See no evil, hear no evil, do no evil: the lessons of immune privilege

See no evil, hear no evil, do no evil: the lessons of immune privilege

Play all audios:

Loading...

ABSTRACT Immune-mediated inflammation and allograft rejection are greatly reduced in certain organs, a phenomenon called 'immune privilege'. Immune privilege is well developed in


three regions of the body: the eye, the brain and the pregnant uterus. Immune-mediated inflammation has devastating consequences in the eye and brain, which have limited capacity for


regeneration. Likewise, loss of immune privilege at the maternal-fetal interface culminates in abortion in rodents. However, all three regions share many adaptations that restrict the


induction and expression of immune-mediated inflammation. A growing body of evidence from rodent studies suggests that a breakdown in immune privilege contributes to multiple sclerosis,


uveitis, corneal allograft rejection and possibly even immune abortion. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS EVOLUTION OF THE OCULAR IMMUNE SYSTEM Article Open access 09


December 2024 REDEFINING OUR VISION: AN UPDATED GUIDE TO THE OCULAR IMMUNE SYSTEM Article 30 August 2024 COMPARTMENTALIZED OCULAR LYMPHATIC SYSTEM MEDIATES EYE–BRAIN IMMUNITY Article Open


access 28 February 2024 REFERENCES * van Dooremaal, J.C. Die Entwicklung der in fremden Grund versetzten lebenden Geweba. _Albrecht Von Graefes Arch. Ophthalmol._ 19, 358–373 (1873). Google


Scholar  * Medawar, P.B. Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. _Br.


J. Exp. Pathol._ 29, 58–69 (1948). CAS  PubMed  PubMed Central  Google Scholar  * Streilein, J.W. Ocular immune privilege: therapeutic opportunities from an experiment of nature. _Nat. Rev.


Immunol._ 3, 879–889 (2003). CAS  PubMed  Google Scholar  * Trowsdale, J. & Betz, A. Mother's little helpers: mechanisms of maternal-fetal tolerance. _Nat. Immunol._ 7, 241–246


(2006). CAS  PubMed  Google Scholar  * Kaplan, H.J. & Streilein, J.W. Immune response to immunization via the anterior chamber of the eye. I. F. lymphocyte-induced immune deviation. _J.


Immunol._ 118, 809–814 (1977). CAS  PubMed  Google Scholar  * Gordon, L.B. et al. Ovalbumin is more immunogenic when introduced into brain or cerebrospinal fluid than into extracerebral


sites. _J. Neuroimmunol._ 40, 81–87 (1992). CAS  PubMed  Google Scholar  * Harling-Berg, C. et al. Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin


microinfused into rat cerebrospinal fluid. _J. Neuroimmunol._ 25, 185–193 (1989). CAS  PubMed  Google Scholar  * Harling-Berg, C.J. et al. Myelin basic protein infused into cerebrospinal


fluid suppresses experimental autoimmune encephalomyelitis. _J. Neuroimmunol._ 35, 45–51 (1991). CAS  PubMed  Google Scholar  * Barker, C.F. & Billingham, R.E. Immunologically privileged


sites. _Adv. Immunol._ 25, 1–54 (1977). CAS  PubMed  Google Scholar  * McLean, J.M. & Scothorne, R.J. The lymphatics of the endometrium in the rabbit. _J. Anat._ 107, 39–48 (1970). CAS


  PubMed  PubMed Central  Google Scholar  * Bertrams, J. et al. The specificity of leukocyte antibodies in histocompatibility testing of serum from prima- and multiparas. _Bibl. Haematol._


37, 98–106 (1971). CAS  PubMed  Google Scholar  * Abi-Hanna, D. et al. HLA antigens in ocular tissues. I. _In vivo_ expression in human eyes. _Transplantation_ 45, 610–613 (1988). CAS 


PubMed  Google Scholar  * Lampson, L.A. & Fisher, C.A. Weak HLA and β2-microglobulin expression of neuronal cell lines can be modulated by interferon. _Proc. Natl. Acad. Sci. USA_ 81,


6476–6480 (1984). CAS  PubMed  Google Scholar  * Le Bouteiller, P. HLA class I chromosomal region, genes, and products: facts and questions. _Crit. Rev. Immunol._ 14, 89–129 (1994). CAS 


PubMed  Google Scholar  * Joly, E. et al. Viral persistence in neurons explained by lack of major histocompatibility class I expression. _Science_ 253, 1283–1285 (1991). CAS  PubMed  Google


Scholar  * Ljunggren, H.G. et al. The RMA-S lymphoma mutant; consequences of a peptide loading defect on immunological recognition and graft rejection. _Int. J. Cancer Suppl._ 6, 38–44


(1991). CAS  PubMed  Google Scholar  * Moffett-King, A. Natural killer cells and pregnancy. _Nat. Rev. Immunol._ 2, 656–663 (2002). CAS  PubMed  Google Scholar  * Ishitani, A. &


Geraghty, D.E. Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. _Proc. Natl. Acad. Sci. USA_ 89, 3947–3951


(1992). CAS  PubMed  Google Scholar  * Kovats, S. et al. A class I antigen, HLA-G, expressed in human trophoblasts. _Science_ 248, 220–223 (1990). CAS  PubMed  Google Scholar  * Le Discorde,


M. et al. Expression of HLA-G in human cornea, an immune-privileged tissue. _Hum. Immunol._ 64, 1039–1044 (2003). CAS  PubMed  Google Scholar  * Niederkorn, J.Y. et al. Expression of a


nonclassical MHC class Ib molecule in the eye. _Transplantation_ 68, 1790–1799 (1999). CAS  PubMed  Google Scholar  * Rouas-Freiss, N. et al. Direct evidence to support the role of HLA-G in


protecting the fetus from maternal uterine natural killer cytolysis. _Proc. Natl. Acad. Sci. USA_ 94, 11520–11525 (1997). CAS  PubMed  Google Scholar  * Rouas-Freiss, N. et al. Role of HLA-G


in maternal-fetal immune tolerance. _Transplant. Proc._ 31, 724–725 (1999). CAS  PubMed  Google Scholar  * Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor


CD94/NKG2A. _Proc. Natl. Acad. Sci. USA_ 95, 5199–5204 (1998). CAS  PubMed  Google Scholar  * Navarro, F. et al. The ILT2(LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1


and HLA-E molecules co-expressed on target cells. _Eur. J. Immunol._ 29, 277–283 (1999). CAS  PubMed  Google Scholar  * Fournel, S. et al. Cutting edge: soluble HLA-G1 triggers CD95/CD95


ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. _J. Immunol._ 164, 6100–6104 (2000). CAS  PubMed  Google Scholar  * Wiendl, H. et al. Hide-and-seek in the brain: a


role for HLA-G mediating immune privilege for glioma cells. _Semin. Cancer Biol._ 13, 343–351 (2003). CAS  PubMed  Google Scholar  * Griffith, T.S. et al. Fas ligand-induced apoptosis as a


mechanism of immune privilege. _Science_ 270, 1189–1192 (1995). CAS  PubMed  Google Scholar  * Stuart, P.M. et al. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft


survival. _J. Clin. Invest._ 99, 396–402 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Yamagami, S. et al. Role of Fas-Fas ligand interactions in the immunorejection of allogeneic


mouse corneal transplants. _Transplantation_ 64, 1107–1111 (1997). CAS  PubMed  Google Scholar  * Jerzak, M. & Bischof, P. Apoptosis in the first trimester human placenta: the role in


maintaining immune privilege at the maternal-foetal interface and in the trophoblast remodelling. _Eur. J. Obstet. Gynecol. Reprod. Biol._ 100, 138–142 (2002). CAS  PubMed  Google Scholar  *


Choi, C. & Benveniste, E.N. Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. _Brain Res. Brain Res. Rev._ 44, 65–81 (2004). CAS  PubMed  Google Scholar 


* Sata, M. et al. Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular


disease and therapy. _Arterioscler. Thromb. Vasc. Biol._ 20, 309–316 (2000). CAS  PubMed  Google Scholar  * Walsh, K. & Sata, M. Is extravasation a Fas-regulated process? _Mol. Med.


Today_ 5, 61–67 (1999). CAS  PubMed  Google Scholar  * Lee, H.O. et al. TRAIL: a mechanism of tumor surveillance in an immune privileged site. _J. Immunol._ 169, 4739–4744 (2002). PubMed 


Google Scholar  * Phillips, T.A. et al. TRAIL (Apo-2L) and TRAIL receptors in human placentas: implications for immune privilege. _J. Immunol._ 162, 6053–6059 (1999). CAS  PubMed  Google


Scholar  * Wang, S. et al. Role of TRAIL and IFN-γ in CD4+ T cell-dependent tumor rejection in the anterior chamber of the eye. _J. Immunol._ 171, 2789–2796 (2003). CAS  PubMed  Google


Scholar  * Dorr, J. et al. Lack of tumor necrosis factor-related apoptosis-inducing ligand but presence of its receptors in the human brain. _J. Neurosci._ 22, 1–5 (2002). Google Scholar  *


Bora, N.S. et al. Differential expression of the complement regulatory proteins in the human eye. _Invest. Ophthalmol. Vis. Sci._ 34, 3579–3584 (1993). CAS  PubMed  Google Scholar  * Holmes,


C.H. et al. Complement regulatory proteins at the feto-maternal interface during human placental development: distribution of CD59 by comparison with membrane cofactor protein (CD46) and


decay accelerating factor (CD55). _Eur. J. Immunol._ 22, 1579–1585 (1992). CAS  PubMed  Google Scholar  * Holmes, C.H. et al. Preferential expression of the complement regulatory protein


decay accelerating factor at the fetomaternal interface during human pregnancy. _J. Immunol._ 144, 3099–3105 (1990). CAS  PubMed  Google Scholar  * Lass, J.H. et al. Expression of two


molecular forms of the complement decay-accelerating factor in the eye and lacrimal gland. _Invest. Ophthalmol. Vis. Sci._ 31, 1136–1148 (1990). CAS  PubMed  Google Scholar  * Rooney, I.A.


et al. Complement in human reproduction: activation and control. _Immunol. Res._ 12, 276–294 (1993). CAS  PubMed  Google Scholar  * Sohn, J.H. et al. Chronic low level complement activation


within the eye is controlled by intraocular complement regulatory proteins. _Invest. Ophthalmol. Vis. Sci._ 41, 3492–3502 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Xu, C. et al.


A critical role for murine complement regulator crry in fetomaternal tolerance. _Science_ 287, 498–501 (2000). CAS  PubMed  Google Scholar  * Sohn, J.H. et al. Complement regulatory


activity of normal human intraocular fluid is mediated by MCP, DAF, and CD59. _Invest. Ophthalmol. Vis. Sci._ 41, 4195–4202 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Harrower,


T.P. et al. Complement regulatory proteins are expressed at low levels in embryonic human, wild type and transgenic porcine neural tissue. _Xenotransplantation_ 11, 60–71 (2004). CAS  PubMed


  Google Scholar  * Singhrao, S.K. et al. Differential expression of individual complement regulators in the brain and choroid plexus. _Lab. Invest._ 79, 1247–1259 (1999). CAS  PubMed 


Google Scholar  * Taylor, A.W. Ocular immunosuppressive microenvironment. _Chem. Immunol._ 73, 72–89 (1999). CAS  PubMed  Google Scholar  * Taylor, A.W. et al. α-melanocyte-stimulating


hormone suppresses antigen-stimulated T cell production of gamma-interferon. _Neuroimmunomodulation_ 1, 188–194 (1994). CAS  PubMed  Google Scholar  * Taylor, A.W. et al. Immunoreactive


vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor. _J. Immunol._ 153, 1080–1086 (1994). CAS  PubMed  Google Scholar  * Taylor, A.W. &


Yee, D.G. Somatostatin is an immunosuppressive factor in aqueous humor. _Invest. Ophthalmol. Vis. Sci._ 44, 2644–2649 (2003). PubMed  Google Scholar  * Taylor, A.W. et al. Suppression of


nitric oxide generated by inflammatory macrophages by calcitonin gene-related peptide in aqueous humor. _Invest. Ophthalmol. Vis. Sci._ 39, 1372–1378 (1998). CAS  PubMed  Google Scholar  *


Apte, R.S. et al. Local inhibition of natural killer cell activity promotes the progressive growth of intraocular tumors. _Invest. Ophthalmol. Vis. Sci._ 38, 1277–1282 (1997). CAS  PubMed 


Google Scholar  * Apte, R.S. & Niederkorn, J.Y. Isolation and characterization of a unique natural killer cell inhibitory factor present in the anterior chamber of the eye. _J. Immunol._


156, 2667–2673 (1996). CAS  PubMed  Google Scholar  * Apte, R.S. et al. Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune


privilege. _J. Immunol._ 160, 5693–5696 (1998). CAS  PubMed  Google Scholar  * de la Cruz, P.O., Jr. et al. Lymphocytic infiltration in uveal malignant melanoma. _Cancer_ 65, 112–115 (1990).


PubMed  Google Scholar  * Mochizuki, M. et al. Immunoregulation by aqueous humor. _Cornea_ 19, S24–S25 (2000). CAS  PubMed  Google Scholar  * Sugita, S. et al. Soluble Fas ligand and


soluble Fas in ocular fluid of patients with uveitis. _Br. J. Ophthalmol._ 84, 1130–1134 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Gregory, M.S. et al. Membrane Fas ligand


activates innate immunity and terminates ocular immune privilege. _J. Immunol._ 169, 2727–2735 (2002). CAS  PubMed  Google Scholar  * Robertson, S.A. et al. Transforming growth factor β–a


mediator of immune deviation in seminal plasma. _J. Reprod. Immunol._ 57, 109–128 (2002). CAS  PubMed  Google Scholar  * Tremellen, K.P. et al. Seminal transforming growth factor β1


stimulates granulocyte-macrophage colony-stimulating factor production and inflammatory cell recruitment in the murine uterus. _Biol. Reprod._ 58, 1217–1225 (1998). CAS  PubMed  Google


Scholar  * Munn, D.H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. _Science_ 281, 1191–1193 (1998). CAS  PubMed  Google Scholar  * Baban, B. et al. Indoleamine


2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. _J. Reprod. Immunol._ 61, 67–77 (2004). CAS  PubMed  Google


Scholar  * Malina, H.Z. & Martin, X.D. Indoleamine 2,3-dioxygenase activity in the aqueous humor, iris/ciliary body, and retina of the bovine eye. _Graefes Arch. Clin. Exp. Ophthalmol._


231, 482–486 (1993). CAS  PubMed  Google Scholar  * Malina, H.Z. & Martin, X.D. Indoleamine 2,3-dioxygenase: antioxidant enzyme in the human eye. _Graefes Arch. Clin. Exp. Ophthalmol._


234, 457–462 (1996). CAS  PubMed  Google Scholar  * Massa, P.T. Specific suppression of major histocompatibility complex class I and class II genes in astrocytes by brain-enriched


gangliosides. _J. Exp. Med._ 178, 1357–1363 (1993). CAS  PubMed  Google Scholar  * Calandra, T. et al. The macrophage is an important and previously unrecognized source of macrophage


migration inhibitory factor. _J. Exp. Med._ 179, 1895–1902 (1994). CAS  PubMed  Google Scholar  * Yamasaki, T. et al. Enhanced H-2 expression and T-cell-dependent rejection after


intracerebral transplantation of the murine lymphoma YAC-1. _Cell. Immunol._ 120, 387–395 (1989). CAS  PubMed  Google Scholar  * Niederkorn, J.Y. Immune privilege in the anterior chamber of


the eye. _Crit. Rev. Immunol._ 22, 13–46 (2002). CAS  PubMed  Google Scholar  * Streilein, J.W. & Niederkorn, J.Y. Induction of anterior chamber-associated immune deviation requires an


intact, functional spleen. _J. Exp. Med._ 153, 1058–1067 (1981). CAS  PubMed  Google Scholar  * Wang, Y. et al. Blood mononuclear cells induce regulatory NK T thymocytes in anterior


chamber-associated immune deviation. _J. Leukoc. Biol._ 69, 741–746 (2001). CAS  PubMed  Google Scholar  * Whittum, J.A. et al. Intracameral inoculation of herpes simplex virus type I


induces anterior chamber associated immune deviation. _Curr. Eye Res._ 2, 691–697 (1982). PubMed  Google Scholar  * Li, X. et al. The induction of splenic suppressor T cells through an


immune-privileged site requires an intact sympathetic nervous system. _J. Neuroimmunol._ 153, 40–49 (2004). CAS  PubMed  Google Scholar  * Wilbanks, G.A. & Streilein, J.W. Studies on the


induction of anterior chamber-associated immune deviation (ACAID). 1. Evidence that an antigen-specific, ACAID- inducing, cell-associated signal exists in the peripheral blood. _J.


Immunol._ 146, 2610–2617 (1991). CAS  PubMed  Google Scholar  * Goldschneider, I. & Cone, R.E. A central role for peripheral dendritic cells in the induction of acquired thymic


tolerance. _Trends Immunol._ 24, 77–81 (2003). CAS  PubMed  Google Scholar  * Faunce, D.E. et al. MIP-2 recruits NKT cells to the spleen during tolerance induction. _J. Immunol._ 166,


313–321 (2001). CAS  PubMed  Google Scholar  * Faunce, D.E. & Stein-Streilein, J. NKT cell-derived RANTES recruits APCs and CD8+ T cells to the spleen during the generation of regulatory


T cells in tolerance. _J. Immunol._ 169, 31–38 (2002). CAS  PubMed  Google Scholar  * D'Orazio, T.J. & Niederkorn, J.Y. Splenic B cells are required for tolerogenic antigen


presentation in the induction of anterior chamber-associated immune deviation (ACAID). _Immunology_ 95, 47–55 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Nakamura, T. et al. CD4+


NKT cells, but not conventional CD4+ T cells, are required to generate efferent CD8+ T regulatory cells following antigen inoculation in an immune-privileged site. _J. Immunol._ 171,


1266–1271 (2003). CAS  PubMed  Google Scholar  * Skelsey, M.E. et al. Splenic B cells act as antigen presenting cells for the induction of anterior chamber-associated immune deviation.


_Invest. Ophthalmol. Vis. Sci._ 44, 5242–5251 (2003). PubMed  Google Scholar  * Skelsey, M.E. et al. CD25+, interleukin-10-producing CD4+ T cells are required for suppressor cell production


and immune privilege in the anterior chamber of the eye. _Immunology_ 110, 18–29 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Sonoda, K.H. et al. CD1-reactive natural killer T


cells are required for development of systemic tolerance through an immune-privileged site. _J. Exp. Med._ 190, 1215–1226 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Sonoda, K.H.


et al. NK T cell-derived IL-10 is essential for the differentiation of antigen- specific T regulatory cells in systemic tolerance. _J. Immunol._ 166, 42–50 (2001). CAS  PubMed  Google


Scholar  * Sonoda, K.H. & Stein-Streilein, J. CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance. _Eur. J. Immunol._ 32, 848–857


(2002). CAS  PubMed  Google Scholar  * Skelsey, M.E. et al. γδ T cells are needed for ocular immune privilege and corneal graft survival. _J. Immunol._ 166, 4327–4333 (2001). CAS  PubMed 


Google Scholar  * Xu, Y. & Kapp, J.A. γδ T cells are critical for the induction of anterior chamber- associated immune deviation. _Immunology_ 104, 142–148 (2001). CAS  PubMed  PubMed


Central  Google Scholar  * Xu, Y. & Kapp, J.A. γδ T cells in anterior chamber-induced tolerance in CD8+ CTL responses. _Invest. Ophthalmol. Vis. Sci._ 43, 3473–3479 (2002). PubMed 


Google Scholar  * Mizuno, K. et al. Histopathologic analysis of experimental autoimmune uveitis attenuated by intracameral injection of S-antigen. _Curr. Eye Res._ 8, 113–121 (1989). CAS 


PubMed  Google Scholar  * Niederkorn, J.Y. & Mellon, J. Anterior chamber-associated immune deviation promotes corneal allograft survival. _Invest. Ophthalmol. Vis. Sci._ 37, 2700–2707


(1996). CAS  PubMed  Google Scholar  * She, S.C. et al. Intracameral injection of allogeneic lymphocytes enhances corneal graft survival. _Invest. Ophthalmol. Vis. Sci._ 31, 1950–1956


(1990). CAS  PubMed  Google Scholar  * Sonoda, K.H. et al. Long-term survival of corneal allografts is dependent on intact CD1d- reactive NKT cells. _J. Immunol._ 168, 2028–2034 (2002). CAS


  PubMed  Google Scholar  * Sonoda, Y. & Streilein, J.W. Impaired cell-mediated immunity in mice bearing healthy orthotopic corneal allografts. _J. Immunol._ 150, 1727–1734 (1993). CAS 


PubMed  Google Scholar  * Jayaraman, S. et al. Exacerbation of murine herpes simplex virus-mediated stromal keratitis by Th2 type T cells. _J. Immunol._ 151, 5777–5789 (1993). CAS  PubMed 


Google Scholar  * Pearce, E.J. & MacDonald, A.S. The immunobiology of schistosomiasis. _Nat. Rev. Immunol._ 2, 499–511 (2002). CAS  PubMed  Google Scholar  * Pearlman, E. Immunopathology


of onchocerciasis: a role for eosinophils in onchocercal dermatitis and keratitis. _Chem. Immunol._ 66, 26–40 (1997). CAS  PubMed  Google Scholar  * Katagiri, K. et al. Using tolerance


induced via the anterior chamber of the eye to inhibit Th2-dependent pulmonary pathology. _J. Immunol._ 169, 84–89 (2002). CAS  PubMed  Google Scholar  * James, E. et al. Multiparity induces


priming to male-specific minor histocompatibility antigen, HY, in mice and humans. _Blood_ 102, 388–393 (2003). CAS  PubMed  Google Scholar  * Lengerova, A. & Vojtiskova, M. Prolonged


survival of syngeneic male skin grafts in parous C57B1 mice. _Folia Biol. (Praha)_ 9, 72–74 (1963). CAS  Google Scholar  * Robertson, S.A. et al. Cytokine-leukocyte networks and the


establishment of pregnancy. _Am. J. Reprod. Immunol._ 37, 438–442 (1997). CAS  PubMed  Google Scholar  * Tafuri, A. et al. T cell awareness of paternal alloantigens during pregnancy.


_Science_ 270, 630–633 (1995). CAS  PubMed  Google Scholar  * Tremellen, K.P. et al. The effect of intercourse on pregnancy rates during assisted human reproduction. _Hum. Reprod._ 15,


2653–2658 (2000). CAS  PubMed  Google Scholar  * Aluvihare, V.R. et al. Regulatory T cells mediate maternal tolerance to the fetus. _Nat. Immunol._ 5, 266–271 (2004). CAS  PubMed  Google


Scholar  * Somerset, D.A. et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. _Immunology_ 112, 38–43 (2004). CAS 


PubMed  PubMed Central  Google Scholar  * Arck, P.C. et al. Murine T cell determination of pregnancy outcome: I. Effects of strain, αβ T cell receptor, γδ T cell receptor, and γδ T cell


subsets. _Am. J. Reprod. Immunol._ 37, 492–502 (1997). CAS  PubMed  Google Scholar  * Arck, P.C. et al. Murine T cell determination of pregnancy outcome. _Cell. Immunol._ 196, 71–79 (1999).


CAS  PubMed  Google Scholar  * Nagaeva, O. et al. Dominant IL-10 and TGF-β mRNA expression in gammadeltaT cells of human early pregnancy decidua suggests immunoregulatory potential. _Am. J.


Reprod. Immunol._ 48, 9–17 (2002). PubMed  Google Scholar  * Mincheva-Nilsson, L. et al. γδ T cells of human early pregnancy decidua: evidence for local proliferation, phenotypic


heterogeneity, and extrathymic differentiation. _J. Immunol._ 159, 3266–3277 (1997). CAS  PubMed  Google Scholar  * Wenkel, H. et al. Systemic immune deviation in the brain that does not


depend on the integrity of the blood-brain barrier. _J. Immunol._ 164, 5125–5131 (2000). CAS  PubMed  Google Scholar  * Yoshida, M. et al. Participation of pigment epithelium of iris and


ciliary body in ocular immune privilege. 1. Inhibition of T-cell activation _in vitro_ by direct cell-to-cell contact. _Invest. Ophthalmol. Vis. Sci._ 41, 811–821 (2000). CAS  PubMed  Google


Scholar  * Gimsa, U. et al. Astrocytes protect the CNS: antigen-specific T helper cell responses are inhibited by astrocyte-induced upregulation of CTLA-4 (CD152). _J. Mol. Med._ 82,


364–372 (2004). CAS  PubMed  Google Scholar  * Egen, J.G. et al. CTLA-4: new insights into its biological function and use in tumor immunotherapy. _Nat. Immunol._ 3, 611–618 (2002). CAS 


PubMed  Google Scholar  * Pearson, H. Reproductive immunology: Immunity's pregnant pause. _Nature_ 420, 265–266 (2002). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS


I dedicate this review to the memory of J.W. Streilein, who contributed substantially to the understanding of immune-privileged sites. Supported by Research to Prevent Blindness. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, 75390-9057, Texas, USA Jerry Y Niederkorn Authors * Jerry Y


Niederkorn View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Jerry Y Niederkorn. ETHICS DECLARATIONS COMPETING


INTERESTS The author declares no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Niederkorn, J. See no evil, hear no evil,


do no evil: the lessons of immune privilege. _Nat Immunol_ 7, 354–359 (2006). https://doi.org/10.1038/ni1328 Download citation * Published: 20 March 2006 * Issue Date: 01 April 2006 * DOI:


https://doi.org/10.1038/ni1328 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative