The double-degenerate, super-chandrasekhar nucleus of the planetary nebula henize 2-428

The double-degenerate, super-chandrasekhar nucleus of the planetary nebula henize 2-428

Play all audios:

Loading...

ABSTRACT The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (). The origin of their complex morphologies is poorly understood1, although


several mechanisms involving binary interaction have been proposed2,3. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the


star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a


bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf


stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of ∼1.76, which is above the Chandrasekhar limit (the maximum mass


of a stable white dwarf) of 1.4. This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event.


This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae4. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access


$199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A


SUPER-CHANDRASEKHAR MASS TYPE IA SUPERNOVA PROGENITOR AT 49 PC SET TO DETONATE IN 23 GYR Article Open access 04 April 2025 A 62-MINUTE ORBITAL PERIOD BLACK WIDOW BINARY IN A WIDE


HIERARCHICAL TRIPLE Article 04 May 2022 A HOT SUBDWARF–WHITE DWARF SUPER-CHANDRASEKHAR CANDIDATE SUPERNOVA IA PROGENITOR Article 12 July 2021 REFERENCES * Balick, B. & Frank, A. Shapes


and shaping of planetary nebulae. _Annu. Rev. Astron. Astrophys._ 40, 439–486 (2002) Article  ADS  Google Scholar  * De Marco, O. The origin and shaping of planetary nebulae: putting the


binary hypothesis to the test. _Publ. Astron. Soc. Pacif._ 121, 316–342 (2009) Article  ADS  Google Scholar  * García-Arredondo, F. & Frank, A. Collimated outflow formation via binary


stars: three-dimensional simulations of asymptotic giant branch wind and disk wind interactions. _Astrophys. J._ 600, 992–1003 (2004) Article  ADS  Google Scholar  * Howell, D. A. et al. The


type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. _Nature_ 443, 308–311 (2006) Article  ADS  Google Scholar  * Boffin, H. M. J. & Miszalski, B. in


_Evolution of Compact Binaries_ (eds Schmidtobreick, L., Schreiber, M. R. & Tappert, C. ) _Astron_. _Soc. Pacif. Conf. Ser._ 447, 159–164 (2011) ADS  Google Scholar  * Boffin, H. M. J.


et al. An interacting binary system powers precessing outflows of an evolved star. _Science_ 338, 773–775 (2012) Article  ADS  CAS  Google Scholar  * Jones, D. et al. The


post-common-envelope, binary central star of the planetary nebula Hen 2–11. _Astron. Astrophys._ 562, 89–97 (2014) Article  Google Scholar  * Corradi, R. L. M. et al. The planetary nebula


IPHASXJ211420.0+434136 (Ou5): insights into common-envelope dynamical and chemical evolution. _Mon. Not. R. Astron. Soc._ 441, 2799–2808 (2014) Article  ADS  CAS  Google Scholar  *


Miszalski, B., Acker, A., Parker, Q. A. & Moffat, A. F. J. Binary planetary nebulae nuclei towards the Galactic bulge. II. A penchant for bipolarity and low-ionisation structures.


_Astron. Astrophys._ 505, 249–263 (2009b) Article  ADS  CAS  Google Scholar  * Rodríguez, M., Corradi, R. L. M. & Mampaso, A. Evidence for binarity in the bipolar planetary nebulae He


2–428 and M 1–91. _Astron. Astrophys._ 377, 1042–1055 (2001) Article  ADS  Google Scholar  * Schwarzenberg-Czerny, A. Fast and statistically optimal period search in uneven sampled


observations. _Astrophys. J. Lett._ 460, L107–L110 (1996) Article  ADS  Google Scholar  * Wilson, R. E. Eccentric orbit generalization and simultaneous solution of binary star light and


velocity curves. _Astrophys. J._ 234, 1054–1066 (1979) Article  ADS  Google Scholar  * Prsa, A., Matijevic, G., Latkovic, O., Vilardell, F. & Wils, P. _PHOEBE: PHysics Of Eclipsing


BinariEs_ (Astrophysics Source Code Library, 2011) Google Scholar  * Stanghellini, L., Villaver, E., Manchado, A. & Guerrero, M. A. The correlations between planetary nebula morphology


and central star evolution: analysis of the northern galactic sample. _Astrophys. J._ 576, 285–293 (2002) Article  ADS  Google Scholar  * Jones, D., Santander-Garcia, M., Boffin, H. M. J.,


Miszalski, B. & Corradi, R. L. M. The morpho-kinematics of planetary nebulae with binary central stars. In _Proc._ _ Asymmetrical Planetary Nebulae VI Conf._ _ (4–8 November 2013)_ (eds


Morisset, C., Delgado-Inglada, G. & Torres-Peimbert, S. ) 43 (2014) * Tovmassian, G. et al. The double-degenerate nucleus of the planetary nebula TS 01: a close binary evolution


showcase. _Astrophys. J._ 714, 178–193 (2010) Article  ADS  Google Scholar  * Bloecker, T. Stellar evolution of low- and intermediate-mass stars. II. Post-AGB evolution. _Astron. Astrophys._


299, 755–769 (1995) ADS  Google Scholar  * Chen, X. & Han, Z. Mass transfer from a giant star to a main-sequence companion and its contribution to long-orbital-period blue stragglers.


_Mon. Not. R. Astron. Soc._ 387, 1416–1430 (2008) Article  ADS  CAS  Google Scholar  * Weidemann, V. Revision of the initial-to-final mass relation. _Astron. Astrophys._ 363, 647–656 (2000)


ADS  CAS  Google Scholar  * Paczyński, B. Evolutionary processes in close binary systems. _Annu. Rev. Astron. Astrophys._ 9, 183–208 (1971) Article  ADS  Google Scholar  * Stroeer, A. et al.


Hot subdwarfs from the ESO supernova Ia progenitor survey. II. Atmospheric parameters of subdwarf O stars. _Astron. Astrophys._ 462, 269–280 (2007) Article  ADS  CAS  Google Scholar  *


Shapiro, S. L. & Teukolsky, S. A. _Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects_ (Wiley-Interscience, 1983) Book  Google Scholar  * Schaefer, B. E. &


Pagnotta, A. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509–67.5. _Nature_ 481, 164–166 (2012) Article  ADS  CAS  Google Scholar  * Rodríguez-Gil, P. et al. The


orbital period of V458 Vulpeculae, a post-double common-envelope nova. _Mon. Not. R. Astron. Soc._ 407, L21–L25 (2010) Article  ADS  Google Scholar  * Bruch, A., Vaz, L. P. R. & Diaz, M.


P. An analysis of the light curve of the post common envelope binary MT Serpentis. _Astron. Astrophys._ 377, 898–910 (2001) Article  ADS  Google Scholar  * Hillwig, T. C., Bond, H. E.,


Afşar, M. & De Marco, O. Binary central stars of planetary nebulae discovered through photometric variability. II. Modeling the central stars of NGC 6026 and NGC 6337. _Astron. J._ 140,


319–327 (2010) Article  ADS  CAS  Google Scholar  * Hillwig, T. C. The current status of our understanding of the close binary central stars of planetary nebulae. In _18th European White


Dwarf Workshop_ (eds Krzesiński, J., Stachowski, G., Moskalik, P. & Bajan, K. ) _Astron. Soc. Pacif. Conf. Ser._ 469, 277 (2013) ADS  Google Scholar  * Davignon, G. et al. CCD camera and


automatic data reduction pipeline for the Mercator telescope on La Palma. In _Ground-based Instrumentation for Astronomy_ (eds Moorwood, A. F. M. & Iye, M. ) _SPIE Conf. Ser._ 5492,


871–879 (2004) ADS  Google Scholar  * Raskin, G. et al. Mercator and the P7-2000 photometer. In _Ground-based Instrumentation for Astronomy_ (eds Moorwood, A. F. M. & Iye, M. ) _SPIE


Conf. Ser._ 5492, 830–840 (2004) ADS  Google Scholar  * Fitzpatrick, E. L. Interstellar Extinction in the Milky Way Galaxy. In _Astrophysics of Dust_ (eds Witt, A. N., Clayton, G. C. &


Draine B. T. ), vol. 309 of _Astron. Soc. Pacif. Conf. Ser._ 309, 33–56 (2004) ADS  CAS  Google Scholar  * Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the


Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. _Astron. Astrophys._ 529, 75–79 (2011) Article  ADS  Google Scholar  * Castelli, F. & Kurucz, R. L. New grids of


ATLAS9 model atmospheres. Preprint at http://arxiv.org/abs/astro-ph/0405087 (2004) Download references ACKNOWLEDGEMENTS This work is based on observations made with the 1 m SAAO (South


Africa Astronomical Observatory), the 1.2 m Mercator, the 2.5 m INT (Isaac Newton Telescope), the 4.2 m WHT (William Herschel Telescope), the 8.2 m VLT and the 10.4 m GTC telescopes. We are


grateful to T. Marsh for the use of the PAMELA and MOLLY codes, to T. Hillwig, O. Pols and J. Alcolea for their comments and to J. García-Rojas and C. Zurita for the INT/WFC (Wide Field


Camera) service observations. This work was partially supported by the Spanish MINECO within grants CSD2009–00038, AYA2012–35330, RYC–2010–05762 and AYA 2012–38700. AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS * Observatorio Astronómico Nacional, Apartado de Correos 112, E-28803, Alcalá de Henares, Spain, M. Santander-García * Instituto de Ciencia de Materiales de Madrid


(CSIC), Sor Juana Inés de la Cruz, 3, E-28049 Madrid, Spain, M. Santander-García * Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain, P. Rodríguez-Gil, R. L. M.


Corradi & D. Jones * Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain, P. Rodríguez-Gil, R. L. M. Corradi & D. Jones * South African


Astronomical Observatory, PO Box 9, Observatory 7935, South Africa, B. Miszalski & M. M. Kotze * Southern African Large Telescope Foundation, PO Box 9, Observatory 7935, South Africa, B.


Miszalski * European Southern Observatory, Alonso de Córdova 3107, 19001 Casilla, Santiago, Chile, H. M. J. Boffin * Centro de Astrobiología, CSIC-INTA, Carretera de Torrejón a Ajalvir, km


4, E-28850 Torrejón de Ardoz, Spain, M. M. Rubio-Díez Authors * M. Santander-García View author publications You can also search for this author inPubMed Google Scholar * P. Rodríguez-Gil


View author publications You can also search for this author inPubMed Google Scholar * R. L. M. Corradi View author publications You can also search for this author inPubMed Google Scholar *


D. Jones View author publications You can also search for this author inPubMed Google Scholar * B. Miszalski View author publications You can also search for this author inPubMed Google


Scholar * H. M. J. Boffin View author publications You can also search for this author inPubMed Google Scholar * M. M. Rubio-Díez View author publications You can also search for this author


inPubMed Google Scholar * M. M. Kotze View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.S.-G., P.R.-G., D.J., M.M.R.-D., H.M.J.B. and


M.M.K. conducted the observations at the various telescopes. M.S.-G., P.R.-G., D.J. and M.M.K. reduced the data. M.S.-G. performed the light-curve and radial-velocity-curve modelling, and


wrote the paper. All authors discussed the results and implications and commented on the manuscript at all stages. CORRESPONDING AUTHOR Correspondence to M. Santander-García. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3


POWERPOINT SLIDE FOR FIG. 4 SOURCE DATA SOURCE DATA TO FIG. 1 SOURCE DATA TO FIG. 2 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Santander-García, M.,


Rodríguez-Gil, P., Corradi, R. _et al._ The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428. _Nature_ 519, 63–65 (2015).


https://doi.org/10.1038/nature14124 Download citation * Received: 02 September 2014 * Accepted: 28 November 2014 * Published: 09 February 2015 * Issue Date: 05 March 2015 * DOI:


https://doi.org/10.1038/nature14124 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative