnetic quantum phase transition in MnSi under hydrostatic pressure. _Phys. Rev. B_ 55, 8330–8338 (1997) Article 


CAS  ADS  Google Scholar  * Doiron-Leyraud, N. et al. Fermi-liquid breakdown in the paramagnetic phase of a pure metal. _Nature_ 425, 595–599 (2003) Article  CAS  ADS  Google Scholar 


Download references ACKNOWLEDGEMENTS We wish to thank P. Böni, K. Everschor, M. Garst, M. Janoschek, S. Mayr and A. Rosch for discussions and support. R.R., M.H., A.B., M.W. and C.F.


acknowledge financial support through the TUM Graduate School. Financial support through DFG TRR80 and DFG FOR960 as well as ERC-AdG (291079 TOPFIT) are gratefully acknowledged. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Physik Department E21, Technische Universität München, Garching, D-85748, Germany R. Ritz, M. Halder, M. Wagner, C. Franz, A. Bauer & C. Pfleiderer


Authors * R. Ritz View author publications You can also search for this author inPubMed Google Scholar * M. Halder View author publications You can also search for this author inPubMed 


Google Scholar * M. Wagner View author publications You can also search for this author inPubMed Google Scholar * C. Franz View author publications You can also search for this author


inPubMed Google Scholar * A. Bauer View author publications You can also search for this author inPubMed Google Scholar * C. Pfleiderer View author publications You can also search for this


author inPubMed Google Scholar CONTRIBUTIONS R.R. and C.P. developed the experimental set-up; R.R. performed the transport measurements; M.H. and M.W. performed magnetization measurements;


C.F. wrote the software for analysing the data; A.B. grew the single-crystal samples and characterized them; R.R. and C.P. analysed the experimental data; C.P. supervised the experimental


work; C.P. proposed this study and wrote the manuscript; all authors discussed the data and commented on the manuscript. CORRESPONDING AUTHORS Correspondence to R. Ritz or C. Pfleiderer.


ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION This file contains Supplementary Text and


Data, which gives details of the experimental methods and includes additional data in support of the results. Also included are Supplementary Figures 1-3, Supplementary Table 1 and


additional references. (PDF 461 kb) POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 RIGHTS AND PERMISSIONS Reprints and permissions


ABOUT THIS ARTICLE CITE THIS ARTICLE Ritz, R., Halder, M., Wagner, M. _et al._ Formation of a topological non-Fermi liquid in MnSi. _Nature_ 497, 231–234 (2013).


https://doi.org/10.1038/nature12023 Download citation * Received: 03 December 2012 * Accepted: 15 February 2013 * Published: 01 May 2013 * Issue Date: 09 May 2013 * DOI:


https://doi.org/10.1038/nature12023 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative