The microbiota in adaptive immune homeostasis and disease

The microbiota in adaptive immune homeostasis and disease

Play all audios:

Loading...

ABSTRACT In the mucosa, the immune system's T cells and B cells have position-specific phenotypes and functions that are influenced by the microbiota. These cells play pivotal parts in


the maintenance of immune homeostasis by suppressing responses to harmless antigens and by enforcing the integrity of the barrier functions of the gut mucosa. Imbalances in the gut


microbiota, known as dysbiosis, can trigger several immune disorders through the activity of T cells that are both near to and distant from the site of their induction. Elucidation of the


mechanisms that distinguish between homeostatic and pathogenic microbiota–host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for


boosting the efficacy of cancer immunotherapy. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access


through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MICROBIAL MODULATION OF INTESTINAL T HELPER CELL RESPONSES AND IMPLICATIONS FOR DISEASE AND


THERAPY Article 13 August 2020 REGULATION OF TISSUE-RESIDENT MEMORY T CELLS BY THE MICROBIOTA Article 22 February 2022 ILC3S SELECT MICROBIOTA-SPECIFIC REGULATORY T CELLS TO ESTABLISH


TOLERANCE IN THE GUT Article 07 September 2022 REFERENCES * Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. _Cell_ 139, 485–498 (2009). TOGETHER


WITH REF. 50, THIS STUDY SHOWS THAT A SUBSET OF THE MICROBIOTA SPECIFICALLY AFFECTS THE ACCUMULATION OF T H 17 CELLS IN THE INTESTINE. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Wu, H.-J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. _Immunity_ 32, 815–827 (2010). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Sivan, A. et al. Commensal _Bifidobacterium_ promotes antitumor immunity and facilitates anti-PD-L1 efficacy. _Science_ 350, 1084–1089 (2015). TOGETHER WITH REFS 125 AND 126, THIS


STUDY SHOWS THAT A SUBSET OF THE MICROBIOTA CAN HAVE AN EFFECT ON THE EFFICACY OF CANCER THERAPY. Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Atarashi, K. et al. Treg


induction by a rationally selected mixture of Clostridia strains from the human microbiota. _Nature_ 500, 232–236 (2013). THIS STUDY AND REF. 5 SHOW THAT A RATIONALLY SELECTED CONSORTIUM OF


BACTERIA CAN SPECIFICALLY INDUCE T REG CELLS IN THE INTESTINE THAT FUNCTION IN SYSTEMIC IMMUNE REGULATION. Article  ADS  CAS  PubMed  Google Scholar  * Atarashi, K. et al. Induction of


colonic regulatory T cells by indigenous _Clostridium_ species. _Science_ 331, 337–341 (2011). Article  ADS  CAS  PubMed  Google Scholar  * Kau, A. L. et al. Functional characterization of


IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. _Sci. Transl. Med._ 7, 276ra24 (2015). TOGETHER WITH REFS 7 AND 8, THIS STUDY SHOWS


THAT IGA-SEQ IS A POWERFUL TECHNIQUE FOR IDENTIFYING TAXA THAT PROVIDE A STRONG STIMULUS TO THE HOST'S IMMUNE SYSTEM. Article  CAS  PubMed  PubMed Central  Google Scholar  * Palm, N.


W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. _Cell_ 158, 1000–1010 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Bunker, J. J. et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. _Immunity_ 43, 541–553 (2015). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. _Nature_ 532, 512–516 (2016). Article  ADS  CAS  PubMed  PubMed


Central  Google Scholar  * Roche, A. M., Richard, A. L., Rahkola, J. T., Janoff, E. N. & Weiser, J. N. Antibody blocks acquisition of bacterial colonization through agglutination.


_Mucosal Immunol._ 8, 176–185 (2015). Article  CAS  PubMed  Google Scholar  * Pabst, O. New concepts in the generation and functions of IgA. _Nature Rev. Immunol._ 12, 821–832 (2012).


Article  CAS  Google Scholar  * Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. _Cell Host Microbe_ 2,


328–339 (2007). Article  CAS  PubMed  Google Scholar  * Cullender, T. C. et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. _Cell Host Microbe_


14, 571–581 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kawamoto, S. et al. Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of


bacterial species responsible for immune homeostasis. _Immunity_ 41, 152–165 (2014). Article  CAS  PubMed  Google Scholar  * Friman, V., Nowrouzian, F., Adlerberth, I. & Wold, A. E.


Increased frequency of intestinal _Escherichia coli_ carrying genes for S fimbriae and haemolysin in IgA-deficient individuals. _Microb. Pathog._ 32, 35–42 (2002). Article  CAS  PubMed 


Google Scholar  * Wei, M. et al. Mice carrying a knock-in mutation of _Aicda_ resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense.


_Nature Immunol._ 12, 264–270 (2011). Article  CAS  Google Scholar  * Moon, C. et al. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. _Nature_ 521,


90–93 (2015). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Kubinak, J. L. et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health.


_Cell Host Microbe_ 17, 153–163 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hirota, K. et al. Plasticity of TH17 cells in Peyer's patches is responsible for the


induction of T cell-dependent IgA responses. _Nature Immunol._ 14, 372–379 (2013). Article  CAS  Google Scholar  * Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice


reveals the dynamics of IgA immune responses. _Science_ 328, 1705–1709 (2010). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Lindner, C. et al. Diversification of memory B


cells drives the continuous adaptation of secretory antibodies to gut microbiota. _Nature Immunol._ 16, 880–888 (2015). Article  CAS  Google Scholar  * Ivanov, I. I. et al. The orphan


nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. _Cell_ 126, 1121–1133 (2006). Article  CAS  PubMed  Google Scholar  * Ivanov, I. I. et


al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. _Cell Host Microbe_ 4, 337–349 (2008). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. _Nature_ 455, 808–812 (2008). Article  ADS  CAS  PubMed  Google Scholar  * Weaver, C. T.,


Elson, C. O., Fouser, L. A. & Kolls, J. K. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. _Annu. Rev. Pathol._ 8, 477–512 (2013). Article  CAS  PubMed 


Google Scholar  * Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. _Science_ 332, 65–68 (2011). Article  ADS  CAS  PubMed  PubMed


Central  Google Scholar  * Okada, S. et al. Impairment of immunity to _Candida_ and _Mycobacterium_ in humans with bi-allelic _RORC_ mutations. _Science_ 349, 606–613 (2015). Article  ADS 


CAS  PubMed  PubMed Central  Google Scholar  * Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic


responses. _Immunity_ 30, 108–119 (2009). Article  CAS  PubMed  Google Scholar  * McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of


interleukin 17-producing effector T helper cells _in vivo_. _Nature Immunol._ 10, 314–324 (2009). Article  CAS  Google Scholar  * Coccia, M. et al. IL-1β mediates chronic intestinal


inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. _J. Exp. Med._ 209, 1595–1609 (2012). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. _Nature Immunol._ 12, 255–263 (2011). Article  CAS  Google Scholar  * El-Behi, M. et al. The


encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. _Nature Immunol._ 12, 568–575 (2011). Article  CAS  Google Scholar  * Harbour, S.


N., Maynard, C. L., Zindl, C. L., Schoeb, T. R. & Weaver, C. T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. _Proc. Natl Acad. Sci. USA_ 112,


7061–7066 (2015). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Ahern, P. P. et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells.


_Immunity_ 33, 279–288 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jain, R. et al. Interleukin-23-induced transcription factor Blimp-1 promotes pathogenicity of T helper


17 cells. _Immunity_ 44, 131–142 (2016). Article  CAS  PubMed  Google Scholar  * Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. _Nature_ 496, 513–517


(2013). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. _Nature_


496, 518–522 (2013). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell


homeostasis. _Science_ 341, 569–573 (2013). TOGETHER WITH REFS 39–41, THIS STUDY IDENTIFIED SHORT-CHAIN FATTY ACIDS AS STRONG INDUCERS OF T REG CELLS IN THE COLON. Article  ADS  CAS  PubMed


  Google Scholar  * Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. _Nature_ 504, 446–450 (2013). Article  ADS  CAS  PubMed


  Google Scholar  * Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. _Nature_ 504, 451–455 (2013). ADS  CAS  PubMed  PubMed


Central  Google Scholar  * Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. _Immunity_ 43, 817–829 (2015). Article  CAS 


PubMed  Google Scholar  * Berod, L. et al. _De novo_ fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. _Nature Med._ 20, 1327–1333 (2014). Article  CAS 


PubMed  Google Scholar  * Santori, F. R. et al. Identification of natural RORγ ligands that regulate the development of lymphoid cells. _Cell Metab._ 21, 286–297 (2015). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. _Cell_ 163, 1413–1427 (2015). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. _Science_ 337, 1115–1119 (2012). Article  ADS  CAS  PubMed  PubMed Central 


Google Scholar  * Umesaki, Y., Setoyama, H., Matsumoto, S., Imaoka, A. & Itoh, K. Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal


immune system. _Infect. Immun._ 67, 3504–3511 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lécuyer, E. et al. Segmented filamentous bacterium uses secondary and tertiary


lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. _Immunity_ 40, 608–620 (2014). Article  PubMed  CAS  Google Scholar  * Goto, Y. et al. Innate lymphoid cells


regulate intestinal epithelial cell glycosylation. _Science_ 345, 1254009 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Prakash, T. et al. Complete genome sequences of rat


and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation. _Cell Host Microbe_ 10, 273–284 (2011). Article  CAS  PubMed  Google Scholar  * Atarashi, K. et al.


Th17 cell induction by adhesion of microbes to intestinal epithelial cells. _Cell_ 163, 367–380 (2015). TOGETHER WITH REF. 51, THIS STUDY SHOWS THAT THE RESPONSE OF INTESTINAL T H 17 CELLS


IS DIRECTED TOWARDS COMMENSAL AND PATHOGENIC BACTERIA THAT ACTIVATE EPITHELIAL CELLS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Sano, T. et al. An IL-23R/IL-22 circuit


regulates epithelial serum amyloid A to promote local effector Th17 responses. _Cell_ 163, 381–393 (2015); erratum 164, 324 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Schnupf, P. et al. Growth and host interaction of mouse segmented filamentous bacteria _in vitro_. _Nature_ 520, 99–103 (2015). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  *


Panea, C. et al. Intestinal monocyte-derived macrophages control commensal-specific Th17 responses. _Cell Rep._ 12, 1314–1324 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Lewis, K. L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. _Immunity_ 35, 780–791 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Persson, E. K. et al. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. _Immunity_ 38, 958–969


(2013). Article  CAS  PubMed  Google Scholar  * Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses.


_Immunity_ 38, 970–983 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Derebe, M. G. et al. Serum amyloid A is a retinol binding protein that transports retinol during


bacterial infection. _eLife_ 3, e03206 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Sczesnak, A. et al. The genome of Th17 cell-inducing segmented filamentous bacteria


reveals extensive auxotrophy and adaptations to the intestinal environment. _Cell Host Microbe_ 10, 260–272 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, Y. et al.


Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. _Nature_ 510, 152–156 (2014). THIS STUDY AND REF. 122 SHOW THAT DIFFERENT CONSTITUENTS OF THE MICROBIOTA


GUIDE DISTINCT PATHWAYS OF T-CELL DIFFERENTIATION THAT IS SPECIFIC FOR THE ANTIGENS OF COMMENSAL BACTERIA. Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Block, K. E., Zheng,


Z., Dent, A. L., Kee, B. L. & Huang, H. Gut microbiota regulates K/BxN autoimmune arthritis through follicular helper T but not Th17 cells. _J. Immunol._ 196, 1550–1557 (2016). Article 


CAS  PubMed  Google Scholar  * Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune


encephalomyelitis. _Proc. Natl Acad. Sci. USA_ 108 (suppl. 1), 4615–4622 (2011). Article  ADS  CAS  PubMed  Google Scholar  * Kriegel, M. A. et al. Naturally transmitted segmented


filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. _Proc. Natl Acad. Sci. USA_ 108, 11548–11553 (2011). Article  ADS  CAS  PubMed  PubMed Central  Google


Scholar  * Fransen, F. et al. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. _Immunity_ 43,


527–540 (2015). Article  CAS  PubMed  Google Scholar  * Morton, A. M. et al. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. _Proc. Natl


Acad. Sci. USA_ 111, 6696–6701 (2014). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Horai, R. et al. Microbiota-dependent activation of an autoreactive T cell receptor


provokes autoimmunity in an immunologically privileged site. _Immunity_ 43, 343–353 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Berer, K. et al. Commensal microbiota and


myelin autoantigen cooperate to trigger autoimmune demyelination. _Nature_ 479, 538–541 (2011). Article  ADS  CAS  PubMed  Google Scholar  * Harkiolaki, M. et al. T cell-mediated autoimmune


disease due to low-affinity crossreactivity to common microbial peptides. _Immunity_ 30, 348–357 (2009). Article  CAS  PubMed  Google Scholar  * Sakaguchi, N. et al. Altered thymic T-cell


selection due to a mutation of the _ZAP-70_ gene causes autoimmune arthritis in mice. _Nature_ 426, 454–460 (2003). Article  ADS  CAS  PubMed  Google Scholar  * Hepworth, M. R. et al. Group


3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. _Science_ 348, 1031–1035 (2015). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 


* Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. _Proc. Natl Acad. Sci. USA_ 107, 12204–12209


(2010). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. _Immunity_ 34,


794–806 (2011). Article  CAS  PubMed  Google Scholar  * Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T


reg cells. _J. Exp. Med._ 209, 1723–1742 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stefka, A. T. et al. Commensal bacteria protect against food allergen sensitization.


_Proc. Natl Acad. Sci. USA_ 111, 13145–13150 (2014). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Bilate, A. M. & Lafaille, J. J. Induced CD4+Foxp3+ regulatory T cells in


immune tolerance. _Annu. Rev. Immunol._ 30, 733–758 (2012). Article  CAS  PubMed  Google Scholar  * Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of


differentiation and function. _Annu. Rev. Immunol._ 30, 531–564 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim, S. V. et al. GPR15-mediated homing controls immune


homeostasis in the large intestine mucosa. _Science_ 340, 1456–1459 (2013). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Ohnmacht, C. et al. The microbiota regulates type 2


immunity through RORγt+ T cells. _Science_ 349, 989–993 (2015). TOGETHER WITH REFS 78 AND 79, THIS STUDY SHOWS THAT A SUBSET OF T REG CELLS IN THE INTESTINE EXPRESS RORΓT AND THAT THEIR


DEVELOPMENT IS AFFECTED BY THE MICROBIOTA. Article  ADS  CAS  PubMed  Google Scholar  * Sefik, E. et al. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T


cells. _Science_ 349, 993–997 (2015). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Yang, B. H. et al. Foxp3 T cells expressing RORγt represent a stable regulatory T-cell


effector lineage with enhanced suppressive capacity during intestinal inflammation. _Mucosal Immunol._ 9, 444–457 (2016). Article  CAS  PubMed  Google Scholar  * Lathrop, S. K. et al.


Peripheral education of the immune system by colonic commensal microbiota. _Nature_ 478, 250–254 (2011). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Roers, A. et al. T


cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. _J. Exp. Med._ 200,


1289–1297 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Krause, P. et al. IL-10-producing intestinal macrophages prevent excessive antibacterial innate immunity by limiting


IL-23 synthesis. _Nature Commun._ 6, 7055 (2015). Article  ADS  CAS  Google Scholar  * Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental


interfaces. _Immunity_ 28, 546–558 (2008). Article  CAS  PubMed  Google Scholar  * Huber, S. et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3− and Foxp3+


regulatory CD4+ T cells in an interleukin-10-dependent manner. _Immunity_ 34, 554–565 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Park, S. G. et al. T regulatory cells


maintain intestinal homeostasis by suppressing γδ T cells. _Immunity_ 33, 791–803 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gagliani, N. et al. TH17 cells


transdifferentiate into regulatory T cells during resolution of inflammation. _Nature_ 523, 221–225 (2015). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Wohlfert, E. A. et


al. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. _J. Clin. Invest._ 121, 4503–4515 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schiering, C.


et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. _Nature_ 513, 564–568 (2014). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Kim, K. S. et al.


Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. _Science_ 351, 858–863 (2016). Article  ADS  CAS  PubMed  Google Scholar  * Itoh, K. &


Mitsuoka, T. Characterization of Clostridia isolated from faeces of limited flora mice and their effect on caecal size when associated with germ-free mice. _Lab. Anim._ 19, 111–118 (1985).


Article  CAS  PubMed  Google Scholar  * Mathewson, N. D. et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. _Nature


Immunol._ 17, 505–513 (2016). Article  CAS  Google Scholar  * Sokol, H. et al. _Faecalibacterium prausnitzii_ is an anti-inflammatory commensal bacterium identified by gut microbiota


analysis of Crohn disease patients. _Proc. Natl Acad. Sci. USA_ 105, 16731–16736 (2008). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Sarrabayrouse, G. et al. CD4CD8αα


lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. _PLoS Biol._ 12, e1001833 (2014). Article  PubMed 


PubMed Central  CAS  Google Scholar  * Reis, B. S., Rogoz, A., Costa-Pinto, F. A., Taniuchi, I. & Mucida, D. Mutual expression of the transcription factors Runx3 and ThPOK regulates


intestinal CD4+ T cell immunity. _Nature Immunol._ 14, 271–280 (2013). Article  CAS  Google Scholar  * Mucida, D. et al. Transcriptional reprogramming of mature CD4+ helper T cells generates


distinct MHC class II-restricted cytotoxic T lymphocytes. _Nature Immunol._ 14, 281–289 (2013). Article  CAS  Google Scholar  * Narushima, S. et al. Characterization of the 17 strains of


regulatory T cell-inducing human-derived Clostridia. _Gut Microbes_ 5, 333–339 (2014). Article  PubMed  PubMed Central  Google Scholar  * Singh, N. et al. Activation of Gpr109a, receptor for


niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. _Immunity_ 40, 128–139 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Di


Giacinto, C., Marinaro, M., Sanchez, M., Strober, W. & Boirivant, M. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-β-bearing


regulatory cells. _J. Immunol._ 174, 3237–3246 (2005). Article  CAS  PubMed  Google Scholar  * Karimi, K., Inman, M. D., Bienenstock, J. & Forsythe, P. _Lactobacillus reuteri_-induced


regulatory T cells protect against an allergic airway response in mice. _Am. J. Respir. Crit. Care Med._ 179, 186–193 (2009). Article  CAS  PubMed  Google Scholar  * Tang, C. et al.


Inhibition of Dectin-1 signaling ameliorates colitis by inducing _Lactobacillus_-mediated regulatory T cell expansion in the intestine. _Cell Host Microbe_ 18, 183–197 (2015). Article  CAS 


PubMed  Google Scholar  * Kullberg, M. C. et al. Bacteria-triggered CD4+ T regulatory cells suppress _Helicobacter hepaticus_-induced colitis. _J. Exp. Med._ 196, 505–515 (2002). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Shen, Y. et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. _Cell Host Microbe_ 12, 509–520


(2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Faith, J. J., Ahern, P. P., Ridaura, V. K., Cheng, J. & Gordon, J. I. Identifying gut microbe–host phenotype relationships


using combinatorial communities in gnotobiotic mice. _Sci. Transl. Med._ 6, 220ra11 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Coombes, J. L. et al. A functionally


specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. _J. Exp. Med._ 204, 1757–1764 (2007). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Sun, C. M. et al. Small intestine lamina propria dendritic cells promote _de novo_ generation of Foxp3 T reg cells via retinoic acid. _J. Exp. Med._ 204,


1775–1785 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.


_Science_ 343, 1249288 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Loschko, J. et al. Absence of MHC class II on cDCs results in microbial-dependent intestinal


inflammation. _J. Exp. Med._ 213, 517–534 (2016). Article  PubMed  PubMed Central  Google Scholar  * Stary, G. et al. A mucosal vaccine against _Chlamydia trachomatis_ generates two waves of


protective memory T cells. _Science_ 348, aaa8205 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Olszak, T. et al. Microbial exposure during early life has persistent


effects on natural killer T cell function. _Science_ 336, 489–493 (2012). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Scharschmidt, T. C. et al. A wave of regulatory T cells


into neonatal skin mediates tolerance to commensal microbes. _Immunity_ 43, 1011–1021 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Russell, S. L. et al. Early life


antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. _EMBO Rep._ 13, 440–447 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hill, D. A. et al.


Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. _Nature Med._ 18, 538–546 (2012). Article  CAS  PubMed  Google Scholar  * Cahenzli, J., Koller,


Y., Wyss, M., Geuking, M. B. & McCoy, K. D. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. _Cell Host Microbe_ 14, 559–570 (2013). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Arrieta, M. C. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. _Sci. Transl. Med._ 7, 307ra152


(2015). Article  PubMed  CAS  Google Scholar  * Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in _Il10_−/− mice. _Nature_ 487, 104–108


(2012). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Small, C. L., Reid-Yu, S. A., McPhee, J. B. & Coombes, B. K. Persistent infection with Crohn's


disease-associated adherent-invasive _Escherichia coli_ leads to chronic inflammation and intestinal fibrosis. _Nature Commun._ 4, 1957 (2013). Article  ADS  CAS  Google Scholar  * Frank, D.


N. et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. _Inflamm. Bowel Dis._ 17, 179–184 (2011). Article 


PubMed  Google Scholar  * Ramanan, D., Tang, M. S., Bowcutt, R., Loke, P. & Cadwell, K. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of


the commensal _Bacteroides vulgatus_. _Immunity_ 41, 311–324 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gevers, D. et al. The treatment-naive microbiome in new-onset


Crohn's disease. _Cell Host Microbe_ 15, 382–392 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Scher, J. U. et al. Expansion of intestinal _Prevotella copri_


correlates with enhanced susceptibility to arthritis. _eLife_ 2, e01202 (2013). Article  PubMed  PubMed Central  CAS  Google Scholar  * Vujkovic-Cvijin, I. et al. Dysbiosis of the gut


microbiota is associated with HIV disease progression and tryptophan catabolism. _Sci. Transl. Med._ 5, 193ra91 (2013). Article  PubMed  PubMed Central  CAS  Google Scholar  * Hand, T. W. et


al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. _Science_ 337, 1553–1556 (2012). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  *


Cong, Y., Feng, T., Fujihashi, K., Schoeb, T. R. & Elson, C. O. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. _Proc. Natl Acad. Sci. USA_ 106,


19256–19261 (2009). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Lodes, M. J. et al. Bacterial flagellin is a dominant antigen in Crohn disease. _J. Clin. Invest._ 113,


1296–1306 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. _Science_


342, 971–976 (2013). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. _Science_ 350,


1079–1084 (2015). Article  ADS  PubMed  PubMed Central  CAS  Google Scholar  * Charbonneau, M. R. et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of


infant undernutrition. _Cell_ 164, 859–871 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cao, A. T. et al. Interleukin (IL)-21 promotes intestinal IgA response to


microbiota. _Mucosal Immunol._ 8, 1072–1082 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kruglov, A. A. et al. Nonredundant function of soluble LTα3 produced by innate


lymphoid cells in intestinal homeostasis. _Science_ 342, 1243–1246 (2013). Article  ADS  CAS  PubMed  Google Scholar  * Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A.


& Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. _Immunity_ 34, 122–134 (2011). Article  CAS  PubMed  Google Scholar  * Longman, R. S. et al. CX3CR1+


mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. _J. Exp. Med._ 211, 1571–1583 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene _Atg16L1_ phenotypes in intestine. _Cell_ 141, 1135–1145 (2010). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. _Nature_ 516, 94–98 (2014). Article 


ADS  CAS  PubMed  PubMed Central  Google Scholar  * Naik, S. et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. _Nature_ 520, 104–108 (2015).


Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. _Proc. Natl Acad.


Sci. USA_ 108, 5354–5359 (2011). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by: grants from the Japan Agency for


Medical Research and Development (AMED) and the Takeda Science Foundation (K.H.); US National Institutes of Health grant RO1DK103358 and the Howard Hughes Medical Institute (D.R.L.). AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan Kenya Honda * RIKEN Center for


Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan Kenya Honda * AMED-CREST, Chiyoda, Tokyo, 100-0004, Japan Kenya Honda * The Helen L. and Martin S. Kimmel Center


for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, 10016, New York, USA Dan R. Littman * The Howard Hughes Medical


Institute, New York University School of Medicine, New York, 10016, New York, USA Dan R. Littman Authors * Kenya Honda View author publications You can also search for this author inPubMed 


Google Scholar * Dan R. Littman View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Kenya Honda or Dan R. Littman.


ETHICS DECLARATIONS COMPETING INTERESTS The authors are scientific co-founders and consultants for Vedanta Biosciences, which specializes in microbiome-based therapeutics. ADDITIONAL


INFORMATION Reprints and permissions information is available at www.nature.com.reprints. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Honda, K.,


Littman, D. The microbiota in adaptive immune homeostasis and disease. _Nature_ 535, 75–84 (2016). https://doi.org/10.1038/nature18848 Download citation * Received: 21 February 2016 *


Accepted: 25 April 2016 * Published: 06 July 2016 * Issue Date: 07 July 2016 * DOI: https://doi.org/10.1038/nature18848 SHARE THIS ARTICLE Anyone you share the following link with will be


able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative