Production of recombinant bovine enterokinase catalytic subunit in escherichia coli using the novel secretory fusion partner dsba

Production of recombinant bovine enterokinase catalytic subunit in escherichia coli using the novel secretory fusion partner dsba

Play all audios:

Loading...

ABSTRACT Enterokinase (EK) is a heterodimeric serine protease which plays a key role in initiating the proteolytic digestion cascade in the mammalian duodenum. The enzyme acts by converting trypsinogen to trypsin via a highly specific cleavage following the pentapeptide recognition sequence (Asp)4-Lys. This stringent site specificity gives EK great potential as a fusion protein cleavage reagent. Recently, a cDNA encoding the catalytic (light) chain of bovine enterokinase (EKL) was identified, characterized, and transiently expressed in mammalian COS cells. We report here the production of EKL in _Escherichia coli_ by a novel secretory expression system that utilizes _E. coli_ DsbA protein as an N-terminal fusion partner. The EKL cDNA was fused in-frame to the 3′-end of the coding sequence for DsbA, with the two domains of the fusion protein separated by a linker sequence encoding an enterokinase recognition site. Active, processed recombinant EKL, (rEKL) was generated from this fusion protein via an autocatalytic cleavage reaction. The enzymatic properties of the bacterially produced rEKL were indistinguishable from the previously described COS-derived enzyme. Both forms of rEKL were capable of cleaving peptides, polypeptides and trypsinogen with the same specificity exhibited by the native heterodimeric enzyme purified from bovine duodena. Interestingly, rEKL activated trypsinogen poorly relative to the native heterodimeric enzyme, but was superior in its ability to cleave artificial fusion proteins containing the (Asp)4-Lys recognition sequence. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DIRECTED EVOLUTION FOR SOLUBLE AND ACTIVE PERIPLASMIC EXPRESSION OF BOVINE ENTEROKINASE IN _ESCHERICHIA COLI_ Article Open access 21 October 2022 RANDOM AND COMBINATORIAL MUTAGENESIS FOR IMPROVED TOTAL PRODUCTION OF SECRETORY TARGET PROTEIN IN _ESCHERICHIA COLI_ Article Open access 05 March 2021 DEVELOPMENT OF HIGH-PERFORMANCE INDUCIBLE AND SECRETORY EXPRESSION VECTOR AND HOST SYSTEM FOR ENHANCED RECOMBINANT PROTEIN PRODUCTION Article Open access 28 December 2024 REFERENCES * Maina, C.V., Riggs, P.D., Grandea, A.G., Slatko, E.E., Moran, L.S., Tagliamonte, J.A., McReynolds, L.A. and Guan, C. 1988. An _Escherichia coli_ vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. _Gene_ 74: 365–373. Article  CAS  Google Scholar  * Smith, D.B. and Johnson, K.S. 1988. Single-step purification of polypeptides expressed in _Escherichia coli_ as fusions with glutathione-S-transferase. _Gene_ 67: 3l–40. Article  Google Scholar  * LaVallie, E.R., DiBlasio, E.A., Kovacic, S., Grant, K.L., Schendel, P.F. and McCoy, J.M. 1993. A thioredoxin gene fusion system that circumvents inclusion body formation in the _E. coli_ cytoplasm. _Bio/Technology_ 11: 187–193. CAS  Google Scholar  * Nagai, K. and Thøgersen, H.C. 1984. Generation of β-globin by sequence-specific proteolysis of a hybrid protein in _Escherichia coli_. _Nature_ 309: 810–812. Article  CAS  Google Scholar  * Chang, J.-Y. 1985. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. _Eur. J. Biochem._ 151: 217–224. Article  CAS  Google Scholar  * Maroux, S., Baratti, J. and Desnuelle, R. 1971. Purification and specificity of porcine enterokinase. _J. Biol. Chem._ 246: 5031–5039. CAS  Google Scholar  * Liepnieks, J.J. and Light, A. 1979. The preparation and properties of bovine enterokinase. _J. Biol. Chem._ 254: 1677–1683. CAS  Google Scholar  * LaVallie, E.R., Rehemtulla, A., Racie, L.A., DiBlasio, E.A., Ferenz, C., Grant, K.L., Light, A. and McCoy, J.M. 1993. Cloning and functional expression of a cDNA encoding the catalytic subunit of bovine enterokinase. _J. Biol. Chem._ 268: 23311–23317. CAS  PubMed  Google Scholar  * Kunitz, M. 1939. Formation of trypsin from crystalline trypsinogen by means of enterokinase. _J. Gen. Physiol._ 22: 429–446. Article  CAS  Google Scholar  * Bricteux-Gregoire, S., Schyns, R. and Florkin, M. 1972. Phylogeny of trypsinogen activation peptides. _Comp. Biochem. Physiol._ 42B: 23–39. Google Scholar  * Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. and Conlon, P.J. 1988. A short polypeptide marker sequence useful for recombinant protein identification and purification. _Bio/Technology._ 6: 1204–1210. Article  CAS  Google Scholar  * Bardwell, J.C., McGovern, K. and Beckwith, J. 1991. Identification of a protein required for disulfide bond formation _in vivo_. _Cell_ 67: 581–589. Article  CAS  Google Scholar  * Martin, J.L., Bardwell, J.C.A. and Kuriyan, J. 1993. Crystal structure of the DsbA protein required for disulfide bond formation _in vivo_. _Nature_ 365: 464–468. Article  CAS  Google Scholar  * Janknecht, R., de Martynoff, G., Lou, J., Hipskind, R. A., Nordheim, A. and Stunnenberg, H.G. 1991. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. _Proc. Natl. Acad. Sci. USA_ 88: 8972–8976. Article  CAS  Google Scholar  * Light, A. and Fonseca, P. 1984. The preparation and properties of the catalytic subunit of bovine enterokinase. _J. Biol. Chem._ 259: 13195–13198. CAS  PubMed  Google Scholar  * Dykes, C.W., Bookless, A.B., Coomber, B.A., Noble, S.A., Humber, D.C. and Hobden, A.N. 1988. Expression of atrial natriuretic factor as a cleavable fusion protein with chloramphenicol acetyltransferase in _Escherichia coli_. _Eur. J. Biochem_ 174: 411–416. Article  CAS  Google Scholar  * Forsberg, G., Baastrup, B., Rondahl, H., Holmgren, E., Pohl, G., Hartmanis, M. and Lake, M. 1992. An evaluation of different enzymatic cleavage methods for recombinant fusion proteins, applied on des (1-3) insulin-like growth factor I. _J. Prot. Chem._ 11: 201–211. Article  CAS  Google Scholar  * Hirel, P-H., Schmitter, J.-M., Dessen, P., Fayat, G. and Blanquet, S. 1989. Extent of N-terminal methionine excision from _Escherichia coli_ proteins is governed by the side-chain length of the penultimate amino acid. _Proc. Natl. Acad. Sci. USA_ 86: 8247–8251. Article  CAS  Google Scholar  * Fehlhammer, H., Bode, W. and Huber, R. 1977. Crystal structure of bovine trypsinogen at 1.8 Å resolution. _J. Mol. Biol._ 11: 415–438. Article  Google Scholar  * Derman, A.I., Prinz, W.A., Belin, D. and Beckwith, J. 1993. Mutations that allow disulfide bond formation in the cytoplasm of _Escherichia coli_ _Science_ 262: 1744–1747. Article  CAS  Google Scholar  * Vasquez, J.R., Evnin, L.B., Higaki, J.N. and Craik, C.S. 1989. An expression system for trypsin. _J. Cell. Biochem._ 39: 265–276. Article  CAS  Google Scholar  * Corey, D.R. and Craik, C.S. 1992. An investigation into the minimum requirements for peptide hydrolysis by mutation of the catalytic triad of trypsin. _J. Am. Chem. Soc._ 114: 1784–1790. Article  CAS  Google Scholar  * Rehemtulla, A., Dorner, A.J. and Kaufman, R.J. 1992. Regulation of PACE propeptide-processing activity: requirement for a post-endoplasmic reticulum compartment and autoproteolytic activation. _Proc. Natl. Acad. Sci. USA_ 89: 8235–8239. Article  CAS  Google Scholar  * Light, A., Savithri, H.S. and Liepnieks, J.J. 1980. Specificity of bovine enterokinase toward protein substrates. _Anal. Biochem._ 106: 199–206. Article  CAS  Google Scholar  * Guan, C., Li, P., Riggs, P.D. and Inouye, H. 1988. Vectors that facilitate the expression and purification of foreign peptides in _Escherichia coli_ by fusion to maltose-binding protein. _Gene_ 67: 21–30. Article  Google Scholar  * Sambrook, J., Fritsch, E.F. and Maniatis, J. 1989. _Molecular Cloning, a Laboratory Manual_, second edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Google Scholar  * Dower, W.J., Miller, J.F. and Ragsdale, C.W. 1988. High efficiency transformation of _E. coli_ by high voltage electroporation. _Nucleic Acids Res._ 16: 6127–6145. Article  CAS  Google Scholar  * Grant, D.A.W. and Hermon-Taylor, J. 1979. Hydrolysis of artificial substrates by enterokinase and trypsin and the development of a sensitive specific assay for enterokinase in serum. _Biochim. Biophys. Acta._ 567: 207–215. Article  CAS  Google Scholar  * Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. and Erlich, H. 1986. Specific enzymatic amplification of DNA _in vitro_: the polymerase chain reaction. _Cold Spring Harbor Symp. Quant. Biol._ 51: 263–273. Article  CAS  Google Scholar  * Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. _Science_ 239: 487–494. Article  CAS  Google Scholar  * Wilson, K. 1990. Preparation of genomic DNA from bacteria. _Current Protocols in Molecular Biology_ (suppl. 9): 2.4.1–2.4.2. * Gill, S.C. and von Hippel, P.H. 1989. Calculation of protein extinction coefficients from amino acid sequence data. _Anal. Biochem._ 182: 319–326. Article  CAS  Google Scholar  * Duplay, P., Bedouelle, H., Fowler, A., Zabin, I., Saurin, W. and Hofnung, M. 1984. Sequences of the _malE_ gene and its product, the maltose-binding protein of _Escherichia coli_ K12. _J. Biol. Chem._ 259: 10606–10613. CAS  PubMed  Google Scholar  * Schagger, H. and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-poly-acrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100kDa. _Anal. Biochem._ 166: 368–379. Article  CAS  Google Scholar  Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Genetics Institute, Inc., 87 Cambridge Park Drive, Cambridge, MA, 02140 Lisa A. Collins-Racie, James M. McColgan, Kathleen L. Grant, Elizabeth A. DiBlasio-Smith, John M. McCoy & Edward R. LaVallie Authors * Lisa A. Collins-Racie View author publications You can also search for this author inPubMed Google Scholar * James M. McColgan View author publications You can also search for this author inPubMed Google Scholar * Kathleen L. Grant View author publications You can also search for this author inPubMed Google Scholar * Elizabeth A. DiBlasio-Smith View author publications You can also search for this author inPubMed Google Scholar * John M. McCoy View author publications You can also search for this author inPubMed Google Scholar * Edward R. LaVallie View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Edward R. LaVallie. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Collins-Racie, L., McColgan, J., Grant, K. _et al._ Production of Recombinant Bovine Enterokinase Catalytic Subunit in _Escherichia coli_ Using the Novel Secretory Fusion Partner DsbA. _Nat Biotechnol_ 13, 982–987 (1995). https://doi.org/10.1038/nbt0995-982 Download citation * Received: 22 February 1995 * Accepted: 10 July 1995 * Issue Date: 01 September 1995 * DOI: https://doi.org/10.1038/nbt0995-982 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative

ABSTRACT Enterokinase (EK) is a heterodimeric serine protease which plays a key role in initiating the proteolytic digestion cascade in the mammalian duodenum. The enzyme acts by converting


trypsinogen to trypsin via a highly specific cleavage following the pentapeptide recognition sequence (Asp)4-Lys. This stringent site specificity gives EK great potential as a fusion protein


cleavage reagent. Recently, a cDNA encoding the catalytic (light) chain of bovine enterokinase (EKL) was identified, characterized, and transiently expressed in mammalian COS cells. We


report here the production of EKL in _Escherichia coli_ by a novel secretory expression system that utilizes _E. coli_ DsbA protein as an N-terminal fusion partner. The EKL cDNA was fused


in-frame to the 3′-end of the coding sequence for DsbA, with the two domains of the fusion protein separated by a linker sequence encoding an enterokinase recognition site. Active, processed


recombinant EKL, (rEKL) was generated from this fusion protein via an autocatalytic cleavage reaction. The enzymatic properties of the bacterially produced rEKL were indistinguishable from


the previously described COS-derived enzyme. Both forms of rEKL were capable of cleaving peptides, polypeptides and trypsinogen with the same specificity exhibited by the native


heterodimeric enzyme purified from bovine duodena. Interestingly, rEKL activated trypsinogen poorly relative to the native heterodimeric enzyme, but was superior in its ability to cleave


artificial fusion proteins containing the (Asp)4-Lys recognition sequence. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DIRECTED EVOLUTION FOR SOLUBLE AND ACTIVE PERIPLASMIC EXPRESSION


OF BOVINE ENTEROKINASE IN _ESCHERICHIA COLI_ Article Open access 21 October 2022 RANDOM AND COMBINATORIAL MUTAGENESIS FOR IMPROVED TOTAL PRODUCTION OF SECRETORY TARGET PROTEIN IN


_ESCHERICHIA COLI_ Article Open access 05 March 2021 DEVELOPMENT OF HIGH-PERFORMANCE INDUCIBLE AND SECRETORY EXPRESSION VECTOR AND HOST SYSTEM FOR ENHANCED RECOMBINANT PROTEIN PRODUCTION


Article Open access 28 December 2024 REFERENCES * Maina, C.V., Riggs, P.D., Grandea, A.G., Slatko, E.E., Moran, L.S., Tagliamonte, J.A., McReynolds, L.A. and Guan, C. 1988. An _Escherichia


coli_ vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. _Gene_ 74: 365–373. Article  CAS  Google Scholar  * Smith, D.B. and Johnson,


K.S. 1988. Single-step purification of polypeptides expressed in _Escherichia coli_ as fusions with glutathione-S-transferase. _Gene_ 67: 3l–40. Article  Google Scholar  * LaVallie, E.R.,


DiBlasio, E.A., Kovacic, S., Grant, K.L., Schendel, P.F. and McCoy, J.M. 1993. A thioredoxin gene fusion system that circumvents inclusion body formation in the _E. coli_ cytoplasm.


_Bio/Technology_ 11: 187–193. CAS  Google Scholar  * Nagai, K. and Thøgersen, H.C. 1984. Generation of β-globin by sequence-specific proteolysis of a hybrid protein in _Escherichia coli_.


_Nature_ 309: 810–812. Article  CAS  Google Scholar  * Chang, J.-Y. 1985. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide


substrate. _Eur. J. Biochem._ 151: 217–224. Article  CAS  Google Scholar  * Maroux, S., Baratti, J. and Desnuelle, R. 1971. Purification and specificity of porcine enterokinase. _J. Biol.


Chem._ 246: 5031–5039. CAS  Google Scholar  * Liepnieks, J.J. and Light, A. 1979. The preparation and properties of bovine enterokinase. _J. Biol. Chem._ 254: 1677–1683. CAS  Google Scholar


  * LaVallie, E.R., Rehemtulla, A., Racie, L.A., DiBlasio, E.A., Ferenz, C., Grant, K.L., Light, A. and McCoy, J.M. 1993. Cloning and functional expression of a cDNA encoding the catalytic


subunit of bovine enterokinase. _J. Biol. Chem._ 268: 23311–23317. CAS  PubMed  Google Scholar  * Kunitz, M. 1939. Formation of trypsin from crystalline trypsinogen by means of enterokinase.


_J. Gen. Physiol._ 22: 429–446. Article  CAS  Google Scholar  * Bricteux-Gregoire, S., Schyns, R. and Florkin, M. 1972. Phylogeny of trypsinogen activation peptides. _Comp. Biochem.


Physiol._ 42B: 23–39. Google Scholar  * Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. and Conlon, P.J. 1988. A short polypeptide marker


sequence useful for recombinant protein identification and purification. _Bio/Technology._ 6: 1204–1210. Article  CAS  Google Scholar  * Bardwell, J.C., McGovern, K. and Beckwith, J. 1991.


Identification of a protein required for disulfide bond formation _in vivo_. _Cell_ 67: 581–589. Article  CAS  Google Scholar  * Martin, J.L., Bardwell, J.C.A. and Kuriyan, J. 1993. Crystal


structure of the DsbA protein required for disulfide bond formation _in vivo_. _Nature_ 365: 464–468. Article  CAS  Google Scholar  * Janknecht, R., de Martynoff, G., Lou, J., Hipskind, R.


A., Nordheim, A. and Stunnenberg, H.G. 1991. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. _Proc. Natl. Acad. Sci. USA_ 88:


8972–8976. Article  CAS  Google Scholar  * Light, A. and Fonseca, P. 1984. The preparation and properties of the catalytic subunit of bovine enterokinase. _J. Biol. Chem._ 259: 13195–13198.


CAS  PubMed  Google Scholar  * Dykes, C.W., Bookless, A.B., Coomber, B.A., Noble, S.A., Humber, D.C. and Hobden, A.N. 1988. Expression of atrial natriuretic factor as a cleavable fusion


protein with chloramphenicol acetyltransferase in _Escherichia coli_. _Eur. J. Biochem_ 174: 411–416. Article  CAS  Google Scholar  * Forsberg, G., Baastrup, B., Rondahl, H., Holmgren, E.,


Pohl, G., Hartmanis, M. and Lake, M. 1992. An evaluation of different enzymatic cleavage methods for recombinant fusion proteins, applied on des (1-3) insulin-like growth factor I. _J. Prot.


Chem._ 11: 201–211. Article  CAS  Google Scholar  * Hirel, P-H., Schmitter, J.-M., Dessen, P., Fayat, G. and Blanquet, S. 1989. Extent of N-terminal methionine excision from _Escherichia


coli_ proteins is governed by the side-chain length of the penultimate amino acid. _Proc. Natl. Acad. Sci. USA_ 86: 8247–8251. Article  CAS  Google Scholar  * Fehlhammer, H., Bode, W. and


Huber, R. 1977. Crystal structure of bovine trypsinogen at 1.8 Å resolution. _J. Mol. Biol._ 11: 415–438. Article  Google Scholar  * Derman, A.I., Prinz, W.A., Belin, D. and Beckwith, J.


1993. Mutations that allow disulfide bond formation in the cytoplasm of _Escherichia coli_ _Science_ 262: 1744–1747. Article  CAS  Google Scholar  * Vasquez, J.R., Evnin, L.B., Higaki, J.N.


and Craik, C.S. 1989. An expression system for trypsin. _J. Cell. Biochem._ 39: 265–276. Article  CAS  Google Scholar  * Corey, D.R. and Craik, C.S. 1992. An investigation into the minimum


requirements for peptide hydrolysis by mutation of the catalytic triad of trypsin. _J. Am. Chem. Soc._ 114: 1784–1790. Article  CAS  Google Scholar  * Rehemtulla, A., Dorner, A.J. and


Kaufman, R.J. 1992. Regulation of PACE propeptide-processing activity: requirement for a post-endoplasmic reticulum compartment and autoproteolytic activation. _Proc. Natl. Acad. Sci. USA_


89: 8235–8239. Article  CAS  Google Scholar  * Light, A., Savithri, H.S. and Liepnieks, J.J. 1980. Specificity of bovine enterokinase toward protein substrates. _Anal. Biochem._ 106:


199–206. Article  CAS  Google Scholar  * Guan, C., Li, P., Riggs, P.D. and Inouye, H. 1988. Vectors that facilitate the expression and purification of foreign peptides in _Escherichia coli_


by fusion to maltose-binding protein. _Gene_ 67: 21–30. Article  Google Scholar  * Sambrook, J., Fritsch, E.F. and Maniatis, J. 1989. _Molecular Cloning, a Laboratory Manual_, second


edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Google Scholar  * Dower, W.J., Miller, J.F. and Ragsdale, C.W. 1988. High efficiency transformation of _E. coli_


by high voltage electroporation. _Nucleic Acids Res._ 16: 6127–6145. Article  CAS  Google Scholar  * Grant, D.A.W. and Hermon-Taylor, J. 1979. Hydrolysis of artificial substrates by


enterokinase and trypsin and the development of a sensitive specific assay for enterokinase in serum. _Biochim. Biophys. Acta._ 567: 207–215. Article  CAS  Google Scholar  * Mullis, K.,


Faloona, F., Scharf, S., Saiki, R., Horn, G. and Erlich, H. 1986. Specific enzymatic amplification of DNA _in vitro_: the polymerase chain reaction. _Cold Spring Harbor Symp. Quant. Biol._


51: 263–273. Article  CAS  Google Scholar  * Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1988. Primer-directed enzymatic


amplification of DNA with a thermostable DNA polymerase. _Science_ 239: 487–494. Article  CAS  Google Scholar  * Wilson, K. 1990. Preparation of genomic DNA from bacteria. _Current Protocols


in Molecular Biology_ (suppl. 9): 2.4.1–2.4.2. * Gill, S.C. and von Hippel, P.H. 1989. Calculation of protein extinction coefficients from amino acid sequence data. _Anal. Biochem._ 182:


319–326. Article  CAS  Google Scholar  * Duplay, P., Bedouelle, H., Fowler, A., Zabin, I., Saurin, W. and Hofnung, M. 1984. Sequences of the _malE_ gene and its product, the maltose-binding


protein of _Escherichia coli_ K12. _J. Biol. Chem._ 259: 10606–10613. CAS  PubMed  Google Scholar  * Schagger, H. and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-poly-acrylamide gel


electrophoresis for the separation of proteins in the range from 1 to 100kDa. _Anal. Biochem._ 166: 368–379. Article  CAS  Google Scholar  Download references AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Genetics Institute, Inc., 87 Cambridge Park Drive, Cambridge, MA, 02140 Lisa A. Collins-Racie, James M. McColgan, Kathleen L. Grant, Elizabeth A. DiBlasio-Smith, John M. McCoy


 & Edward R. LaVallie Authors * Lisa A. Collins-Racie View author publications You can also search for this author inPubMed Google Scholar * James M. McColgan View author publications


You can also search for this author inPubMed Google Scholar * Kathleen L. Grant View author publications You can also search for this author inPubMed Google Scholar * Elizabeth A.


DiBlasio-Smith View author publications You can also search for this author inPubMed Google Scholar * John M. McCoy View author publications You can also search for this author inPubMed 


Google Scholar * Edward R. LaVallie View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Edward R. LaVallie. RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Collins-Racie, L., McColgan, J., Grant, K. _et al._ Production of Recombinant Bovine Enterokinase Catalytic Subunit


in _Escherichia coli_ Using the Novel Secretory Fusion Partner DsbA. _Nat Biotechnol_ 13, 982–987 (1995). https://doi.org/10.1038/nbt0995-982 Download citation * Received: 22 February 1995


* Accepted: 10 July 1995 * Issue Date: 01 September 1995 * DOI: https://doi.org/10.1038/nbt0995-982 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this


content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative