The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy

The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy

Play all audios:

Loading...

ABSTRACT What determines the morphology of a decomposing alloy? Besides the well-established effect of the nucleation barrier, we demonstrate that, in a concentrated multicomponent Ni(Al,Cr)


alloy, the details of the diffusion mechanism strongly affect the kinetic pathway of precipitation. Our argument is based on the combined use of atomic-scale observations, using


three-dimensional atom-probe tomography (3D APT), lattice kinetic Monte Carlo simulations and the theory of diffusion. By an optimized choice of thermodynamic and kinetic parameters, we


first reproduce the 3D APT observations, in particular the early-stage transient occurrence of coagulated precipitates. We then modify the kinetic correlations among the atomic fluxes in the


simulation, without altering the thermodynamic driving force for phase separation, by changing the vacancy–solute interactions, resulting in a suppression of coagulation. Such changes can


only be quantitatively accounted for with non-zero values for the off-diagonal terms of the Onsager matrix, at variance with classical models. Access through your institution Buy or


subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online


access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


THERMODYNAMIC MODEL FOR LATTICE POINT DEFECT-MEDIATED SEMI-COHERENT PRECIPITATION IN ALLOYS Article Open access 23 March 2021 IN SITU SYNCHROTRON DIFFRACTION AND MODELING OF NON-EQUILIBRIUM


SOLIDIFICATION OF A MNFECONICU ALLOY Article Open access 15 March 2021 REVEALING THERMALLY-ACTIVATED NUCLEATION PATHWAYS OF DIFFUSIONLESS SOLID-TO-SOLID TRANSITION Article Open access 30


June 2021 REFERENCES * Blavette, D. et al. The tomographic atom-probe—a quantitative 3-dimensional nanoanalytical instrument on an atomic-scale. _Rev. Sci. Instrum._ 64, 2911–2919 (1993).


Article  CAS  Google Scholar  * Cerezo, A., Godfrey, T. J., Sijbrandij, S. J., Smith, G. D. W. & Warren, P. J. Performance of an energy-compensated three-dimensional atom probe. _Rev.


Sci. Instrum._ 69, 49–58 (1998). Article  CAS  Google Scholar  * Kelly, T. F. et al. First data from a commercial local electrode atom probe (LEAP). _Microsc. Microanal._ 10, 373–383 (2004).


Article  CAS  Google Scholar  * Soisson, F., Barbu, A. & Martin, G. Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron


irradiation. _Acta Mater._ 44, 3789–3800 (1996). Article  CAS  Google Scholar  * Pareige, C., Soisson, F., Martin, G. & Blavette, D. Ordering and phase separation in Ni-Cr-Al: Monte


Carlo simulations versus three-dimensional atom probe. _Acta Mater._ 47, 1889–1899 (1999). Article  CAS  Google Scholar  * Sudbrack, C. K. et al. in _Electron Microscopy: Its Role in


Materials Research—The Mike Meshii Symposium_ (eds Weertman, J. R., Fine, M. E., Faber, K. T., King, W. & Liaw, P.) 43–50 (TMS; The Minerals, Metals & Materials Society, Warrendale,


PA, 2003). Google Scholar  * Sudbrack, C. K., Yoon, K. E., Noebe, R. D. & Seidman, D. N. Temporal evolution of the nanostructure and phase compositions in a model Ni–Al–Cr alloy. _Acta


Mater._ 54, 3199–3210 (2006). Article  CAS  Google Scholar  * Sudbrack, C. K., Noebe, R. D. & Seidman, D. N. Compositional pathways and capillary effects during isothermal precipitation


in a nondilute Ni–Al–Cr alloy. _Acta Mater._ 55, 119–130 (2007). Article  CAS  Google Scholar  * Clouet, E. et al. Complex precipitation pathways in multicomponent alloys. _Nature Mater._ 5,


482–488 (2006). Article  CAS  Google Scholar  * Allnatt, A. R. & Lidiard, A. B. _Atomic Transport in Solids_ (Cambridge Univ. Press, Cambridge, 1993). Book  Google Scholar  * Andersson,


J. & Ågren, J. Models for numerical treatment of multicomponent diffusion in simple phases. _J. Appl. Phys._ 72, 1350–1355 (1992). Article  CAS  Google Scholar  * Thornton, K., Ågren,


J. & Voorhees, P. W. Modelling the evolution of phase boundaries in solids at the meso- and nano-scales. _Acta Mater._ 51, 5675–5710 (2003). Article  CAS  Google Scholar  * Binder, K.


Applications of Monte Carlo methods to statistical physics. _Rep. Prog. Phys._ 60, 487–559 (1997). Article  CAS  Google Scholar  * Fratzl, P. & Penrose, O. Kinetics of spinodal


decomposition in the Ising model with vacancy diffusion. _Phys. Rev. B_ 50, 3477–3480 (1994). Article  CAS  Google Scholar  * Weinkamer, R. & Fratzl, P. By which mechanism does


coarsening in phase separating alloys proceed? _Europhys. Lett._ 61, 261–267 (2003). Article  CAS  Google Scholar  * Martin, G. Atomic mobility in Cahn’s diffusion model. _Phys. Rev. B_ 41,


2279–2283 (1990). Article  CAS  Google Scholar  * Athénes, M., Bellon, P. & Martin, G. Effects of atomic mobilities on phase separation kinetics: A Monte Carlo study. _Acta Mater._ 48,


3675–2688 (2000). Article  Google Scholar  * Le Bouar, Y. & Soisson, F. Kinetic pathways from EAM potentials: influence of the activation barriers. _Phys. Rev. B_ 65, 094103 (2002).


Article  Google Scholar  * Rautiainen, T. T. & Sutton, A. P. Influence of the atomic diffusion mechanism on morphologies, kinetics, and the mechanisms of coarsening during phase


separation. _Phys. Rev. B_ 59, 13681–13692 (1999). Article  CAS  Google Scholar  * Roussel, J. M. & Bellon, P. Vacancy-assisted phase separation with asymmetric atomic mobility:


coarsening rates, precipitate composition, and morphology. _Phys. Rev. B_ 63, 184114 (2001). Article  Google Scholar  * Hellman, O. C., Blatz du Rivage, J. & Seidman, D. N. Efficient


sampling for three-dimensional atom probe microscopy data. _Ultramicroscopy_ 95, 199–205 (2003). Article  CAS  Google Scholar  * Hellman, O. C., Vandenbroucke, J., Blatz du Rivage, J. &


Seidman, D. N. Application software for data analysis for three-dimensional atom probe microscopy. _Mater. Sci. Eng. A_ 327, 29–33 (2002). Article  Google Scholar  * Hellman, O. C.,


Vandenbroucke, J. A., Rüsing, J., Isheim, D. & Seidman, D. N. Analysis of three-dimensional atom-probe data by the proximity histogram. _Microsc. Microanal._ 6, 437–444 (2000). Article 


CAS  Google Scholar  * Sudbrack, C. K. _Decomposition Behavior in Model Ni-Al-Cr-X Superalloys: Temporal Evolution and Compositional Pathways on a Nanoscale_. Thesis, Northwestern Univ.


(2004) (http://arc.nucapt.northwestern.edu/refbase/show.php?record=16). * Yoon, K. E. _Temporal Evolution of the Chemistry and Nanostructure of Multicomponent Model Ni-based Superalloys_.


Thesis, Northwestern Univ. (2004) (http://arc.nucapt.northwestern.edu/refbase/show.php?record=15). * Sudbrack, C. K., Noebe, R. D. & Seidman, D. N. Direct observations of nucleation in a


nondilute multicomponent alloy. _Phys. Rev. B_ 73, 212101 (2006). Article  Google Scholar  * Doyama, M. & Koehler, J. S. The relation between the formation energy of a vacancy and the


nearest neighbor interactions in pure metals and liquid metals. _Acta Metall._ 24, 871–879 (1976). Article  CAS  Google Scholar  * Ardell, A. J. & Ozolins, V. Trans-interface


diffusion-controlled coarsening. _Nature Mater._ 4, 309–316 (2005). Article  CAS  Google Scholar  * Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated


solid solutions. _J. Phys. Chem. Solids_ 19, 35–50 (1961). Article  Google Scholar  * Wagner, C. Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung). _Z. Elektrochem._


65, 581–591 (1961). CAS  Google Scholar  * Martin, G. & Desgranges, C. Diffusion in crystals with nonconservative defects. _Europhys. Lett._ 44, 150–155 (1998). Article  CAS  Google


Scholar  * Seidman, D. N. & Balluffi, R. W. in _Lattice Defects and their Interactions_ (ed. Hasiguti, R. R.) 913–960 (Gordon-Breach, New York, 1968). Google Scholar  * Svoboda, J.,


Fischer, F. D., Fratzl, P. & Kroupa, A. Diffusion in multi-component systems with no or dense sources and sinks for vacancies. _Acta Mater._ 50, 1369–1381 (2002). Article  CAS  Google


Scholar  * Hartmann, A., Weinkamer, R., Fratzl, P., Svoboda, J. & Fischer, F. D. Onsager’s coefficients and diffusion laws—a Monte Carlo study. _Phil. Mag._ 85, 1243–1260 (2005). Article


  CAS  Google Scholar  * Barbe, V. & Nastar, M. A self-consistent mean field calculation of the phenomenological coefficients in a multi-component alloy with high jump frequency ratios.


_Phil. Mag._ 86, 1513–1538 (2006). Article  CAS  Google Scholar  * Foiles, S. M. & Adams, J. B. Thermodynamic properties of fcc transition metals as calculated with the embedded-atom


method. _Phys. Rev. B_ 40, 5909–5915 (1989). Article  CAS  Google Scholar  * Payne, M., Teter, R., Allan, D., Arias, T. & Joannopoulos, J. Iterative minimization techniques for _ab


initio_ total-energy calculations: molecular dynamics and conjugate gradients. _Rev. Mod. Phys._ 64, 1045–1097 (1992). Article  CAS  Google Scholar  * Chen, N., Chen, Z. & Wei, Y.


Multidimensional inverse lattice problem and a uniformly sampled arithmetic Fourier transform. _Phys. Rev. E_ 55, R5–R8 (1997). CAS  Google Scholar  * Liu, S., Li, M. & Chen, N. Möbius


transform and inversion from cohesion to elastic constant. _J. Phys. Condens. Matter_ 5, 4381–4390 (1993). Article  CAS  Google Scholar  * Taylor, A. & Floyd, R. W. The constitution of


nickel-rich alloys of the nickel-chromium-aluminum system. _J. Inst. Met._ 81, 451–464 (1952–53). Google Scholar  Download references ACKNOWLEDGEMENTS This research is supported by the


National Science Foundation, Division of Materials Research, under contract DMR-0241928. C.K.S. received partial support from an NSF graduate research fellowship, a W. P. Murphy Fellowship


and a Northwestern University terminal year fellowship. K.E.Y. received partial support from a NASA graduate fellowship. T. F. Kelly, Imago Scientific Instruments, is kindly thanked for the


use of a LEAP tomograph before our acquisition of this instrument. The authors thank M. Asta, M. Athènes, P. Bellon, E. Clouet, M. Nastar and F. Soisson who interacted in many helpful


discussions and S. M. Foiles for his grand canonical Monte Carlo code. G.M. was partially supported by an Eshbach Visiting Scholar Award from the McCormick School of Engineering and Applied


Science at Northwestern University. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA


Zugang Mao, Chantal K. Sudbrack, Kevin E. Yoon, Georges Martin & David N. Seidman * Commissariat à l’Énergie Atomique, Cabinet du Haut Commissaire, Bâtiment Siège, 91191 Gif sur Yvette


Cedex, France Georges Martin * Northwestern University Centre for Atom-Probe Tomography, Northwestern University, Cook Hall, 2220 Campus Drive, Evanston, Illinois 60208, USA David N. Seidman


Authors * Zugang Mao View author publications You can also search for this author inPubMed Google Scholar * Chantal K. Sudbrack View author publications You can also search for this author


inPubMed Google Scholar * Kevin E. Yoon View author publications You can also search for this author inPubMed Google Scholar * Georges Martin View author publications You can also search for


this author inPubMed Google Scholar * David N. Seidman View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Z.M. carried out the LKMC


simulation; C.K.S. and K.E.Y. carried out the 3D APT experiments; D.N.S. supervised and mentored Z.M., C.K.S. and K.E.Y.; G.M. analysed the observations in terms of diffusion theory.


CORRESPONDING AUTHOR Correspondence to David N. Seidman. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


INFORMATION Supplementary figure S1 and table S1 (PDF 238 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Mao, Z., Sudbrack, C., Yoon, K. _et al._


The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. _Nature Mater_ 6, 210–216 (2007). https://doi.org/10.1038/nmat1845 Download citation * Received: 26


July 2006 * Accepted: 21 December 2006 * Published: 25 February 2007 * Issue Date: March 2007 * DOI: https://doi.org/10.1038/nmat1845 SHARE THIS ARTICLE Anyone you share the following link


with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative