Translational control of immune responses: from transcripts to translatomes

Translational control of immune responses: from transcripts to translatomes

Play all audios:

Loading...

ABSTRACT Selective translational control of gene expression is emerging as a principal mechanism for the regulation of protein abundance that determines a variety of functions in both the


adaptive immune system and the innate immune system. The translation-initiation factor eIF4E acts as a node for such regulation, but non-eIF4E mechanisms are also prevalent. Studies of


'translatomes' (genome-wide pools of translated mRNA) have facilitated mechanistic discoveries by identifying key regulatory components, including transcription factors, that are


under translational control. Here we review the current knowledge on mechanisms that regulate translation and thereby modulate immunological function. We further describe approaches for


measuring and analyzing translatomes and how such powerful tools can facilitate future insights on the role of translational control in the immune system. Access through your institution Buy


or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and


online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes


which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS TRANSLATION FACTOR EIF5A IS ESSENTIAL FOR IFNΓ PRODUCTION AND CELL CYCLE REGULATION IN PRIMARY CD8+ T LYMPHOCYTES Article Open access 17 December 2022 DYNAMICS IN PROTEIN TRANSLATION


SUSTAINING T CELL PREPAREDNESS Article 06 July 2020 QUANTIFICATION OF TRANSLATION UNCOVERS THE FUNCTIONS OF THE ALTERNATIVE TRANSCRIPTOME Article 29 June 2020 REFERENCES * Bava, F.A. et al.


CPEB1 coordinates alternative 3′-UTR formation with translational regulation. _Nature_ 495, 121–125 (2013). Article  CAS  PubMed  Google Scholar  * Rousseau, D., Kaspar, R., Rosenwald, I.,


Gehrke, L. & Sonenberg, N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation


factor 4E. _Proc. Natl. Acad. Sci. USA_ 93, 1065–1070 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lindstein, T., June, C.H., Ledbetter, J.A., Stella, G. & Thompson,


C.B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. _Science_ 244, 339–343 (1989). Article  CAS  PubMed  Google Scholar  * Schena, M. et


al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. _Proc. Natl. Acad. Sci. USA_ 93, 10614–10619 (1996). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. _Science_ 270, 467–470 (1995).


Article  CAS  PubMed  Google Scholar  * Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. _Nat. Biotechnol._ 14, 1675–1680 (1996). Article


  CAS  PubMed  Google Scholar  * Larsson, O., Tian, B. & Sonenberg, N. Toward a genome-wide landscape of translational control. _Cold Spring Harb. Perspect. Biol._ 5, a012302 (2013).


Article  PubMed  PubMed Central  CAS  Google Scholar  * Vogel, C. & Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. _Nat.


Rev. Genet._ 13, 227–232 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. _Nature_ 473,


337–342 (2011). Article  PubMed  CAS  Google Scholar  * Kristensen, A.R., Gsponer, J. & Foster, L.J. Protein synthesis rate is the predominant regulator of protein expression during


differentiation. _Mol. Syst. Biol._ 10.1038/msb.2013.47 (17 September 2013).THIS STUDY IDENTIFIES TRANSLATIONAL CONTROL AS THE PRINCIPAL MECHANISM AMONG POST-TRANSCRIPTIONAL AND


POST-TRANSLATIONAL MECHANISMS FOR THE DYNAMIC REGULATION OF GENE EXPRESSION. * Spirin, A.S. The second Sir Hans Krebs lecture. Informosomes. _Eur. J. Biochem._ 10, 20–35 (1969). Article  CAS


  PubMed  Google Scholar  * Keene, J.D. & Tenenbaum, S.A. Eukaryotic mRNPs may represent posttranscriptional operons. _Mol. Cell_ 9, 1161–1167 (2002).THIS STUDY INTRODUCES THE PRESENT


CONCEPTUAL MODEL FOR THE REGULATION OF GENE EXPRESSION AT THE POST-TRANSCRIPTIONAL LEVEL. Article  CAS  PubMed  Google Scholar  * Candeias, M.M. et al. P53 mRNA controls p53 activity by


managing Mdm2 functions. _Nat. Cell Biol._ 10, 1098–1105 (2008). Article  CAS  PubMed  Google Scholar  * Hershey, J.W., Sonenberg, N. & Mathews, M.B. Principles of translational control:


an overview. _Cold Spring Harb. Perspect. Biol._ 4, a011528 (2012). Article  PubMed  PubMed Central  CAS  Google Scholar  * Shalgi, R. et al. Widespread regulation of translation by


elongation pausing in heat shock. _Mol. Cell_ 49, 439–452 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, B., Han, Y. & Qian, S.B. Cotranslational response to


proteotoxic stress by elongation pausing of ribosomes. _Mol. Cell_ 49, 453–463 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gerashchenko, M.V., Lobanov, A.V. &


Gladyshev, V.N. Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. _Proc. Natl. Acad. Sci. USA_ 109, 17394–17399 (2012). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Leprivier, G. et al. The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. _Cell_ 153, 1064–1079 (2013).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Sonenberg, N. & Hinnebusch, A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. _Cell_


136, 731–745 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jackson, R.J., Hellen, C.U. & Pestova, T.V. The mechanism of eukaryotic translation initiation and principles


of its regulation. _Nat. Rev. Mol. Cell Biol._ 11, 113–127 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Baltz, A.G. et al. The mRNA-bound proteome and its global


occupancy profile on protein-coding transcripts. _Mol. Cell_ 46, 674–690 (2012). Article  CAS  PubMed  Google Scholar  * Castello, A. et al. Insights into RNA biology from an atlas of


mammalian mRNA-binding proteins. _Cell_ 149, 1393–1406 (2012). Article  CAS  PubMed  Google Scholar  * Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. RAFT1: a


mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. _Cell_ 78, 35–43 (1994). Article  CAS  PubMed  Google Scholar  * Brown, E.J. et al. A


mammalian protein targeted by G1-arresting rapamycin-receptor complex. _Nature_ 369, 756–758 (1994). Article  CAS  PubMed  Google Scholar  * Gwinn, D.M. et al. AMPK phosphorylation of


raptor mediates a metabolic checkpoint. _Mol. Cell_ 30, 214–226 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Inoki, K., Zhu, T. & Guan, K.L. TSC2 mediates cellular


energy response to control cell growth and survival. _Cell_ 115, 577–590 (2003). Article  CAS  PubMed  Google Scholar  * Corradetti, M.N., Inoki, K., Bardeesy, N., DePinho, R.A. & Guan,


K.L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. _Genes Dev._ 18, 1533–1538 (2004). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Shaw, R.J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. _Cancer Cell_ 6, 91–99 (2004). Article  CAS  PubMed  Google Scholar


  * Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. _J. Biol. Chem._ 273, 14484–14494 (1998). Article  CAS  PubMed


  Google Scholar  * Wang, X., Campbell, L.E., Miller, C.M. & Proud, C.G. Amino acid availability regulates p70 S6 kinase and multiple translation factors. _Biochem. J._ 334, 261–267


(1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * DeYoung, M.P., Horak, P., Sofer, A., Sgroi, D. & Ellisen, L.W. Hypoxia regulates TSC1/2-mTOR signaling and tumor


suppression through REDD1-mediated 14–3-3 shuttling. _Genes Dev._ 22, 239–251 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Brugarolas, J. et al. Regulation of mTOR


function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. _Genes Dev._ 18, 2893–2904 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Laplante, M.


& Sabatini, D.M. mTOR signaling in growth control and disease. _Cell_ 149, 274–293 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim, D.H. et al. mTOR interacts with


raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. _Cell_ 110, 163–175 (2002). Article  CAS  PubMed  Google Scholar  * Hara, K. et al. Raptor, a binding


partner of target of rapamycin (TOR), mediates TOR action. _Cell_ 110, 177–189 (2002). Article  CAS  PubMed  Google Scholar  * Jacinto, E. et al. Mammalian TOR complex 2 controls the actin


cytoskeleton and is rapamycin insensitive. _Nat. Cell Biol._ 6, 1122–1128 (2004). Article  CAS  PubMed  Google Scholar  * Sarbassov, D.D. et al. Rictor, a novel binding partner of mTOR,


defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. _Curr. Biol._ 14, 1296–1302 (2004). Article  CAS  PubMed  Google Scholar  * Sarbassov, D.D. et


al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. _Mol. Cell_ 22, 159–168 (2006). Article  CAS  PubMed  Google Scholar  * Heitman, J., Movva, N.R. & Hall, M.N.


Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. _Science_ 253, 905–909 (1991). Article  CAS  PubMed  Google Scholar  * Gingras, A.C. et al. Regulation of 4E–BP1


phosphorylation: a novel two-step mechanism. _Genes Dev._ 13, 1422–1437 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Brunn, G.J. et al. Direct inhibition of the signaling


functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. _EMBO J._ 15, 5256–5267 (1996). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Burnett, P.E., Barrow, R.K., Cohen, N.A., Snyder, S.H. & Sabatini, D.M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E–BP1. _Proc. Natl.


Acad. Sci. USA_ 95, 1432–1437 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hara, K. et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. _J. Biol. Chem._ 272,


26457–26463 (1997). Article  CAS  PubMed  Google Scholar  * Wullschleger, S., Loewith, R. & Hall, M.N. TOR signaling in growth and metabolism. _Cell_ 124, 471–484 (2006). Article  CAS 


PubMed  Google Scholar  * Dorrello, N.V. et al. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. _Science_ 314, 467–471 (2006). Article  CAS 


PubMed  Google Scholar  * Raught, B. et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. _EMBO J._ 23, 1761–1769 (2004). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Pause, A. et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. _Nature_ 371, 762–767


(1994). Article  CAS  PubMed  Google Scholar  * Roux, P.P. & Topisirovic, I. Regulation of mRNA translation by signaling pathways. _Cold Spring Harb. Perspect. Biol._ 4, a012252 (2012).


Article  PubMed  PubMed Central  CAS  Google Scholar  * Gingras, A.C. et al. Hierarchical phosphorylation of the translation inhibitor 4E–BP1. _Genes Dev._ 15, 2852–2864 (2001). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Zimmer, S.G., DeBenedetti, A. & Graff, J.R. Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator


of tumor formation, growth, invasion and metastasis. _Anticancer Res._ 20, 3A, 1343–1351 (2000). Google Scholar  * Colina, R. et al. Translational control of the innate immune response


through IRF-7. _Nature_ 452, 323–328 (2008).THIS STUDY IDENTIFIES MTORC1–4E-BP–DEPENDENT TRANSLATIONAL CONTROL OF IRF7, WHICH AFFECTS THE PRODUCTION OF TYPE 1 INTERFERON AND SUSCEPTIBILITY


TO INFECTION WITH VESICULAR STOMATITIS VIRUS. Article  CAS  PubMed  Google Scholar  * Larsson, O. et al. Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an


anti-apoptotic transcript carrying a consensus hairpin structure. _Nucleic Acids Res._ 34, 4375–4386 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hsieh, A.C. et al. The


translational landscape of mTOR signalling steers cancer initiation and metastasis. _Nature_ 485, 55–61 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Thoreen, C.C. et al. A


unifying model for mTORC1-mediated regulation of mRNA translation. _Nature_ 485, 109–113 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bilanges, B. et al. Tuberous


sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner. _Mol. Cell. Biol._ 27, 5746–5764 (2007). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Patursky-Polischuk, I. et al. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner.


_Mol. Cell. Biol._ 29, 640–649 (2009). Article  CAS  PubMed  Google Scholar  * Avni, D., Shama, S., Loreni, F. & Meyuhas, O. Vertebrate mRNAs with a 5′-terminal pyrimidine tract are


candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element. _Mol. Cell. Biol._ 14, 3822–3833 (1994). CAS  PubMed  PubMed Central


  Google Scholar  * Miloslavski, R. et al. Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. _J. Mol. Cell Biol._


10.1093/jmcb/mju008 (13 March 2014). * Shama, S., Avni, D., Frederickson, R.M., Sonenberg, N. & Meyuhas, O. Overexpression of initiation factor eIF-4E does not relieve the translational


repression of ribosomal protein mRNAs in quiescent cells. _Gene Expr._ 4, 241–252 (1995). CAS  PubMed  Google Scholar  * Damgaard, C.K. & Lykke-Andersen, J. Translational coregulation of


5′TOP mRNAs by TIA-1 and TIAR. _Genes Dev._ 25, 2057–2068 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tcherkezian, J. et al. Proteomic analysis of cap-dependent


translation identifies LARP1 as a key regulator of 5′TOP mRNA translation. _Genes Dev._ 28, 357–371 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Flynn, A. & Proud,


C.G. Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. _J. Biol. Chem._ 270, 21684–21688 (1995).


Article  CAS  PubMed  Google Scholar  * Fukunaga, R. & Hunter, T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein


kinase substrates. _EMBO J._ 16, 1921–1933 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Waskiewicz, A.J., Flynn, A., Proud, C.G. & Cooper, J.A. Mitogen-activated


protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. _EMBO J._ 16, 1909–1920 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Furic, L. et al. eIF4E


phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. _Proc. Natl. Acad. Sci. USA_ 107, 14134–14139 (2010). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Fernandez, P.C. et al. Genomic targets of the human c-Myc protein. _Genes Dev._ 17, 1115–1129 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Topisirovic, I. et


al. Stability of eukaryotic translation initiation factor 4E mRNA is regulated by HuR, and this activity is dysregulated in cancer. _Mol. Cell. Biol._ 29, 1152–1162 (2009). Article  CAS 


PubMed  Google Scholar  * Cook, K.D. & Miller, J. TCR-dependent translational control of GATA-3 enhances Th2 differentiation. _J. Immunol._ 185, 3209–3216 (2010). Article  CAS  PubMed 


Google Scholar  * Gigoux, M. et al. Inducible costimulator facilitates T-dependent B cell activation by augmenting IL-4 translation. _Mol. Immunol._ 59, 46–54 (2014). Article  CAS  PubMed 


Google Scholar  * Lee, M.S., Kim, B., Oh, G.T. & Kim, Y.J. OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7. _Nat. Immunol._ 14, 346–355


(2013).THIS STUDY IDENTIFIES OASL1 AS A KEY REGULATOR OF THE TRANSLATION OF IRF7, WHICH AFFECTS THE EXPRESSION OF TYPE 1 INTERFERON. IT PROPOSES THAT OASL1 ACTS IN A NEGATIVE FEEDBACK LOOP


BY SUPPRESSING THE TRANSLATION OF IRF7 MRNA. Article  CAS  PubMed  Google Scholar  * Bjur, E. et al. Distinct translational control in CD4+ T cell subsets. _PLoS Genet._ 9, e1003494


(2013).THIS STUDY SHOWS THAT ANALYSIS OF TRANSLATOMES IS FEASIBLE IN PRIMARY CELLS OF THE IMMUNE SYSTEM THAT ARE OF LOW ABUNDANCE AND THAT SUCH ANALYSIS PROVIDES A PERSPECTIVE DISTINCT FROM


THE ANALYSIS OF THEIR TRANSCRIPTOMES. IT ALSO IDENTIFIES EIF4E-DEPENDENT TRANSLATIONAL CONTROL AS KEY FOR THE PROLIFERATION OF FOXP3− AND FOXP3+ CD4+ T CELLS. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Tangye, S.G., Ma, C.S., Brink, R. & Deenick, E.K. The good, the bad and the ugly - TFH cells in human health and disease. _Nat. Rev. Immunol._ 13, 412–426


(2013). Article  CAS  PubMed  Google Scholar  * Araki, K., Ellebedy, A.H. & Ahmed, R. TOR in the immune system. _Curr. Opin. Cell Biol._ 23, 707–715 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Xu, H. et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. _Nat. Immunol._ 13, 642–650


(2012).THIS STUDY SHOWS THAT PHOSPHORYLATION OF EIF4E IS KEY IN THE TRANSLATIONAL ACTIVATION OF IRF8 MRNA AND DOWNSTREAM MACROPHAGE POLARIZATION. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Herdy, B. et al. Translational control of the activation of transcription factor NF-κB and production of type I interferon by phosphorylation of the translation factor eIF4E.


_Nat. Immunol._ 13, 543–550 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nikolcheva, T. et al. A translational rheostat for RFLAT-1 regulates RANTES expression in T


lymphocytes. _J. Clin. Invest._ 110, 119–126 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and


TH1–TH17 responses. _Nat. Immunol._ 12, 231–238 (2011). Article  CAS  PubMed  Google Scholar  * Satoh, T. et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses


against helminth infection. _Nat. Immunol._ 11, 936–944 (2010). Article  CAS  PubMed  Google Scholar  * Huang, J.T. & Schneider, R.J. Adenovirus inhibition of cellular protein synthesis


involves inactivation of cap-binding protein. _Cell_ 65, 271–280 (1991). Article  CAS  PubMed  Google Scholar  * Kleijn, M., Vrins, C.L., Voorma, H.O. & Thomas, A.A. Phosphorylation


state of the cap-binding protein eIF4E during viral infection. _Virology_ 217, 486–494 (1996). Article  CAS  PubMed  Google Scholar  * Connor, J.H. & Lyles, D.S. Vesicular stomatitis


virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E-BP1. _J. Virol._ 76, 10177–10187 (2002). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Walsh, D. et al. Eukaryotic translation initiation factor 4F architectural alterations accompany translation initiation factor redistribution in


poxvirus-infected cells. _Mol. Cell. Biol._ 28, 2648–2658 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Walsh, D., Perez, C., Notary, J. & Mohr, I. Regulation of the


translation initiation factor eIF4F by multiple mechanisms in human cytomegalovirus-infected cells. _J. Virol._ 79, 8057–8064 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Walsh, D. & Mohr, I. Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells. _Genes Dev._ 18, 660–672 (2004). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. _Nat. Immunol._ 12, 715–723 (2011). Article  CAS  PubMed  Google Scholar  *


Vashchenko, G. & MacGillivray, R.T. Multi-copper oxidases and human iron metabolism. _Nutrients_ 5, 2289–2313 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Klebanoff,


S.J. Bactericidal effect of Fe2+, ceruloplasmin, and phosphate. _Arch. Biochem. Biophys._ 295, 302–308 (1992). Article  CAS  PubMed  Google Scholar  * Mazumder, B. & Fox, P.L. Delayed


translational silencing of ceruloplasmin transcript in γ interferon-activated U937 monocytic cells: role of the 3′ untranslated region. _Mol. Cell. Biol._ 19, 6898–6905 (1999). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Sampath, P., Mazumder, B., Seshadri, V. & Fox, P.L. Transcript-selective translational silencing by gamma interferon is directed by a novel


structural element in the ceruloplasmin mRNA 3′ untranslated region. _Mol. Cell. Biol._ 23, 1509–1519 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vyas, K. et al.


Genome-wide polysome profiling reveals an inflammation-responsive posttranscriptional operon in gamma interferon-activated monocytes. _Mol. Cell. Biol._ 29, 458–470 (2009). Article  CAS 


PubMed  Google Scholar  * Mukhopadhyay, R. et al. DAPK-ZIPK-L13a axis constitutes a negative-feedback module regulating inflammatory gene expression. _Mol. Cell_ 32, 371–382 (2008).THESE


AUTHORS IDENTIFY A NEGATIVE FEEDBACK LOOP FOR GAIT COMPLEX ACTIVITY. DAPK AND ZIPK, WHICH ARE ACTIVATORS OF THE GAIT COMPLEX, ARE THEMSELVES TARGETS FOR SUPPRESSED TRANSLATION VIA A


GAIT-DEPENDENT MECHANISM. Article  CAS  PubMed  PubMed Central  Google Scholar  * Scheu, S. et al. Activation of the integrated stress response during T helper cell differentiation. _Nat.


Immunol._ 7, 644–651 (2006). Article  CAS  PubMed  Google Scholar  * Wek, R.C., Jiang, H.Y. & Anthony, T.G. Coping with stress: eIF2 kinases and translational control. _Biochem. Soc.


Trans._ 34, 7–11 (2006). Article  CAS  PubMed  Google Scholar  * Villarino, A.V. et al. Posttranscriptional silencing of effector cytokine mRNA underlies the anergic phenotype of


self-reactive T cells. _Immunity_ 34, 50–60 (2011).THIS STUDY SHOWS THAT TRANSLATIONAL CONTROL OF CYTOKINES IS IMPORTANT FOR SELF REACTIVE T-CELL ANERGY. Article  CAS  PubMed  PubMed Central


  Google Scholar  * Piecyk, M. et al. TIA-1 is a translational silencer that selectively regulates the expression of TNF-α. _EMBO J._ 19, 4154–4163 (2000). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Katsanou, V. et al. HuR as a negative posttranscriptional modulator in inflammation. _Mol. Cell_ 19, 777–789 (2005). Article  CAS  PubMed  Google Scholar  * Yu, C.


et al. An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. _Mol. Cell_ 25, 765–778 (2007). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Dixon, D.A. et al. Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. _J. Exp. Med._ 198, 475–481 (2003). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Dhamija, S. et al. Interleukin-17 (IL-17) and IL-1 activate translation of overlapping sets of mRNAs, including that of the negative regulator of inflammation,


MCPIP1. _J. Biol. Chem._ 288, 19250–19259 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yamamoto, M. et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the


inducible nuclear protein IκBζ. _Nature_ 430, 218–222 (2004). Article  CAS  PubMed  Google Scholar  * Chang, C.H. et al. Posttranscriptional control of T cell effector function by aerobic


glycolysis. _Cell_ 153, 1239–1251 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Warner, J.R., Knopf, P.M. & Rich, A. A multiple ribosomal structure in protein


synthesis. _Proc. Natl. Acad. Sci. USA_ 49, 122–129 (1963). Article  CAS  PubMed  PubMed Central  Google Scholar  * Johannes, G., Carter, M.S., Eisen, M.B., Brown, P.O. & Sarnow, P.


Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. _Proc. Natl. Acad. Sci. USA_ 96, 13118–13123 (1999).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Karginov, F.V. & Hannon, G.J. Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and


correlates with altered translation rates. _Genes Dev._ 27, 1624–1632 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ingolia, N.T., Ghaemmaghami, S., Newman, J.R. &


Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. _Science_ 324, 218–223 (2009).THIS STUDY INTRODUCES THE RIBOSOME-PROFILING


TECHNIQUE AS A GENOME-WIDE TOOL WITH WHICH TO MAP THE POSITIONS OF RIBOSOMES ON MRNA. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ingolia, N.T., Brar, G.A., Rouskin, S.,


McGeachy, A.M. & Weissman, J.S. The ribosome profiling strategy for monitoring translation _in vivo_ by deep sequencing of ribosome-protected mRNA fragments. _Nat. Protoc._ 7, 1534–1550


(2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zoschke, R., Watkins, K.P. & Barkan, A. A rapid ribosome profiling method elucidates chloroplast ribosome behavior _in


vivo_. _Plant Cell_ 25, 2265–2275 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Larsson, O., Sonenberg, N. & Nadon, R. Identification of differential translation in


genome wide studies. _Proc. Natl. Acad. Sci. USA_ 107, 21487–21492 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Olshen, A.B. et al. Assessing gene-level translational


control from ribosome profiling. _Bioinformatics_ 29, 2995–3002 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Larsson, O & Nadon, R. Re-analysis of genome wide data on


mammalian microRNA-mediated suppression of gene expression. _Translation_ 1, 1–9 (2013). Article  Google Scholar  * Eliseeva, I.A., Vorontsov, I.E., Babeyev, K.E., Buyanova, S.M., Sysoeva,


M.A. & Kondrashov, F.A. et al. In silico motif analysis suggests an interplay of transcriptional and translational control in mTOR response. _Translation_ 1, 1–7 (2013). Article  Google


Scholar  * Larsson, O., Sonenberg, N. & Nadon, R. Anota: Analysis of differential translation in genome-wide studies. _Bioinformatics_ 27, 1440–1441 (2011). Article  CAS  PubMed  Google


Scholar  * Colman, H. et al. Genome-wide analysis of host mRNA translation during hepatitis C virus infection. _J. Virol._ 87, 6668–6677 (2013).THIS ARTICLE SHOWS THAT THE ANALYSIS APPROACH


(ANOTA OR TRANSLATIONAL-EFFICIENCY SCORE) IS CRITICAL FOR PREDICTING WHETHER DIFFERENCES IN TRANSLATION IDENTIFIED WILL CORRELATE WITH CHANGES IN PROTEOMES. ONLY ANOTA ANALYSIS CORRESPONDS


TO CHANGES IN PROTEIN AMOUNTS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Larsson, O. et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. _Proc.


Natl. Acad. Sci. USA_ 109, 8977–8982 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Parker, M.W. et al. Fibrotic extracellular matrix activates a profibrotic positive


feedback loop. _J. Clin. Invest._ 124, 1622–1635 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stumpf, C.R., Moreno, M.V., Olshen, A.B., Taylor, B.S. & Ruggero, D. The


translational landscape of the mammalian cell cycle. _Mol. Cell_ 52, 574–582 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tebaldi, T., Dassi, E., Kostoska, G., Viero, G.


& Quattrone, A. tRanslatome: an R/Bioconductor package to portray translational control. _Bioinformatics_ 30, 289–291 (2014). Article  CAS  PubMed  Google Scholar  * Michel, A.M. et al.


GWIPS-viz: development of a ribo-seq genome browser. _Nucleic Acids Res._ 42, D859–D864 (2014). Article  CAS  PubMed  Google Scholar  * Schneider-Poetsch, T. et al. Inhibition of eukaryotic


translation elongation by cycloheximide and lactimidomycin. _Nat. Chem. Biol._ 6, 209–217 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, S. et al. Global mapping of


translation initiation sites in mammalian cells at single-nucleotide resolution. _Proc. Natl. Acad. Sci. USA_ 109, E2424–E2432 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Ingolia,


N.T., Lareau, L.F. & Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of Mammalian proteomes. _Cell_ 147, 789–802 (2011). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Guttman, M., Russell, P., Ingolia, N.T., Weissman, J.S. & Lander, E.S. Ribosome profiling provides evidence that large noncoding RNAs do not


encode proteins. _Cell_ 154, 240–251 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fresno, M., Jimenez, A. & Vazquez, D. Inhibition of translation in eukaryotic systems


by harringtonine. _Eur. J. Biochem._ 72, 323–330 (1977). Article  CAS  PubMed  Google Scholar  * Larsson, O. et al. Eukaryotic translation initiation factor 4E induced progression of


primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. _Cancer Res._ 67, 6814–6824


(2007). Article  CAS  PubMed  Google Scholar  * Mamane, Y. et al. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. _PLoS ONE_ 2, e242 (2007).


Article  PubMed  PubMed Central  CAS  Google Scholar  * Rajasekhar, V.K. et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing


mRNAs to polysomes. _Mol. Cell_ 12, 889–901 (2003). Article  CAS  PubMed  Google Scholar  * Tominaga, Y., Tamguney, T., Kolesnichenko, M., Bilanges, B. & Stokoe, D. Translational


deregulation in PDK-1−/− embryonic stem cells. _Mol. Cell. Biol._ 25, 8465–8475 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mikulits, W. et al. Isolation of


translationally controlled mRNAs by differential screening. _FASEB J._ 14, 1641–1652 (2000). Article  CAS  PubMed  Google Scholar  * Grolleau, A. et al. Global and specific translational


control by rapamycin in T cells uncovered by microarrays and proteomics. _J. Biol. Chem._ 277, 22175–22184 (2002). Article  CAS  PubMed  Google Scholar  * Ceppi, M. et al. Ribosomal protein


mRNAs are translationally-regulated during human dendritic cells activation by LPS. _Immunome Res._ 5, 5 (2009). Article  PubMed  PubMed Central  CAS  Google Scholar  * Kitamura, H. et al.


Genome-wide identification and characterization of transcripts translationally regulated by bacterial lipopolysaccharide in macrophage-like J774.1 cells. _Physiol. Genomics_ 33, 121–132


(2008). Article  CAS  PubMed  Google Scholar  * Ring, A.M. et al. Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. _Nat. Immunol._ 13, 1187–1195


(2012). Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS Supported by the Canadian Institutes for Health Research (I.T., and MOP 67211 to C.A.P.),


the Canada Research Chair program (C.A.P.), the Swedish Research Council (O.L.), the Swedish Cancer Society (O.L.) and the Wallenberg Academy Fellows program (O.L.). AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS * Department of Microbiology and Immunology, and Microbiome and Disease Tolerance Centre, McGill University, Montreal, Canada Ciriaco A Piccirillo * FOCIS Centre of


Excellence and Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada Ciriaco A Piccirillo * Department of Oncology-Pathology, Cancer


Center Karolinska, Karolinska Institutet, Stockholm, Sweden Eva Bjur & Ola Larsson * Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill


University, Montréal, Canada Ivan Topisirovic * Department of Oncology, McGill University, Montréal, Canada Ivan Topisirovic * Department of Biochemistry, and Goodman Cancer Research Centre,


McGill University, Montreal, Canada Nahum Sonenberg Authors * Ciriaco A Piccirillo View author publications You can also search for this author inPubMed Google Scholar * Eva Bjur View


author publications You can also search for this author inPubMed Google Scholar * Ivan Topisirovic View author publications You can also search for this author inPubMed Google Scholar *


Nahum Sonenberg View author publications You can also search for this author inPubMed Google Scholar * Ola Larsson View author publications You can also search for this author inPubMed 


Google Scholar CORRESPONDING AUTHORS Correspondence to Ciriaco A Piccirillo or Ola Larsson. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests.


RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Piccirillo, C., Bjur, E., Topisirovic, I. _et al._ Translational control of immune responses: from


transcripts to translatomes. _Nat Immunol_ 15, 503–511 (2014). https://doi.org/10.1038/ni.2891 Download citation * Received: 23 February 2014 * Accepted: 08 April 2014 * Published: 19 May


2014 * Issue Date: June 2014 * DOI: https://doi.org/10.1038/ni.2891 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative