Micrornas regulate the immunometabolic response to viral infection in the liver

Micrornas regulate the immunometabolic response to viral infection in the liver

Play all audios:

Loading...

ABSTRACT Immune regulation of cellular metabolism can be responsible for successful responses to invading pathogens. Viruses alter their hosts' cellular metabolism to facilitate


infection. Conversely, the innate antiviral responses of mammalian cells target these metabolic pathways to restrict viral propagation. We identified miR-130b and miR-185 as hepatic


microRNAs (miRNAs) whose expression is stimulated by 25-hydroxycholesterol (25-HC), an antiviral oxysterol secreted by interferon-stimulated macrophages and dendritic cells, during hepatitis


C virus (HCV) infection. However, 25-HC only directly stimulated miR-185 expression, whereas HCV regulated miR-130b expression. Independently, miR-130b and miR-185 inhibited HCV infection.


In particular, miR-185 significantly restricted host metabolic pathways crucial to the HCV life cycle. Interestingly, HCV infection decreased miR-185 and miR-130b levels to promote lipid


accumulation and counteract 25-HC's antiviral effect. Furthermore, miR-185 can inhibit other viruses through the regulation of immunometabolic pathways. These data establish these


microRNAs as a key link between innate defenses and metabolism in the liver. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS _MIR-27B_ TARGETS _MAIP1_ TO MEDIATE LIPID ACCUMULATION IN


CULTURED _HUMAN_ AND _MOUSE_ HEPATIC CELLS Article Open access 24 June 2023 MIR-23A/B SUPPRESS CGAS-MEDIATED INNATE AND AUTOIMMUNITY Article Open access 25 March 2021 MACROPHAGE


MIR-4524A-5P/TBP PROMOTES Β-TRCP -TIM3 COMPLEX ACTIVATION AND TGFΒ RELEASE AND AGGRAVATES NAFLD-ASSOCIATED FIBROSIS Article Open access 19 April 2025 ACCESSION CODES PRIMARY ACCESSIONS GENE


EXPRESSION OMNIBUS * GSE73163 * GSE73164 * GSE73165 REFERENCES * Teissier, E. & Pécheur, E.I. Lipids as modulators of membrane fusion mediated by viral fusion proteins. _Eur. Biophys.


J._ 36, 887–899 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chukkapalli, V., Heaton, N.S. & Randall, G. Lipids at the interface of virus-host Interactions. _Curr.


Opin. Microbiol._ 15, 512–518 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Miller, S. & Krijnse-Locker, J. Modification of intracellular membrane structures for virus


replication. _Nat. Rev. Microbiol._ 6, 363–374 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Saka, H.A. & Valdivia, R. Emerging roles for lipid droplets in immunity and


host-pathogen interactions. _Annu. Rev. Cell Dev. Biol._ 28, 411–437 (2012). Article  CAS  PubMed  Google Scholar  * Schoggins, J.W. & Randall, G. Lipids in innate antiviral defense.


_Cell Host Microbe_ 14, 379–385 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Blanc, M. et al. The transcription factor STAT-1 couples macrophage synthesis of


25-hydroxycholesterol to the interferon antiviral response. _Immunity_ 38, 106–118 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, S.Y. et al. Interferon-inducible


cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. _Immunity_ 38, 92–105 (2013). Article  PubMed  CAS  Google Scholar  * Pezacki, J.P. et al.


Transcriptional profiling of the effects of 25-hydroxycholesterol on human hepatocyte metabolism and the antiviral state it conveys against the hepatitis C virus. _BMC Chem. Biol._ 9, 2


(2009). Article  PubMed  PubMed Central  CAS  Google Scholar  * Park, K. & Scott, A.L. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I


interferons. _J. Leukoc. Biol._ 88, 1081–1087 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Carthew, R.W. & Sontheimer, E.J. Origins and mechanisms of miRNAs and


siRNAs. _Cell_ 136, 642–655 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Friedman, R.C., Farh, K.K.H., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved


targets of microRNAs. _Genome Res._ 19, 92–105 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rottiers, V. & Näär, A.M. MicroRNAs in metabolism and metabolic disorders.


_Nat. Rev. Mol. Cell Biol._ 13, 239–250 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu, J.M., Skill, N.J. & Maluccio, M.A. Evidence of aberrant lipid metabolism in


hepatitis C and hepatocellular carcinoma. _HPB (Oxford)_ 12, 625–636 (2010). Article  Google Scholar  * Adams, C.M. et al. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs


by different mechanisms, both involving SCAP and Insigs. _J. Biol. Chem._ 279, 52772–52780 (2004). Article  CAS  PubMed  Google Scholar  * Radhakrishnan, A., Ikeda, Y., Kwon, H.J., Brown,


M.S. & Goldstein, J.L. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. _Proc. Natl. Acad. Sci. USA_ 104,


6511–6518 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Janowski, B.A., Willy, P.J., Devi, T.R., Falck, J.R. & Mangelsdorf, D.J. An oxysterol signalling pathway


mediated by the nuclear receptor LXRα. _Nature_ 383, 728–731 (1996). Article  CAS  PubMed  Google Scholar  * Goldstein, J.L., DeBose-Boyd, R.A. & Brown, M.S. Protein sensors for membrane


sterols. _Cell_ 124, 35–46 (2006). Article  CAS  PubMed  Google Scholar  * Su, A.I. et al. Genomic analysis of the host response to hepatitis C virus infection. _Proc. Natl. Acad. Sci. USA_


99, 15669–15674 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zeng, J. et al. Liver X receptors agonists impede hepatitis C virus infection in an Idol-dependent manner.


_Antiviral Res._ 95, 245–256 (2012). Article  CAS  PubMed  Google Scholar  * Russell, R.S. et al. Advantages of a single-cycle production assay to study cell culture-adaptive mutations of


hepatitis C virus. _Proc. Natl. Acad. Sci. USA_ 105, 4370–4375 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vlachos, I.S. et al. DIANA miRPath v.2.0: investigating the


combinatorial effect of microRNAs in pathways. _Nucleic Acids Res._ 40, W498–W504 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Luna, J.M. et al. Hepatitis C virus RNA


functionally sequesters miR-122. _Cell_ 160, 1099–1110 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Qadir, X.V., Han, C., Lu, D., Zhang, J. & Wu, T. miR-185 inhibits


hepatocellular carcinoma growth by targeting the DNMT1/PTEN/Akt pathway. _Am. J. Pathol._ 184, 2355–2364 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Xiao, F. et al. A


novel function of microRNA 130a-3p in hepatic insulin sensitivity and liver steatosis. _Diabetes_ 63, 2631–2642 (2014). Article  CAS  PubMed  Google Scholar  * Steenbergen, R.H.G. et al.


Human serum leads to differentiation of human hepatoma cells, restoration of very-low-density lipoprotein secretion, and a 1000-fold increase in HCV Japanese fulminant hepatitis type 1


titers. _Hepatology_ 58, 1907–1917 (2013). Article  CAS  PubMed  Google Scholar  * Alvisi, G., Madan, V. & Bartenschlager, R. Hepatitis C virus and host cell lipids: an intimate


connection. _RNA Biol._ 8, 258–269 (2011). Article  CAS  PubMed  Google Scholar  * Pezacki, J.P., Singaravelu, R. & Lyn, R.K. Host-virus interactions during hepatitis C virus infection:


a complex and dynamic molecular biosystem. _Mol. Biosyst._ 6, 1131–1142 (2010). Article  CAS  PubMed  Google Scholar  * García-Mediavilla, M.V. et al. Liver X receptor α-mediated regulation


of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. _Lab. Invest._ 92, 1191–1202 (2012). Article  PubMed  CAS  Google Scholar  * Waris,


G., Felmlee, D.J., Negro, F. & Siddiqui, A. Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via


oxidative stress. _J. Virol._ 81, 8122–8130 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pezacki, J.P. et al. Chemical contrast for imaging living systems: molecular


vibrations drive CARS microscopy. _Nat. Chem. Biol._ 7, 137–145 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, M. et al. Identification of miR-185 as a regulator of de


novo cholesterol biosynthesis and low density lipoprotein uptake. _J. Lipid Res._ 55, 226–238 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, L. et al. MicroRNAs 185,


96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. _Mol. Cell. Biol._ 33, 1956–1964 (2013). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Pan, S., Yang, X., Jia, Y., Li, R. & Zhao, R. Microvesicle-shuttled miR-130b reduces Fat deposition in recipient primary cultured porcine adipocytes by


inhibiting PPAR-γ expression. _J. Cell. Physiol._ 229, 631–639 (2014). Article  CAS  PubMed  Google Scholar  * Hsu, P.W.C., Lin, L.Z., Hsu, S.D., Hsu, J.B.K. & Huang, H.-D. ViTa:


prediction of host microRNAs targets on viruses. _Nucleic Acids Res._ 35, D381–D385 (2007). Article  CAS  PubMed  Google Scholar  * Lyn, R.K. et al. Stearoyl-CoA desaturase inhibition blocks


formation of hepatitis C virus-induced specialized membranes. _Sci. Rep._ 4, 4549 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Régeard, M., Trotard, M., Lepère, C.,


Gripon, P. & Le Seyec, J. Entry of pseudotyped hepatitis C virus into primary human hepatocytes depends on the scavenger class B type I receptor. _J. Viral Hepat._ 15, 865–870 (2008).


Article  PubMed  Google Scholar  * Catanese, M.T. et al. Different requirements for scavenger receptor class B type I in hepatitis C virus cell-free versus cell-to-cell transmission. _J.


Virol._ 87, 8282–8293 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, Q., Pene, V., Krishnamurthy, S., Cha, H. & Liang, T.J. Hepatitis C virus infection activates an


innate pathway involving IKK-α in lipogenesis and viral assembly. _Nat. Med._ 19, 722–729 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Syed, G.H. et al. Hepatitis C Virus


stimulates low-density lipoprotein receptor expression to facilitate viral propagation. _J. Virol._ 88, 2519–2529 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Monazahian,


M. et al. Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. _J. Med. Virol._ 57, 223–229 (1999). Article  CAS  PubMed  Google Scholar  * Takeuchi, K. &


Reue, K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. _Am. J. Physiol. Endocrinol. Metab._ 296, E1195–E1209 (2009). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Mercer, D.F. et al. Hepatitis C virus replication in mice with chimeric human livers. _Nat. Med._ 7, 927–933 (2001). Article  CAS  PubMed  Google


Scholar  * Singaravelu, R. et al. Hepatitis C virus induced up-regulation of microRNA-27: A novel mechanism for hepatic steatosis. _Hepatology_ 59, 98–108 (2014). Article  CAS  PubMed 


Google Scholar  * Paul, D., Hoppe, S., Saher, G., Krijnse-Locker, J. & Bartenschlager, R. Morphological and biochemical characterization of the membranous hepatitis C virus replication


compartment. _J. Virol._ 87, 10612–10627 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sagan, S.M. et al. The influence of cholesterol and lipid metabolism on host cell


structure and hepatitis C virus replication. _Biochem. Cell Biol._ 84, 67–79 (2006). Article  CAS  PubMed  Google Scholar  * Li, S. et al. MicroRNA-130a inhibits HCV replication by restoring


the innate immune response. _J. Viral Hepat._ 21, 121–128 (2014). Article  CAS  PubMed  Google Scholar  * Lee, W.M. & Ahlquist, P. Membrane synthesis, specific lipid requirements, and


localized lipid composition changes associated with a positive-strand RNA Virus RNA replication protein. _J. Virol._ 77, 12819–12828 (2003). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Civra, A. et al. Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol. _Sci. Rep._ 4, 7487 (2014). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Pedersen, I.M. et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. _Nature_ 449, 919–922 (2007). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Bassendine, M.F., Sheridan, D.A., Bridge, S.H., Felmlee, D.J. & Neely, R.D.G. Lipids and HCV. _Semin. Immunopathol._ 35, 87–100 (2013). Article  CAS  PubMed  Google


Scholar  * Blight, K.J., Kolykhalov, A.A. & Rice, C.M. Efficient initiation of HCV RNA replication in cell culture. _Science_ 290, 1972–1974 (2000). Article  CAS  PubMed  Google Scholar


  * Gong, E.Y., Fischl, W. & Bartenschlager, R. in _Antiviral Methods and Protocols_ Vol. 1030, 205–219 (Humana Press). * Kumar, A. et al. Nuclear localization of Dengue virus


nonstructural protein 5 Does Not strictly correlate with efficient viral RNA replication and inhibition of type I interferon signaling. _J. Virol._ 87, 4545–4557 (2013). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Stojdl, D.F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. _Cancer Cell_ 4, 263–275


(2003). Article  CAS  PubMed  Google Scholar  * Liu, Q.Y. et al. Identification of microRNAs involved in Alzheimer's progression using a rabbit model of the disease. _Am. J.


Neurodegener. Dis._ 3, 33–44 (2014). PubMed  PubMed Central  Google Scholar  * Chen, J., Bardes, E.E., Aronow, B.J. & Jegga, A.G. ToppGene Suite for gene list enrichment analysis and


candidate gene prioritization. _Nucleic Acids Res._ 37, W305–W311 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dyer, B.W., Ferrer, F.A., Klinedinst, D.K. & Rodriguez,


R. A noncommercial dual luciferase enzyme assay system for reporter gene analysis. _Anal. Biochem._ 282, 158–161 (2000). Article  CAS  PubMed  Google Scholar  * Folch, J., Lees, M. &


Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. _J. Biol. Chem._ 226, 497–509 (1957). CAS  PubMed  Google Scholar  * Graeve, M. &


Janssen, D. Improved separation and quantification of neutral and polar lipid classes by HPLC-ELSD using a monolithic silica phase: application to exceptional marine lipids. _J. Chromatogr.


B_ 877, 1815–1819 (2009). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank A. Ridsdale and the National Research Council of Canada (NRC) coherent anti-Stokes Raman


spectroscopy (CARS) facility along with Z. Jakubek and the NRC measurement science and standards (MSS) imaging facility for technical assistance. mRNA microarray profiling was performed by


the Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada. Lipid profiling was performed by A. Moses and the Lipid Analysis Core Service, University of


Alberta, Edmonton, Alberta, Canada. We also would like to thank E. Riklow for assistance with Dengue virus experiments. This study was supported by funding from Natural Sciences and


Engineering Research Council (NSERC) of Canada grant (298496 to J.P.P.) and Canadian Institutes of Health Research (CIHR) grants (136807, 232063 to J.P.P., R.S.R. and D.L.T.; 130365 to


K.J.R.; 28637 to T.C.H.). R.S., D.M.J., R.C. and N.G.T. would like to thank the National CIHR Research Training Program in Hepatitis C (NCRTP-HepC) for training and funding. R.S. was


supported by a Vanier Canadian Graduate scholarship. D.G.R. was supported by a CIHR graduate scholarship. D.Ö. was supported by a post-doctoral fellowship from the CIHR. A.K. was supported


by NSERC–Collaborative Research and Training Experience (CREATE) and Alberta Innovates–Health Solutions postdoctoral fellowships. T.C.H. was supported by a Tier 1 Canada Research Chair.


AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada Ragunath Singaravelu, Prashanth


Srinivasan, Curtis Quan, My-Anh Nguyen, Katey J Rayner & John Paul Pezacki * Life Sciences Division, National Research Council of Canada, Ottawa, Ontario, Canada Ragunath Singaravelu, 


Shifawn O'Hara, Prashanth Srinivasan, Curtis Quan, Rodney K Lyn, Dennis Özcelik, Yanouchka Rouleau & John Paul Pezacki * Immunology and Infectious Diseases, Faculty of Medicine,


Memorial University of Newfoundland, St. John's, Newfoundland, Canada Daniel M Jones, Nathan G Taylor & Rodney S Russell * Department of Medical Microbiology and Immunology,


University of Alberta and Li Ka Shing Institute of Virology, Katz Centre for Pharmacy and Health Research, Edmonton, Alberta, Canada Ran Chen, Rineke H Steenbergen & David Lorne Tyrrell


* Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Dominic G Roy * Department of Cell Biology, University of Alberta, Edmonton, Alberta,


Canada Anil Kumar & Tom C Hobman * Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada Rodney K Lyn, Dennis Özcelik & John Paul Pezacki


* University of Ottawa Heart Institute, Ottawa, Ontario, Canada My-Anh Nguyen & Katey J Rayner Authors * Ragunath Singaravelu View author publications You can also search for this author


inPubMed Google Scholar * Shifawn O'Hara View author publications You can also search for this author inPubMed Google Scholar * Daniel M Jones View author publications You can also


search for this author inPubMed Google Scholar * Ran Chen View author publications You can also search for this author inPubMed Google Scholar * Nathan G Taylor View author publications You


can also search for this author inPubMed Google Scholar * Prashanth Srinivasan View author publications You can also search for this author inPubMed Google Scholar * Curtis Quan View author


publications You can also search for this author inPubMed Google Scholar * Dominic G Roy View author publications You can also search for this author inPubMed Google Scholar * Rineke H


Steenbergen View author publications You can also search for this author inPubMed Google Scholar * Anil Kumar View author publications You can also search for this author inPubMed Google


Scholar * Rodney K Lyn View author publications You can also search for this author inPubMed Google Scholar * Dennis Özcelik View author publications You can also search for this author


inPubMed Google Scholar * Yanouchka Rouleau View author publications You can also search for this author inPubMed Google Scholar * My-Anh Nguyen View author publications You can also search


for this author inPubMed Google Scholar * Katey J Rayner View author publications You can also search for this author inPubMed Google Scholar * Tom C Hobman View author publications You can


also search for this author inPubMed Google Scholar * David Lorne Tyrrell View author publications You can also search for this author inPubMed Google Scholar * Rodney S Russell View author


publications You can also search for this author inPubMed Google Scholar * John Paul Pezacki View author publications You can also search for this author inPubMed Google Scholar


CONTRIBUTIONS R.S., K.J.R., T.C.H., D.L.T., R.S.R. and J.P.P. conceived and designed experiments. R.S., S.O'H., D.M.J., N.G.T. and R.S.R. performed cell culture and sample collection


for experiments using JFH-1T. R.S. and R.H.S. performed cell culture and sample collection for experiments using JFH-HS. R.S. and R.K.L. performed CARS microscopy experiments. R.C. and


D.L.T. performed mice experiments. M.-A.N and K.J.R. performed macrophage cell culture and sample collection. R.C. performed lipid analysis and immunofluorescence. R.S. and A.K. performed


cell culture and sample collection for experiments dealing with DENV. R.S. and D.G.R. performed cell culture and sample collection for experiments dealing with VSV. R.S., S.O'H., P.S.,


C.Q., D.Ö. and Y.R. performed all sample processing and downstream analysis. R.S., R.S.R. and J.P.P. analyzed the data. R.S. and J.P.P. wrote the manuscript. CORRESPONDING AUTHOR


Correspondence to John Paul Pezacki. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES


Supplementary Results, Supplementary Figures 1–18 and Supplementary Tables 1–6. (PDF 3099 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Singaravelu, R., O'Hara, S., Jones, D. _et al._ MicroRNAs regulate the immunometabolic response to viral infection in the liver. _Nat Chem Biol_ 11, 988–993 (2015).


https://doi.org/10.1038/nchembio.1940 Download citation * Received: 04 March 2015 * Accepted: 11 September 2015 * Published: 19 October 2015 * Issue Date: December 2015 * DOI:


https://doi.org/10.1038/nchembio.1940 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative