A functionally inactive p53 protein interatocarcinoma cells is activated by either dna damage or cellular differentiation

A functionally inactive p53 protein interatocarcinoma cells is activated by either dna damage or cellular differentiation

Play all audios:

Loading...

ABSTRACT Testicular teratocarcinomas never contain _p53_ gene mutations even though these tumors express high levels of nuclear p53 protein. We have characterized two murine teratocarcinoma cell lines and find no evidence that endogenous p53–regulated genes are correspondingly upregulated. Differentiation of these teratocarcinoma cells with retinoic acid results in a marked decrease in p53 protein levels but is accompanied by a marked increase in p53–mediated transcriptional activity. Together these results support the hypothesis that the p53 protein in undifferentiated teratocarcinoma cells is transcriptionally inactive and accounts for the lack of selection for _p53_ gene mutations in this tumor type. These teratocarcinoma cells undergo p53–mediated apoptosis in response to DNA damage, which may explain the routine cures of human testicular tumors with combination chemotherapy. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS _TP53_: THE UNLUCKIEST OF GENES? Article Open access 23 October 2024 OF THE MANY CELLULAR RESPONSES ACTIVATED BY TP53, WHICH ONES ARE CRITICAL FOR TUMOUR SUPPRESSION? Article 08 April 2022 P53 REGULATES DIVERSE TISSUE-SPECIFIC OUTCOMES TO ENDOGENOUS DNA DAMAGE IN MICE Article Open access 21 March 2024 REFERENCES * Pottern, L. & Goedert, J. _Principles and Management of Testicular Cancer_ (ed. Javadpour, N.) 108–119 (Thieme, New York, 1986). Google Scholar  * Champlin, R. & Gale, R. Acute myelogenous leukemia: Recent advances in therapy. _Blood_ 69 1551–1562 (1987). CAS  PubMed  Google Scholar  * Harris, C.C. & Hollstein, M. Clinical implications of the p53 tumor-suppressor gene. _NewEngl. J. Med._ 329, 1318–1327 (1993). CAS  Google Scholar  * Levine, A.J. _et al_ The role of the p53 tumor suppressor gene in tumorigenesis. _Br. J. Cancer_ 69, 409–416 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Oren, M., Reich, N.C. & Levine, A.J. Regulation of the cellular p53 tumor antigen in teratocarcinoma cells and their differentiated progeny. _Mol. Cell. Biol._ 2 443–449 (1982). CAS  PubMed  PubMed Central  Google Scholar  * Bartkova, J. _et al_. p53 protein alterations in human testicular cancer including pre-invasive intratubular germ-cell neoplasia. _Int. J. Cancer_ 49, 196–202 (1991). CAS  PubMed  Google Scholar  * Lewis, D., Sesterhenn, I., McCarthy, W. & Moul, J. Immunohistochemical expression of p53 tumor suppressor gene protein in adult germ cell testis tumors: Clinical correlation in stage I disease. _J. Urol._ 152, 418–423 (1994). CAS  PubMed  Google Scholar  * Riou, G. _et al_. The p53 and mdm-2 genes in human testicular germ-cell tumors. _Mol Carrinog._ 12, 124–131 (1995). CAS  Google Scholar  * Heimdal, K. _et al_. No germline TP3 mutations detected in familial and bilateral testicular cancers. _Genes Chromosom. Cancer_ 6, 92–97 (1993). CAS  PubMed  Google Scholar  * Peng, H.Q. _et al_. Mutations of the p53 gene do not occur in testis cancer. _Cancer Res._ 53, 3574–3578 (1993). CAS  PubMed  Google Scholar  * Murty, V.V.V.S. _et al_. Allelic loss and somatic differentiation in human male germ cell tumors. _Oncogene_ 9, 2245–2251 (1994). CAS  PubMed  Google Scholar  * Schenkman, N.S. _et al_. Increased p53 protein does not correlate to p53 gene mutations in microdissected human testicular germ cell tumors. _J. UroL_ 154, 617–621 (1995). CAS  PubMed  Google Scholar  * Pennica, D. _et al_. The amino acid sequence of murine p53 determined from a cDNA clone. _Virology_ 134, 477–483 (1984). CAS  PubMed  Google Scholar  * Reich, N.C., Oren, M. & Levine, A.J. Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. _Mol. Cell. Biol._ 3, 2143–2150 (1983). CAS  PubMed  PubMed Central  Google Scholar  * Momand, J., Zambetti, G.P., Olson, D.C., George, D. & Levine, A.J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53 mediated transactivation. _Cell_ 69, 1237–1245 (1992). CAS  PubMed  Google Scholar  * Oliner, J.D., Kinzler, K.W., Meltzer, P.S., George, D. & Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human sarcomas. _Nature_ 358, 80–83 (1992). CAS  PubMed  Google Scholar  * Finlay, C.A. The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. _Mol Cell. Biol._ 13, 301–306 (1993). CAS  PubMed  PubMed Central  Google Scholar  * Fakharzadeh, S.S., Trusko, S.P. & George, D.L. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. _EMBO J._ 10, 1565–1569 (1991). CAS  PubMed  PubMed Central  Google Scholar  * Gannon, J.V., Greaves, R., Iggo, R. & Lane, D.P. Activating mutations in p53 produce common conformational effects: A monoclonal antibody specific for the mutant form. _EMBO J._ 9, 1595–1602 (1990). CAS  PubMed  PubMed Central  Google Scholar  * Olson, D. _et al_. Identification and characterization of multiple mdm-2 proteins and mdm-2-p53 protein complexes. _Oncogene_ 8, 2353–2360 (1993). CAS  PubMed  Google Scholar  * Barak, Y., Juven, T., Haffner, R. & Oren, M. mdm2 expression is induced by wild type p53 activity. _EMBO J._ 12, 461–468 (1993). CAS  PubMed  PubMed Central  Google Scholar  * Haines, D.S., Landers, J.E., Engle, L.J. & George, D.L. Physical and functional interaction between wild-type p53 and mdm-2 proteins. _Mol. Cell. Biol._ 14, 1171–1178 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Michalovitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. _Cell_ 62, 671–680 (1990). CAS  PubMed  Google Scholar  * Wu, X., Bayle, J.H., Olson, D. & Levine, A.J. The p53-mdm-2 autoregulatory feedback loop. _Genes Dev._ 7, 1126–1132 (1993). CAS  PubMed  Google Scholar  * Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DNA damage. _Cancer Res._ 51, 6304–6311 (1991). CAS  PubMed  Google Scholar  * El-Deiry, W.S. _et al_. _WAF1/CIP1_ is induced in p53-mediated G: arrest and apop-tosis. _Cancer Res._ 54, 1169–1174 (1994). CAS  PubMed  Google Scholar  * Perry, M.E., Piette, J., Zawadzki, J., Harvey, D. & Levine, A.J. The mdm-2 gene is induced in response to UV light in a p53-dependent manner. _Proc. Natl. Acad. Sci.USA_ 90, 11623–11627 (1993). CAS  PubMed  Google Scholar  * Shaw, P. _et al_. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. _Proc. Natl. Acad. Sci. USA_ 89, 4495–4499 (1992). CAS  PubMed  Google Scholar  * Yonish-Rouach, E. _et al_. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. _Nature_ 352, 345–347 (1991). CAS  PubMed  Google Scholar  * Strickland, S., Smith, K. & Marotti, K. Hormonal induction of differentiation in teratocarcinoma stem cells: Generation of parietal endoderm by retinoic acid and dibutyryl cAMP. _Cell_ 21 (1980). CAS  PubMed  Google Scholar  * Lucje-Huhle, C. & Herrlich, P. Retionic-acid-induced differentiation prevents gene amplification in teratocarcinoma stem cells. _Int. J. Cancer_ 47, 461–465 (1991). Google Scholar  * Livingstone, L.R. _et al_. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. _Cell_ 70, 923–935 (1992). CAS  PubMed  Google Scholar  * Harvey, M., McArther, M., Montgomery, C., Bradley, A. & Donehower, L. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. _FASEB J._ 7, 938–943 (1993). CAS  PubMed  Google Scholar  * Rotter, V. _et al_. Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative syndrome. _Proc. Natl Acad. Sci. USA_ 90, 9075–9079 (1993). CAS  PubMed  Google Scholar  * Rao, L. _et al_. The adenovirus El A proteins induce apoptosis which is inherited by the E1B 19 Kd and Bel proteins. _Proc. Natl Acad. Sci. USA_ 89, 7742–7746 (1992). CAS  PubMed  Google Scholar  * Hupp, T., Meek, D., Midgley, C.A. & Lane, D. Regulation of the specific DNA binding function of p53. _Cell_ 71, 875–886 (1992). CAS  PubMed  Google Scholar  * Thut, C.J., Chen, J.L., Klemin, R. & Tjian, R. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. _Science_ 267, 100–104 (1995). CAS  PubMed  Google Scholar  * Lu, H. & Levine, A.J. Human TAF-31 is a transcriptional coactivation of the p53 protein. _Proc. Natl. Acad. Sci. USA_ 92, 5154 (1995). CAS  PubMed  Google Scholar  * Clarke, A.R. _et al_ Thymocyte apoptosis induced by p53-dependent and independent pathways. _Nature_ 362, 849–852 (1993). CAS  PubMed  Google Scholar  * Lotem, J. & Sachs, L. Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. _Blood_ 82, 1092–1096 (1993). CAS  PubMed  Google Scholar  * Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation induced apoptosis in mouse thymocytes. _Nature_ 362, 847–849 (1993). CAS  PubMed  Google Scholar  * Evan, G.I. _et al_. Induction of apoptosis in n'broblasts by c-myc protein. _Cell_ 69, 119–128 (1992). CAS  PubMed  Google Scholar  * Hermeking, H. & Eick, D. Mediation of c-Myc-induced apoptosis by p53. _Science_ 265, 2091–2093 (1994). CAS  PubMed  Google Scholar  * Debbas, M. & White, E. Wild-type p53 mediates apoptosis by E1A which is inhibited by E1B. _Genes Dev._ 7, 546–554 (1993). CAS  PubMed  Google Scholar  * Wu, X. & Levine, A.J. p53 and E2F-1 cooperate to mediate apoptosis. _Proc. Natl. Acad. Sci. USA_ 91, 3602–3606 (1994). CAS  PubMed  Google Scholar  * Canman, C., Gilmer, T., Coutts, S. & Kastan, M. Growth factor modulation of p53-mediated growth arrest versus apoptosis. _Genes Dev._ 9, 600–611 (1995). CAS  PubMed  Google Scholar  * Campisi, J., Gray, H., Pardee, A., Dean, M. & Sonnenshein, G. Cell cycle control of c-myc but not c-ras expression is lost following transformation. _Cell_ 36, 241–247 (1984). CAS  PubMed  Google Scholar  * Imperiaie, M., Kao, H.-T., Feldman, L., Nevins, J. & Strickland, S. Common control of the heat shock gene and early adenovirus-genes: Evidence for a cellular elA-like activity. _Mol. Cell. Biol_ 4, 867–874 (1984). Google Scholar  * Strohmeyer, T. _et al_. Correlation between retinoblastoma gene expression and differentiation in human testicular tumors. _Proc. Natl. Acad. Sci. USA_ 88, 6662–6666 (1991). CAS  PubMed  Google Scholar  * Hen, R., Borrelli, E., Fromental, D., Sassone-Corsi, P. & Chambon, P. A mutated polyoma virus enhancer which is active in undifferentiated embryonal carcinoma cells is not repressed by adenovirus-2 E1A products. _Nature_ 321, 249–251 (1986). CAS  PubMed  Google Scholar  * Slack, R.S. _et al_ Cells differentiating into neuroectoderm undergo apoptosis in the absence of functional retinoblastoma family proteins. _J. Cell Biol_ 129, 779–788 (1995). CAS  PubMed  Google Scholar  * Langley, R., Palayoor, S., Coleman, C., Bump, E. Radiation-induced apoptosis in F9 teratocarcinoma cells. _Int. J. Radiat. Biol_ 65, 605–610 (1994). CAS  PubMed  Google Scholar  * Schmid, P., Lorenz, A., Hameister, H. & Montenarh, M. Expression of p53 during mouse embryogenesis. _Development_ 113, 857–865 (1991). CAS  PubMed  Google Scholar  * Mora, P., Chandrasekaran, K. & McFarland, V. An embryo protein induced by SV40 virus transformation of mouse cells. _Nature_ 288, 722–724 (1980). CAS  PubMed  Google Scholar  * Nicol, C., Harrison, M., Laposa, G., Gimelshtein, I. & Wells, P. A teratologic suppressor role for pS3 in benzo[ajpyrene-treated transgenic p53-deficient mice. _Nature Genet._ 10, 181–187 (1995). CAS  PubMed  Google Scholar  * Marechal, V., Elenbaas, B., Piette, J., Nicolas, J.-C. & Levine, A.J. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. _Mol. Cell. Biol._ 14, 7414–7420 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. _Anal. Biochem._ 162, 156–159 (1987). CAS  Google Scholar  Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08540, USA Stuart G. Lutzker & Arnold J. Levine * The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, 08901, USA Stuart G. Lutzker Authors * Stuart G. Lutzker View author publications You can also search for this author inPubMed Google Scholar * Arnold J. Levine View author publications You can also search for this author inPubMed Google Scholar RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lutzker, S., Levine, A. A functionally inactive p53 protein interatocarcinoma cells is activated by either DNA damage or cellular differentiation. _Nat Med_ 2, 804–810 (1996). https://doi.org/10.1038/nm0796-804 Download citation * Received: 20 February 1996 * Accepted: 22 May 1996 * Published: 01 July 1996 * Issue Date: 01 July 1996 * DOI: https://doi.org/10.1038/nm0796-804 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative

ABSTRACT Testicular teratocarcinomas never contain _p53_ gene mutations even though these tumors express high levels of nuclear p53 protein. We have characterized two murine teratocarcinoma


cell lines and find no evidence that endogenous p53–regulated genes are correspondingly upregulated. Differentiation of these teratocarcinoma cells with retinoic acid results in a marked


decrease in p53 protein levels but is accompanied by a marked increase in p53–mediated transcriptional activity. Together these results support the hypothesis that the p53 protein in


undifferentiated teratocarcinoma cells is transcriptionally inactive and accounts for the lack of selection for _p53_ gene mutations in this tumor type. These teratocarcinoma cells undergo


p53–mediated apoptosis in response to DNA damage, which may explain the routine cures of human testicular tumors with combination chemotherapy. Access through your institution Buy or


subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online


access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


_TP53_: THE UNLUCKIEST OF GENES? Article Open access 23 October 2024 OF THE MANY CELLULAR RESPONSES ACTIVATED BY TP53, WHICH ONES ARE CRITICAL FOR TUMOUR SUPPRESSION? Article 08 April 2022


P53 REGULATES DIVERSE TISSUE-SPECIFIC OUTCOMES TO ENDOGENOUS DNA DAMAGE IN MICE Article Open access 21 March 2024 REFERENCES * Pottern, L. & Goedert, J. _Principles and Management of


Testicular Cancer_ (ed. Javadpour, N.) 108–119 (Thieme, New York, 1986). Google Scholar  * Champlin, R. & Gale, R. Acute myelogenous leukemia: Recent advances in therapy. _Blood_ 69


1551–1562 (1987). CAS  PubMed  Google Scholar  * Harris, C.C. & Hollstein, M. Clinical implications of the p53 tumor-suppressor gene. _NewEngl. J. Med._ 329, 1318–1327 (1993). CAS 


Google Scholar  * Levine, A.J. _et al_ The role of the p53 tumor suppressor gene in tumorigenesis. _Br. J. Cancer_ 69, 409–416 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Oren,


M., Reich, N.C. & Levine, A.J. Regulation of the cellular p53 tumor antigen in teratocarcinoma cells and their differentiated progeny. _Mol. Cell. Biol._ 2 443–449 (1982). CAS  PubMed 


PubMed Central  Google Scholar  * Bartkova, J. _et al_. p53 protein alterations in human testicular cancer including pre-invasive intratubular germ-cell neoplasia. _Int. J. Cancer_ 49,


196–202 (1991). CAS  PubMed  Google Scholar  * Lewis, D., Sesterhenn, I., McCarthy, W. & Moul, J. Immunohistochemical expression of p53 tumor suppressor gene protein in adult germ cell


testis tumors: Clinical correlation in stage I disease. _J. Urol._ 152, 418–423 (1994). CAS  PubMed  Google Scholar  * Riou, G. _et al_. The p53 and mdm-2 genes in human testicular germ-cell


tumors. _Mol Carrinog._ 12, 124–131 (1995). CAS  Google Scholar  * Heimdal, K. _et al_. No germline TP3 mutations detected in familial and bilateral testicular cancers. _Genes Chromosom.


Cancer_ 6, 92–97 (1993). CAS  PubMed  Google Scholar  * Peng, H.Q. _et al_. Mutations of the p53 gene do not occur in testis cancer. _Cancer Res._ 53, 3574–3578 (1993). CAS  PubMed  Google


Scholar  * Murty, V.V.V.S. _et al_. Allelic loss and somatic differentiation in human male germ cell tumors. _Oncogene_ 9, 2245–2251 (1994). CAS  PubMed  Google Scholar  * Schenkman, N.S.


_et al_. Increased p53 protein does not correlate to p53 gene mutations in microdissected human testicular germ cell tumors. _J. UroL_ 154, 617–621 (1995). CAS  PubMed  Google Scholar  *


Pennica, D. _et al_. The amino acid sequence of murine p53 determined from a cDNA clone. _Virology_ 134, 477–483 (1984). CAS  PubMed  Google Scholar  * Reich, N.C., Oren, M. & Levine,


A.J. Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. _Mol. Cell. Biol._ 3, 2143–2150 (1983). CAS  PubMed  PubMed Central  Google Scholar  * Momand, J.,


Zambetti, G.P., Olson, D.C., George, D. & Levine, A.J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53 mediated transactivation. _Cell_ 69, 1237–1245


(1992). CAS  PubMed  Google Scholar  * Oliner, J.D., Kinzler, K.W., Meltzer, P.S., George, D. & Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human


sarcomas. _Nature_ 358, 80–83 (1992). CAS  PubMed  Google Scholar  * Finlay, C.A. The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. _Mol Cell. Biol._ 13,


301–306 (1993). CAS  PubMed  PubMed Central  Google Scholar  * Fakharzadeh, S.S., Trusko, S.P. & George, D.L. Tumorigenic potential associated with enhanced expression of a gene that is


amplified in a mouse tumor cell line. _EMBO J._ 10, 1565–1569 (1991). CAS  PubMed  PubMed Central  Google Scholar  * Gannon, J.V., Greaves, R., Iggo, R. & Lane, D.P. Activating mutations


in p53 produce common conformational effects: A monoclonal antibody specific for the mutant form. _EMBO J._ 9, 1595–1602 (1990). CAS  PubMed  PubMed Central  Google Scholar  * Olson, D. _et


al_. Identification and characterization of multiple mdm-2 proteins and mdm-2-p53 protein complexes. _Oncogene_ 8, 2353–2360 (1993). CAS  PubMed  Google Scholar  * Barak, Y., Juven, T.,


Haffner, R. & Oren, M. mdm2 expression is induced by wild type p53 activity. _EMBO J._ 12, 461–468 (1993). CAS  PubMed  PubMed Central  Google Scholar  * Haines, D.S., Landers, J.E.,


Engle, L.J. & George, D.L. Physical and functional interaction between wild-type p53 and mdm-2 proteins. _Mol. Cell. Biol._ 14, 1171–1178 (1994). CAS  PubMed  PubMed Central  Google


Scholar  * Michalovitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. _Cell_ 62, 671–680 (1990).


CAS  PubMed  Google Scholar  * Wu, X., Bayle, J.H., Olson, D. & Levine, A.J. The p53-mdm-2 autoregulatory feedback loop. _Genes Dev._ 7, 1126–1132 (1993). CAS  PubMed  Google Scholar  *


Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. Participation of p53 protein in the cellular response to DNA damage. _Cancer Res._ 51, 6304–6311 (1991). CAS 


PubMed  Google Scholar  * El-Deiry, W.S. _et al_. _WAF1/CIP1_ is induced in p53-mediated G: arrest and apop-tosis. _Cancer Res._ 54, 1169–1174 (1994). CAS  PubMed  Google Scholar  * Perry,


M.E., Piette, J., Zawadzki, J., Harvey, D. & Levine, A.J. The mdm-2 gene is induced in response to UV light in a p53-dependent manner. _Proc. Natl. Acad. Sci.USA_ 90, 11623–11627 (1993).


CAS  PubMed  Google Scholar  * Shaw, P. _et al_. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. _Proc. Natl. Acad. Sci. USA_ 89, 4495–4499 (1992). CAS 


PubMed  Google Scholar  * Yonish-Rouach, E. _et al_. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. _Nature_ 352, 345–347 (1991). CAS  PubMed


  Google Scholar  * Strickland, S., Smith, K. & Marotti, K. Hormonal induction of differentiation in teratocarcinoma stem cells: Generation of parietal endoderm by retinoic acid and


dibutyryl cAMP. _Cell_ 21 (1980). CAS  PubMed  Google Scholar  * Lucje-Huhle, C. & Herrlich, P. Retionic-acid-induced differentiation prevents gene amplification in teratocarcinoma stem


cells. _Int. J. Cancer_ 47, 461–465 (1991). Google Scholar  * Livingstone, L.R. _et al_. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. _Cell_


70, 923–935 (1992). CAS  PubMed  Google Scholar  * Harvey, M., McArther, M., Montgomery, C., Bradley, A. & Donehower, L. Genetic background alters the spectrum of tumors that develop in


p53-deficient mice. _FASEB J._ 7, 938–943 (1993). CAS  PubMed  Google Scholar  * Rotter, V. _et al_. Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative


syndrome. _Proc. Natl Acad. Sci. USA_ 90, 9075–9079 (1993). CAS  PubMed  Google Scholar  * Rao, L. _et al_. The adenovirus El A proteins induce apoptosis which is inherited by the E1B 19 Kd


and Bel proteins. _Proc. Natl Acad. Sci. USA_ 89, 7742–7746 (1992). CAS  PubMed  Google Scholar  * Hupp, T., Meek, D., Midgley, C.A. & Lane, D. Regulation of the specific DNA binding


function of p53. _Cell_ 71, 875–886 (1992). CAS  PubMed  Google Scholar  * Thut, C.J., Chen, J.L., Klemin, R. & Tjian, R. p53 transcriptional activation mediated by coactivators TAFII40


and TAFII60. _Science_ 267, 100–104 (1995). CAS  PubMed  Google Scholar  * Lu, H. & Levine, A.J. Human TAF-31 is a transcriptional coactivation of the p53 protein. _Proc. Natl. Acad.


Sci. USA_ 92, 5154 (1995). CAS  PubMed  Google Scholar  * Clarke, A.R. _et al_ Thymocyte apoptosis induced by p53-dependent and independent pathways. _Nature_ 362, 849–852 (1993). CAS 


PubMed  Google Scholar  * Lotem, J. & Sachs, L. Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. _Blood_ 82,


1092–1096 (1993). CAS  PubMed  Google Scholar  * Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation induced apoptosis in mouse thymocytes.


_Nature_ 362, 847–849 (1993). CAS  PubMed  Google Scholar  * Evan, G.I. _et al_. Induction of apoptosis in n'broblasts by c-myc protein. _Cell_ 69, 119–128 (1992). CAS  PubMed  Google


Scholar  * Hermeking, H. & Eick, D. Mediation of c-Myc-induced apoptosis by p53. _Science_ 265, 2091–2093 (1994). CAS  PubMed  Google Scholar  * Debbas, M. & White, E. Wild-type p53


mediates apoptosis by E1A which is inhibited by E1B. _Genes Dev._ 7, 546–554 (1993). CAS  PubMed  Google Scholar  * Wu, X. & Levine, A.J. p53 and E2F-1 cooperate to mediate apoptosis.


_Proc. Natl. Acad. Sci. USA_ 91, 3602–3606 (1994). CAS  PubMed  Google Scholar  * Canman, C., Gilmer, T., Coutts, S. & Kastan, M. Growth factor modulation of p53-mediated growth arrest


versus apoptosis. _Genes Dev._ 9, 600–611 (1995). CAS  PubMed  Google Scholar  * Campisi, J., Gray, H., Pardee, A., Dean, M. & Sonnenshein, G. Cell cycle control of c-myc but not c-ras


expression is lost following transformation. _Cell_ 36, 241–247 (1984). CAS  PubMed  Google Scholar  * Imperiaie, M., Kao, H.-T., Feldman, L., Nevins, J. & Strickland, S. Common control


of the heat shock gene and early adenovirus-genes: Evidence for a cellular elA-like activity. _Mol. Cell. Biol_ 4, 867–874 (1984). Google Scholar  * Strohmeyer, T. _et al_. Correlation


between retinoblastoma gene expression and differentiation in human testicular tumors. _Proc. Natl. Acad. Sci. USA_ 88, 6662–6666 (1991). CAS  PubMed  Google Scholar  * Hen, R., Borrelli,


E., Fromental, D., Sassone-Corsi, P. & Chambon, P. A mutated polyoma virus enhancer which is active in undifferentiated embryonal carcinoma cells is not repressed by adenovirus-2 E1A


products. _Nature_ 321, 249–251 (1986). CAS  PubMed  Google Scholar  * Slack, R.S. _et al_ Cells differentiating into neuroectoderm undergo apoptosis in the absence of functional


retinoblastoma family proteins. _J. Cell Biol_ 129, 779–788 (1995). CAS  PubMed  Google Scholar  * Langley, R., Palayoor, S., Coleman, C., Bump, E. Radiation-induced apoptosis in F9


teratocarcinoma cells. _Int. J. Radiat. Biol_ 65, 605–610 (1994). CAS  PubMed  Google Scholar  * Schmid, P., Lorenz, A., Hameister, H. & Montenarh, M. Expression of p53 during mouse


embryogenesis. _Development_ 113, 857–865 (1991). CAS  PubMed  Google Scholar  * Mora, P., Chandrasekaran, K. & McFarland, V. An embryo protein induced by SV40 virus transformation of


mouse cells. _Nature_ 288, 722–724 (1980). CAS  PubMed  Google Scholar  * Nicol, C., Harrison, M., Laposa, G., Gimelshtein, I. & Wells, P. A teratologic suppressor role for pS3 in


benzo[ajpyrene-treated transgenic p53-deficient mice. _Nature Genet._ 10, 181–187 (1995). CAS  PubMed  Google Scholar  * Marechal, V., Elenbaas, B., Piette, J., Nicolas, J.-C. & Levine,


A.J. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. _Mol. Cell. Biol._ 14, 7414–7420 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Chomczynski, P. &


Sacchi, N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. _Anal. Biochem._ 162, 156–159 (1987). CAS  Google Scholar  Download references


AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08540, USA Stuart G. Lutzker & Arnold J. Levine * The Cancer


Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, 08901, USA Stuart G. Lutzker Authors * Stuart G. Lutzker View author publications You can also search


for this author inPubMed Google Scholar * Arnold J. Levine View author publications You can also search for this author inPubMed Google Scholar RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lutzker, S., Levine, A. A functionally inactive p53 protein interatocarcinoma cells is activated by either DNA damage or cellular


differentiation. _Nat Med_ 2, 804–810 (1996). https://doi.org/10.1038/nm0796-804 Download citation * Received: 20 February 1996 * Accepted: 22 May 1996 * Published: 01 July 1996 * Issue


Date: 01 July 1996 * DOI: https://doi.org/10.1038/nm0796-804 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative