Methane emissions proportional to permafrost carbon thawed in arctic lakes since the 1950s

Methane emissions proportional to permafrost carbon thawed in arctic lakes since the 1950s

Play all audios:

Loading...

ABSTRACT Permafrost thaw exposes previously frozen soil organic matter to microbial decomposition. This process generates methane and carbon dioxide, and thereby fuels a positive feedback


process that leads to further warming and thaw1. Despite widespread permafrost degradation during the past ∼40 years2,3,4, the degree to which permafrost thaw may be contributing to a


feedback between warming and thaw in recent decades is not well understood. Radiocarbon evidence of modern emissions of ancient permafrost carbon is also sparse5. Here we combine radiocarbon


dating of lake bubble trace-gas methane (113 measurements) and soil organic carbon (289 measurements) for lakes in Alaska, Canada, Sweden and Siberia with numerical modelling of thaw and


remote sensing of thermokarst shore expansion. Methane emissions from thermokarst areas of lakes that have expanded over the past 60 years were directly proportional to the mass of soil


carbon inputs to the lakes from the erosion of thawing permafrost. Radiocarbon dating indicates that methane age from lakes is nearly identical to the age of permafrost soil carbon thawing


around them. Based on this evidence of landscape-scale permafrost carbon feedback, we estimate that 0.2 to 2.5 Pg permafrost carbon was released as methane and carbon dioxide in thermokarst


expansion zones of pan-Arctic lakes during the past 60 years. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PERMAFROST CARBON EMISSIONS IN A CHANGING ARCTIC Article 11 January 2022


SUBSTANTIAL AND OVERLOOKED GREENHOUSE GAS EMISSIONS FROM DEEP ARCTIC LAKE SEDIMENT Article Open access 03 January 2025 A GLOBALLY RELEVANT STOCK OF SOIL NITROGEN IN THE YEDOMA PERMAFROST


DOMAIN Article Open access 14 October 2022 REFERENCES * Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive


feedback to climate warming. _Nature_ 443, 71–75 (2006). Google Scholar  * Romanovsky, V. E. et al. Thermal state of permafrost in Russia. _Permafrost Periglac._ 21, 136–155 (2010). Google


Scholar  * Romanovsky, V., Smith, S. & Christiansen, H. Permafrost thermal state in the polar Northern Hemisphere during the International Polar Year 2007–2009 A synthesis. _Permafrost


Periglac._ 21, 106–116 (2010). Google Scholar  * Smith, S. et al. Thermal state of permafrost in North America: a contribution to the international polar year. _Permafrost Periglac._ 21,


117–135 (2010). Google Scholar  * Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. _Nature_ 459, 556–559 (2009). Google


Scholar  * Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. _Biogeosciences_ 11, 6573–6593 (2014). Google


Scholar  * Walter Anthony, K. M. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. _Nature_ 511, 452–456 (2014). Google Scholar  * Schuur, E. A. G.


et al. Climate change and the permafrost carbon feedback. _Nature_ 520, 171–179 (2015). Article  Google Scholar  * Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt,


R. The impact of the permafrost carbon feedback on global climate. _Environ. Res. Lett._ 9, 085003 (2014). Google Scholar  * Koven, C. D. et al. A simplified, data-constrained approach to


estimate the permafrost carbon–climate feedback. _Phil. Trans. R. Soc. A._ 373, 20140423 (2015). Google Scholar  * Lawrence, D. M., Slater, A. G., Romanovsky, V. E. & Nicolsky, D. J.


Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. _J. Geophys. Res. Earth Surf._ 113, F02011 (2008).


Google Scholar  * Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. _Geophys. Res. Lett._ 33, L02503 (2006). Google Scholar  *


Nowinski, N. S., Taneva, L., Trumbore, S. E. & Welker, J. M. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. _Oecologia_


163, 785–792 (2010). Google Scholar  * Treat, C. C. et al. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. _Glob. Change Biol._ 21, 2797–2803 (2015). Google


Scholar  * Drake, T. W., Wickland, K. P., Spencer, R. G. M., McKnight, D. M. & Striegl, R. G. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide


production upon thaw. _Proc. Natl Acad. Sci. USA_ 112, 13946–13951 (2015). Google Scholar  * Hicks Pries, C., Schuur, E. A. G., Natali, S. M. & Crummer, K. G. Old soil carbon losses


increase with ecosystem respiration in experimentally thawed tundra. _Nat. Clim. Change_ 6, 214–218 (2015). Google Scholar  * Vonk, J. E. et al. Activation of old carbon by erosion of


coastal and subsea permafrost in Arctic Siberia. _Nature_ 489, 137–140 (2012). Google Scholar  * Mann, P. J. et al. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial


networks. _Nat. Commun._ 6, 7856 (2015). Google Scholar  * O’Donnell, J. A. et al. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland.


_Ecosystems_ 15, 213–229 (2012). Google Scholar  * Zimov, S. A. et al. North Siberian lakes: a methane source fueled by Pleistocene carbon. _Science_ 277, 800–802 (1997). Google Scholar  *


Walter, K. M., Chanton, J. P., Chapin, F. S., Schuur, E. A. G. & Zimov, S. A. Methane production and bubble emissions from arctic lakes: isotopic implications for source pathways and


ages. _J. Geophys. Res. Biogeosci._ 113, G00A08 (2008). Google Scholar  * Heslop, J. K. et al. Thermokarst-lake methane production potentials along a full talik profile. _Biogeosciences_ 12,


4317–4331 (2015). Google Scholar  * Tan, Z., Zhuang, Q. & WalterAnthony, K. M. Modeling methane emissions from Arctic lakes: model development and site-level study. _J. Adv. Model.


Earth Sy._ 7, 459–483 (2015). Google Scholar  * Brosius, L. S. et al. Using the deuterium isotope composition of permafrost melt water to constrain thermokarst lake contributions to


atmospheric CH4 during the last deglaciation. _J. Geophys. Res. Biogeosci._ 117, G01022 (2012). Google Scholar  * Kessler, M. A., Plug, L. & Walter Anthony, K. Simulating the decadal to


millennial scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in N. W. Alaska. _J. Geophys. Res. Biogeosci._ 117, G00M06 (2012). Google Scholar  *


Kaufman, D. et al. Holocene thermal maximum in the western Arctic (0–180° W). _Quat. Sci. Rev._ 23, 529–560 (2004). Google Scholar  * Jorgenson, M. T. et al. Reorganization of vegetation,


hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. _Environ. Res. Lett._ 8, 035017 (2013). Google Scholar  * Vandenberghe, J. et al. The Last


Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP. _Boreas_ 43, 652–666 (2014). Google Scholar  * Schneider von


Deimling, T. et al. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. _Biogeosciences_ 12, 3469–3488 (2015). Google


Scholar  * IPCC _Summary for Policymakers in Climate Change 2013: The Physical Science Basis_ (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2014). * Murton, J. B. et al.


Palaeoenvironmental interpretation of Yedoma Silt (Ice Complex) deposition as Cold-Climate Loess, Duvanny Yar, Northeast Siberia. _Permafrost Periglac._ 26, 208–288 (2015). Google Scholar  *


Grosse, G., Jones, B. & Arp, C. in _Treatise on Geomorphology_ VOL. 8 (ed. Shroder, J. F.) 325–353 (Academic, 2013). Google Scholar  * Wik, M., Varner, R., Walter Anthony, K.,


MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. _Nat. Geosci._ 9, 99–105 (2016). Google Scholar  * Scandella, B. P.,


Varadharajan, C., Hemond, H. F., Ruppel, C. & Juanes, R. A conduit dilation model of methane venting from lake sediments. _Geophys. Res. Lett._ 38, L06408 (2011). Google Scholar  *


Greene, S., Walter Anthony, K. M., Archer, D., Sepulveda-Jauregui, A. & Martinez-Cruz, K. Modeling the impediment of methane ebullition bubbles by seasonal lake ice. _Biogeosciences_ 11,


6791–6811 (2014). Google Scholar  * Walter Anthony, K. M. et al. Estimating methane emissions from northern lakes using ice bubble surveys. _Limnol. Oceanogr. Meth._ 8, 592–609 (2010).


Google Scholar  * Walter Anthony, K. M. & Anthony, P. Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models. _J. Geophys. Res.


Biogeosci._ 118, 1015–1034 (2013). Google Scholar  * Zimov, S. A. et al. in _Permafrost Response on Economic Development, Environmental Security and Natural Resources_ (eds Paepe, R. &


Melnikov, V. P.) 511–524 (NATO Science Series 2, 76, Kluwer Academic, 2001). Google Scholar  * Chanton, J. P. et al. Radiocarbon evidence for the importance of surface vegetation on


fermentation and methanogenesis in contrasting types of boreal peatlands. _Glob. Biogeochem. Cy_ 22, GB4022 (2008). Google Scholar  * Vogel, J. S., Turteltaub, K. W., Finkel, R. &


Nelson, D. E. Accelerator mass spectrometry. _Anal. Chem._ 67, 353A–359A (1995). Google Scholar  * Strauss, J. et al. The deep permafrost carbon pool of the Yedoma region in Siberia and


Alaska. _Geophys. Res. Lett._ 40, 6165–6170 (2013). Google Scholar  * Soil Survey Staff _Keys to Soil Taxonomy_ 10th edn USDA-Natural Resources Conservation Service (USDA-Natural Resources


Conservation Service, 2016). * Ping, C. L. Gelisols: Part II. Classification and related issues. _Soil Horiz._ 54, http://dx.doi.org/10.2136/sh2013-54-4-gc (2013). * Dean, W. E.


Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. _J. Sed. Petr._ 44, 242–248 (1974). Google


Scholar  * Michaelson, G. J., Ping, C. L. & Clark, M. H. Soil pedon carbon and nitrogen data for Alaska: an analysis and update. _Open J. Soil Sci._ 3, 132–142 (2013). Google Scholar  *


Bauer, I. E., Bhatti, J. S., Cash, K. J. & Tarnocai, C. Developing statistical models to estimate the carbon density of organic soils. _Can. J. Soil Sci._ 86, 295–304 (2006). Google


Scholar  * Hamilton, T. D., Craig, J. L. & Sellmann, P. V. The Fox permafrost tunnel “A late Quaternary geologic record in central Alaska”. _Geol. Soc. Am. Bull._ 100, 948–969 (1988).


Google Scholar  * Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. _Geophys. Res. Lett._ 39, L15704 (2012). Google Scholar  * Hugelius,


G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. _Earth Syst. Sci. Data_


5, 3–13 (2013). Google Scholar  * Jones, B. M. et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. _J. Geophys. Res. Biogeosci._


116, G00M03 (2011). Google Scholar  * Tarasenko, T. V. Interannual variations in the areas of Thermokarst lakes in Central Yakutia. _Water Res._ 40, 111–119 (2013). Google Scholar  * West,


J. J. & Plug, L. J. Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. _J. Geophys. Res. Earth Surf._ 113, F01009 (2008). Google Scholar  * Rampton, V. N.


in _Research in Polar and Alpine Geomorphology. Third Guelph Symposium on Geomorphology 1973_ (eds Fahey, B. & Thompson, R. D.) 43–59 (1974). Google Scholar  * Bockheim, J. G., Everett,


L. R., Hinkel, K. M., Nelson, F. E. & Brown, J. Soil organic carbon storage and distribution in arctic tundra, Barrow, Alaska. _Soil Sci. Soc. Am. J._ 63, 934–940 (1999). Google Scholar


  * Jorgenson, T. et al. _Permafrost characteristics of Alaska In Proc. 9th Int. Conf. Permafrost map in scale 1:7,000,000_ (eds Kane, D. L. & Hinkel, K. M.) (Institute of Northern


Engineering, 2008). Google Scholar  * Kanevskiy, M., Shur, Y., Fortier, D., Jorgenson, M. T. & Stephani, E. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in


northern Alaska, Itkillik River exposure. _Quat. Res._ 75, 584–596 (2011). Google Scholar  * Kanevskiy, M., Dillon, M., Stephani, E. & O’Donnell, J. _ In Proc. 10th Int. Conf.


Permafrost_ 191–196 (2012). Google Scholar  * Kanevskiy, M. et al. Cryostratigraphy and permafrost evolution in the lacustrine Lowlands of West-Central Alaska. _Permafrost Periglac._ 25,


14–34 (2014). Google Scholar  * Ulrich, M., Grosse, G., Strauss, J. & Schirrmeister, L. Quantifying wedge-ice volumes in yedoma and thermokarst basin deposits. _Permafrost Periglac._ 25,


151–161 (2014). Google Scholar  * Development Core Team _R: A Language and Environment for Statistical Computing_ (R Foundation for Statistical Computing, 2009); http://www.R-project.org


Google Scholar  Download references ACKNOWLEDGEMENTS We thank B. Jones at the USGS for contributions to remote sensing data sets and for providing valuable comments on the manuscript, C.


Koven for model data contributions in Fig. 3, and Ted Schuur for assistance with AMS radiocarbon dating. This work was supported by the NSF ARC-1304823, NASA ABoVE NNX15AU49A, NSF


OPP-1107892, NSF ARCSS 1500931, USDA-Hatch, US Department of Energy DESC0010580 and ERC. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Water and Environmental Research Center, University of


Alaska Fairbanks, Fairbanks, Alaska 999775, USA Katey Walter Anthony & Peter Anthony * Division of Geological and Geophysical Surveys, Alaska Department of Natural Resources, Fairbanks,


Alaska 999775, USA Ronald Daanen * Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany Thomas Schneider von Deimling & Guido Grosse * Max


Planck Institute for Meteorology, 20146 Hamburg, Germany Thomas Schneider von Deimling * School of Natural Resources and Extension, University of Alaska Fairbanks, Fairbanks, Alaska 999775,


USA Chien-Lu Ping * Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, USA Jeffrey P. Chanton Authors * Katey Walter Anthony View


author publications You can also search for this author inPubMed Google Scholar * Ronald Daanen View author publications You can also search for this author inPubMed Google Scholar * Peter


Anthony View author publications You can also search for this author inPubMed Google Scholar * Thomas Schneider von Deimling View author publications You can also search for this author


inPubMed Google Scholar * Chien-Lu Ping View author publications You can also search for this author inPubMed Google Scholar * Jeffrey P. Chanton View author publications You can also search


for this author inPubMed Google Scholar * Guido Grosse View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS K.W.A. conceived of the study and


wrote the paper. K.W.A., P.A., C.-L.P. and G.G. conducted field and lab work. R.D. and T.S.v.D. performed numerical modelling. Isotopic analyses were conducted in the laboratory of J.P.C.


All authors commented on the analysis, interpretation and presentation of the data, and were involved in the writing. CORRESPONDING AUTHOR Correspondence to Katey Walter Anthony. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information (PDF 1176 kb) RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Walter Anthony, K., Daanen, R., Anthony, P. _et al._ Methane emissions proportional to permafrost carbon thawed in


Arctic lakes since the 1950s. _Nature Geosci_ 9, 679–682 (2016). https://doi.org/10.1038/ngeo2795 Download citation * Received: 05 December 2015 * Accepted: 22 July 2016 * Published: 22


August 2016 * Issue Date: September 2016 * DOI: https://doi.org/10.1038/ngeo2795 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable


link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative