Mixed-dimensional van der waals heterostructures

Mixed-dimensional van der waals heterostructures

Play all audios:

Loading...

ABSTRACT The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures.


Given that any passivated, dangling-bond-free surface will interact with another through vdW forces, the vdW heterostructure concept can be extended to include the integration of 2D


materials with non-2D materials that adhere primarily through non-covalent interactions. We present a succinct and critical survey of emerging mixed-dimensional (2D + _n_D, where _n_ is 0, 1


or 3) heterostructure devices. By comparing and contrasting with all-2D vdW heterostructures as well as with competing conventional technologies, we highlight the challenges and


opportunities for mixed-dimensional vdW heterostructures. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS VAN DER WAALS HETEROSTRUCTURES Article 28 July 2022 VAN DER WAALS DEVICE


INTEGRATION BEYOND THE LIMITS OF VAN DER WAALS FORCES USING ADHESIVE MATRIX TRANSFER Article 08 December 2023 UNDERSTANDING EPITAXIAL GROWTH OF TWO-DIMENSIONAL MATERIALS AND THEIR


HOMOSTRUCTURES Article 10 July 2024 REFERENCES * Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. _Science_ 306, 666–669 (2004). CAS  Google Scholar  *


Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. _ACS Nano_ 8,


1102–1120 (2014). CAS  Google Scholar  * Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. _Science_ 335, 947–950 (2012). CAS  Google Scholar


  * Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. _Science_ 340, 1311–1314 (2013). CAS  Google Scholar  * Georgiou, T. et al. Vertical


field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. _Nature Nanotech._ 8, 100–103 (2013). CAS  Google Scholar  * Mishchenko, A. et al.


Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. _Nature Nanotech._ 9, 808–813 (2014). CAS  Google Scholar  * Yu, W. J. et al. Vertically stacked


multi-heterostructures of layered materials for logic transistors and complementary inverters. _Nature Mater._ 12, 246–252 (2012). Google Scholar  * Yu, W. J. et al. Highly efficient


gate-tunable photocurrent generation in vertical heterostructures of layered materials. _Nature Nanotech._ 8, 952–958 (2013). CAS  Google Scholar  * Grigorieva, I. V. & Geim, A. K. Van


der Waals heterostructures. _Nature_ 499, 419–425 (2013). Google Scholar  * Das, S., Robinson, J. A., Dubey, M., Terrones, H. & Terrones, M. Beyond graphene: progress in novel


two-dimensional materials and van der Waals solids. _Annu. Rev. Mater. Res._ 45, 1–27 (2015). CAS  Google Scholar  * Wang, H., Yuan, H., Sae Hong, S., Li, Y. & Cui, Y. Physical and


chemical tuning of two-dimensional transition metal dichalcogenides. _Chem. Soc. Rev._ 44, 2664–2680 (2015). CAS  Google Scholar  * Chhowalla, M. et al. The chemistry of two-dimensional


layered transition metal dichalcogenide nanosheets. _Nature Chem._ 5, 263–275 (2013). Google Scholar  * Hoppe, H. & Sariciftci, N. S. Organic solar cells: an overview. _J. Mater. Res._


19, 1924–1945 (2004). CAS  Google Scholar  * Gong, M. et al. Polychiral semiconducting carbon nanotube–fullerene solar cells. _Nano Lett._ 14, 5308–5314 (2014). CAS  Google Scholar  * Neto,


A. C., Guinea, F., Peres, N., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. _Rev. Mod. Phys._ 81, 109–162 (2009). Google Scholar  * Wang, Q. H., Kalantar-Zadeh,


K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. _Nature Nanotech._ 7, 699–712 (2012). CAS  Google Scholar


  * Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. _Nature_ 318, 162–163 (1985). CAS  Google Scholar  * Facchetti, A.


Semiconductors for organic transistors. _Mater. Today_ 10, 28–37 (2007). CAS  Google Scholar  * Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. _Science_ 271,


933–937 (1996). CAS  Google Scholar  * Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density


differentiation. _Nature Nanotech._ 1, 60–65 (2006). CAS  Google Scholar  * Lieber, C. M. & Wang, Z. L. Functional nanowires. _MRS Bull._ 32, 99–108 (2007). CAS  Google Scholar  * Yu,


X., Marks, T. J. & Facchetti, A. Metal oxides for optoelectronic applications. _Nature Mater._ 15, 383–396 (2016). CAS  Google Scholar  * Li, S.-L., Tsukagoshi, K., Orgiu, E. &


Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. _Chem. Soc. Rev._ 45, 118–151 (2016). CAS  Google Scholar  * Kang, J.,


Liu, W., Sarkar, D., Jena, D. & Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. _Phys. Rev. X_ 4, 031005 (2014). Google


Scholar  * Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. _Nature Mater._ 14, 1195–1205 (2015). CAS  Google Scholar  * Sze, S. M.


& Ng, K. K. _Physics of Semiconductor Devices_ 3rd edn (Wiley, 2007). Google Scholar  * Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic


structures at organic/metal and organic/organic interfaces. _Adv. Mater._ 11, 605–625 (1999). CAS  Google Scholar  * So, F. _Organic Electronics: Materials, Processing, Devices and


Applications_ (CRC, 2009). Google Scholar  * Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics,


photovoltaics, and sensing. _Chem. Soc. Rev._ 42, 2824–2860 (2013). CAS  Google Scholar  * Wang, Q. H. & Hersam, M. C. Room-temperature molecular-resolution characterization of


self-assembled organic monolayers on epitaxial graphene. _Nature Chem._ 1, 206–211 (2009). CAS  Google Scholar  * Kufer, D. et al. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. _Adv.


Mater._ 27, 176–180 (2015). CAS  Google Scholar  * Konstantatos, G. et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. _Nature Nanotech._ 7, 363–368 (2012). CAS  Google


Scholar  * Jariwala, D. et al. Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. _Nano Lett._ 15, 416–421 (2015). CAS  Google Scholar  *


Jariwala, D. et al. Gate-tunable carbon nanotube–MoS2 heterojunction p–n diode. _Proc. Natl Acad. Sci. USA_ 110, 18076–18080 (2013). CAS  Google Scholar  * Lee, J.-H. et al. Wafer-scale


growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. _Science_ 344, 286–289 (2014). CAS  Google Scholar  * Ruzmetov, D. et al. Vertical 2D/3D semiconductor


heterostructures based on epitaxial molybdenum disulfide and gallium nitride. _ACS Nano_ 10, 3580–3588 (2016). CAS  Google Scholar  * Chung, K., Lee, C.-H. & Yi, G.-C. Transferable GaN


layers grown on ZnO-coated graphene layers for optoelectronic devices. _Science_ 330, 655–657 (2010). CAS  Google Scholar  * Kobayashi, Y., Kumakura, K., Akasaka, T. & Makimoto, T.


Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. _Nature_ 484, 223–227 (2012). CAS  Google Scholar  * Kory, M. J. et al. Gram-scale synthesis of


two-dimensional polymer crystals and their structure analysis by X-ray diffraction. _Nature Chem._ 6, 779–784 (2014). CAS  Google Scholar  * Pfeffermann, M. et al. Free-standing monolayer


two-dimensional supramolecular organic framework with good internal order. _J. Am. Chem. Soc._ 137, 14525–14532 (2015). CAS  Google Scholar  * Kissel, P., Murray, D. J., Wulftange, W. J.,


Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. _Nature Chem._ 6, 774–778 (2014). CAS  Google Scholar  *


Zhuang, X. et al. Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices. _Adv. Mater._ 27, 3789–3796 (2015). CAS  Google Scholar  * Murray,


D. J. et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. _J. Am. Chem. Soc._ 137, 3450–3453 (2015). CAS  Google Scholar  * Tour, J. M. Molecular


electronics. synthesis and testing of components. _Acc. Chem. Res._ 33, 791–804 (2000). CAS  Google Scholar  * Lee C.-H. et al. Epitaxial growth of molecular crystals on van der Waals


substrates for high-performance organic electronics. _Adv. Mater._ 26, 2812–2817 (2014). CAS  Google Scholar  * Kang, S. J. et al. Organic field effect transistors based on graphene and


hexagonal boron nitride heterostructures. _Adv. Funct. Mater._ 24, 5157–5163 (2014). CAS  Google Scholar  * Lee, G.-H. et al. Heterostructures based on inorganic and organic van der Waals


systems. _APL Mater._ 2, 092511 (2014). Google Scholar  * Jo, S. B. et al. Boosting photon harvesting in organic solar cells with highly oriented molecular crystals via graphene–organic


heterointerface. _ACS Nano_ 9, 8206–8219 (2015). CAS  Google Scholar  * Lee, W. H. et al. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic


transistors. _J. Am. Chem. Soc._ 133, 4447–4454 (2011). CAS  Google Scholar  * Lee, S. et al. Enhanced characteristics of pentacene field-effect transistors with graphene electrodes and


substrate treatments. _Appl. Phys. Lett._ 99, 083306 (2011). Google Scholar  * Lee, S. et al. Enhanced charge injection in pentacene field-effect transistors with graphene electrodes. _Adv.


Mater._ 23, 100–105 (2011). CAS  Google Scholar  * Basu, S., Lee, M. C. & Wang, Y.-H. Graphene-based electrodes for enhanced organic thin film transistors based on pentacene. _Phys.


Chem. Chem. Phys._ 16, 16701–16710 (2014). CAS  Google Scholar  * Di, C.-A. et al. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. _Adv.


Mater._ 20, 3289–3293 (2008). CAS  Google Scholar  * Wang, Y. et al. Graphene-assisted solution growth of vertically oriented organic semiconducting single crystals. _ACS Nano_ 9, 9486–9496


(2015). CAS  Google Scholar  * Colson, J. W. et al. Oriented 2D. _Science_, 332, 228–231 (2011). CAS  Google Scholar  * Huafeng, Y. et al. Dielectric nanosheets made by liquid-phase


exfoliation in water and their use in graphene-based electronics. _2D Mater._ 1, 011012 (2014). Google Scholar  * Schlierf, A. et al. Nanoscale insight into the exfoliation mechanism of


graphene with organic dyes: effect of charge, dipole and molecular structure. _Nanoscale_ 5, 4205–4216 (2013). CAS  Google Scholar  * Sarbani, B., Feri, A. & Yeong-Her, W. Blending


effect of 6,13-bis(triisopropylsilylethynyl) pentacene–graphene composite layers for flexible thin film transistors with a polymer gate dielectric. _Nanotechnology_ 25, 085201 (2014). Google


Scholar  * Zhang, Y. et al. Two-dimensional MoS2-assisted immediate aggregation of poly-3-hexylthiophene with high mobility. _Phys. Chem. Chem. Phys._ 17, 27565–27572 (2015). CAS  Google


Scholar  * He, D. et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. _Nature Commun._ 5, 5162 (2014). CAS  Google Scholar  *


Parui, S. et al. Gate-controlled energy barrier at a graphene/molecular semiconductor junction. _Adv. Funct. Mater._ 25, 2972–2979 (2015). CAS  Google Scholar  * Liu, Y., Zhou, H., Weiss, N.


O., Huang, Y. & Duan, X. High-performance organic vertical thin film transistor using graphene as a tunable contact. _ACS Nano_ 9, 11102–11108 (2015). CAS  Google Scholar  * Hlaing, H.


et al. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures. _Nano Lett._ 15, 69–74 (2015). CAS  Google


Scholar  * Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. _Nature_ 432, 488–492 (2004). CAS  Google


Scholar  * Liu, Y. et al. Highly flexible electronics from scalable vertical thin film transistors. _Nano Lett._ 14, 1413–1418 (2014). CAS  Google Scholar  * Heo, J. et al. Graphene and


thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics. _Nano Lett._ 13, 5967–5971 (2013). CAS  Google Scholar  * Yang, H. et al. Graphene


barristor, a triode device with a gate-controlled Schottky barrier. _Science_ 336, 1140–1143 (2012). CAS  Google Scholar  * Ojeda-Aristizabal, C., Bao, W. & Fuhrer, M. S. Thin-film


barristor: a gate-tunable vertical graphene–pentacene device. _Phys. Rev. B_ 88, 035435 (2013). Google Scholar  * Jariwala, D. et al. Hybrid, gate-tunable, van der Waals p–n heterojunctions


from pentacene and MoS2 . _Nano Lett._ 16, 497–503 (2016). CAS  Google Scholar  * Velez, S. et al. Gate-tunable diode and photovoltaic effect in an organic–2D layered material p–n junction.


_Nanoscale_ 7, 15442–15449 (2015). CAS  Google Scholar  * Jeong, H. et al. Semiconductor–insulator–semiconductor diode consisting of monolayer MoS2, h-BN, and GaN heterostructure. _ACS Nano_


9, 10032–10038 (2015). CAS  Google Scholar  * Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. _Nature_ 526, 91–95 (2015). CAS  Google


Scholar  * Vaziri, S. et al. Going ballistic: graphene hot electron transistors. _Solid State Commun._ 224, 64–75 (2015). CAS  Google Scholar  * Mehr, W. et al. Vertical graphene base


transistor. _IEEE Electron Device Lett._ 33, 691–693 (2012). CAS  Google Scholar  * Vaziri, S. et al. A graphene-based hot electron transistor. _Nano Lett._ 13, 1435–1439 (2013). CAS  Google


Scholar  * Torres, C. M. et al. High-current gain two-dimensional MoS2-base hot-electron transistors. _Nano Lett._ 15, 7905–7912 (2015). CAS  Google Scholar  * Vaziri, S. et al. Bilayer


insulator tunnel barriers for graphene-based vertical hot-electron transistors. _Nanoscale_ 7, 13096–13104 (2015). CAS  Google Scholar  * Mead, C. A. Operation of tunnel-emission devices.


_J. Appl. Phys._ 32, 646–652 (1961). Google Scholar  * van 't Erve, O. M. J. et al. Low-resistance spin injection into silicon using graphene tunnel barriers. _Nature Nanotech._ 7,


737–742 (2012). CAS  Google Scholar  * van 't Erve O. M. J. et al. Spin transport and Hanle effect in silicon nanowires using graphene tunnel barriers. _Nature Commun._ 6, 7541 (2015).


CAS  Google Scholar  * Koppens F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. _Nature Nanotech._ 9, 780–793 (2014). CAS  Google Scholar


  * Sun, Z. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. _Adv. Mater._ 24, 5878–5883 (2012). CAS  Google Scholar  * Jang, S.,


Hwang, E., Lee, Y., Lee, S. & Cho, J. H. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. _Nano Lett._ 15, 2542–2547 (2015). CAS  Google


Scholar  * Roy, K. et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. _Nature Nanotech._ 8, 826–830 (2013). CAS  Google Scholar  * Yu, S. H. et al.


Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. _ACS Nano_ 8, 8285–8291 (2014). CAS  Google Scholar  * Cho, E. et al. Enhancement of photoresponsive electrical


characteristics of multilayer MoS2 transistors using rubrene patches. _Nano Res._ 8, 790–800 (2015). CAS  Google Scholar  * An, X., Liu, F., Jung, Y. J. & Kar, S. Tunable


graphene–silicon heterojunctions for ultrasensitive photodetection. _Nano Lett._ 13, 909–916 (2013). CAS  Google Scholar  * Zeng, L.-H. et al. Monolayer graphene/germanium Schottky junction


as high-performance self-driven infrared light photodetector. _ACS Appl. Mater. Interfaces_ 5, 9362–9366 (2013). CAS  Google Scholar  * Chen, C.-C., Aykol, M., Chang, C.-C., Levi, A. F. J.


& Cronin, S. B. Graphene–silicon Schottky diodes. _Nano Lett._ 11, 1863–1867 (2011). CAS  Google Scholar  * Zhu, M. et al. Vertical junction photodetectors based on reduced graphene


oxide/silicon Schottky diodes. _Nanoscale_ 6, 4909–4914 (2014). CAS  Google Scholar  * An, Y., Behnam, A., Pop, E. & Ural, A. Metal–semiconductor–metal photodetectors based on


graphene/p-type silicon Schottky junctions. _Appl. Phys. Lett._ 102, 013110 (2013). Google Scholar  * Nie, B. et al. Monolayer graphene film on ZnO nanorod array for high-performance


Schottky junction ultraviolet photodetectors. _Small_ 9, 2872–2879 (2013). CAS  Google Scholar  * Gao, Z. et al. Self-powered flexible and transparent photovoltaic detectors based on CdSe


nanobelt/graphene Schottky junctions. _Nanoscale_ 5, 5576–5581 (2013). CAS  Google Scholar  * Shin, D. H. et al. Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity


compatible with quantum confinement effect. _Adv. Mater._ 27, 2614–2620 (2015). CAS  Google Scholar  * Miao, J. et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared


photodetectors with distinct photocurrent on/off ratios. _Small_ 11, 936–942 (2015). CAS  Google Scholar  * Esmaeili-Rad, M. R. & Salahuddin, S. High performance molybdenum disulfide


amorphous silicon heterojunction photodetector. _Sci. Rep._ 3, 2345 (2013). Google Scholar  * Liu, F. et al. Van der Waals p–n junction based on an organic–inorganic heterostructure. _Adv.


Funct. Mater._ 25, 5865–5871 (2015). CAS  Google Scholar  * Koester, S. J. & Li, M. Waveguide-coupled graphene optoelectronics. _IEEE J. Sel. Top. Quant. Electron._ 20, 84–94 (2014).


Google Scholar  * Furchi, M. et al. Microcavity-integrated graphene photodetector. _Nano Lett._ 12, 2773–2777 (2012). CAS  Google Scholar  * Liu, M. et al. A graphene-based broadband optical


modulator. _Nature_ 474, 64–67 (2011). CAS  Google Scholar  * Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. _Nature Photon._ 7,


892–896 (2013). CAS  Google Scholar  * Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. _Nature Photon._ 7, 883–887 (2013). CAS  Google Scholar  *


Shiue, R.-J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. _Nano Lett._ 15, 7288–7293 (2015). CAS  Google Scholar


  * Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. _Nature Photon._ 7, 888–891 (2013). CAS  Google


Scholar  * Li, X. et al. Graphene-on-silicon Schottky junction solar cells. _Adv. Mater._ 22, 2743–2748 (2010). CAS  Google Scholar  * Brus, V. V. et al. Stability of graphene–silicon


heterostructure solar cells. _Phys. Status Solidi A_ 211, 843–847 (2014). CAS  Google Scholar  * Shi, E. et al. Colloidal antireflection coating improves graphene–silicon solar cells. _Nano


Lett._ 13, 1776–1781 (2013). CAS  Google Scholar  * Miao, X. et al. High efficiency graphene solar cells by chemical doping. _Nano Lett._ 12, 2745–2750 (2012). CAS  Google Scholar  * Lin, Y.


et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. _Energ. Environ. Sci._ 6, 108–115 (2013). CAS  Google Scholar  * Zhang, X.


et al. High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. _J. Mater. Chem. A_, 1, 6593–6601 (2013). CAS  Google Scholar  *


Feng, T. et al. Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. _Appl. Phys. Lett._ 99, 233505 (2011). Google Scholar  * Xie, C. et al. Monolayer


graphene film/silicon nanowire array Schottky junction solar cells. _Appl. Phys. Lett._ 99, 133113 (2011). Google Scholar  * Song, Y. et al. Role of interfacial oxide in high-efficiency


graphene–silicon Schottky barrier solar cells. _Nano Lett._ 15, 2104–2110 (2015). CAS  Google Scholar  * Li, X. et al. 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell.


_Nano Energy_, 16, 310–319 (2015). CAS  Google Scholar  * Vazquez-Mena, O. et al. Performance enhancement of a graphene–zinc phosphide solar cell using the electric field-effect. _Nano


Lett._ 14, 4280–4285 (2014). CAS  Google Scholar  * Zhang, L. et al. Graphene–CdSe nanobelt solar cells with tunable configurations. _Nano Res._ 4, 891–900 (2011). CAS  Google Scholar  * Ye,


Y. et al. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells. _Nanoscale_ 3, 1477–1481 (2011). CAS  Google Scholar


  * Lin, S. et al. Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping. _Appl. Phys. Lett._ 107, 191106 (2015). Google Scholar  * Ye, Y. & Dai, L.


Graphene-based Schottky junction solar cells. _J. Mater. Chem._ 22, 24224–24229 (2012). CAS  Google Scholar  * Lopez-Sanchez, O. et al. Light generation and harvesting in a van der Waals


heterostructure. _ACS Nano_ 8, 3042–3048 (2014). CAS  Google Scholar  * Tsai, M.-L. et al. Monolayer MoS2 heterojunction solar cells. _ACS Nano_ 8, 8317–8322 (2014). CAS  Google Scholar  *


Lin, S. et al. Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride. _Sci. Rep._ 5, 15103 (2015). CAS  Google Scholar  * Liu, X. et al.


Strong light–matter coupling in two-dimensional atomic crystals. _Nature Photon._ 9, 30–34 (2015). CAS  Google Scholar  * Tan, Y. et al. Polarization-dependent optical absorption of MoS2 for


refractive index sensing. _Sci. Rep._ 4, 7523 (2014). CAS  Google Scholar  * Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor.


_Phys. Rev. Lett._ 105, 136805 (2010). Google Scholar  * Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . _Nano Lett._ 10, 1271–1275 (2010). CAS  Google Scholar  *


Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. _Nano Lett._ 14, 5590–5597 (2014). CAS  Google Scholar  * Withers,


F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. _Nature Mater._ 14, 301–306 (2015). CAS  Google Scholar  * Ye, Y. et al. Exciton-dominant


electroluminescence from a diode of monolayer MoS2 . _Appl. Phys. Lett._ 104, 193508 (2014). Google Scholar  * Li, D. et al. Electric-field-induced strong enhancement of electroluminescence


in multilayer molybdenum disulfide. _Nature Commun._ 6, 7509 (2015). Google Scholar  * Lee, C.-H. et al. Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films.


_Adv. Mater._ 23, 4614–4619 (2011). CAS  Google Scholar  * Ye, Y. et al. Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. _J. Mater. Chem._ 21,


11760–11763 (2011). CAS  Google Scholar  * Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. _Nature Photon._ 6, 105–110 (2012). CAS


  Google Scholar  * Han, N. et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. _Nature Commun._ 4, 1452 (2013). Google Scholar  *


Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2 . _Science_ 350, 1065–1068 (2015). CAS  Google Scholar  * Dou, L. et al. Atomically thin two-dimensional


organic–inorganic hybrid perovskites. _Science_ 349, 1518–1521 (2015). CAS  Google Scholar  * Callahan, D. M., Munday, J. N. & Atwater, H. A. Solar cell light trapping beyond the ray


optic limit. _Nano Lett._ 12, 214–218 (2012). CAS  Google Scholar  * Ye, Y. et al. Monolayer excitonic laser. _Nature Photon._ 9, 733–737 (2015). CAS  Google Scholar  * Wu, S. et al.


Monolayer semiconductor nanocavity lasers with ultralow thresholds. _Nature_ 520, 69–72 (2015). CAS  Google Scholar  * Kang, K. et al. High-mobility three-atom-thick semiconducting films


with wafer-scale homogeneity. _Nature_ 520, 656–660 (2015). CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We acknowledge support from the Materials Research Science and


Engineering Center (MRSEC) of Northwestern University (NSF DMR-1121262), and the 2-DARE programme (NSF EFRI-143510). AUTHOR INFORMATION Author notes * Deep Jariwala Present address: Present


address: Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, USA, AUTHORS AND AFFILIATIONS * Department of Materials Science


and Engineering, Northwestern University, Evanston, 60208, Illinois, USA Deep Jariwala, Tobin J. Marks & Mark C. Hersam * Department of Chemistry, Northwestern University, Evanston,


60208, Illinois, USA Tobin J. Marks & Mark C. Hersam Authors * Deep Jariwala View author publications You can also search for this author inPubMed Google Scholar * Tobin J. Marks View


author publications You can also search for this author inPubMed Google Scholar * Mark C. Hersam View author publications You can also search for this author inPubMed Google Scholar


CORRESPONDING AUTHOR Correspondence to Mark C. Hersam. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Jariwala, D., Marks, T. & Hersam, M. Mixed-dimensional van der Waals heterostructures. _Nature Mater_ 16, 170–181 (2017).


https://doi.org/10.1038/nmat4703 Download citation * Received: 19 February 2016 * Accepted: 21 June 2016 * Published: 01 August 2016 * Issue Date: February 2017 * DOI:


https://doi.org/10.1038/nmat4703 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative