Olfactory cortical neurons read out a relative time code in the olfactory bulb

Olfactory cortical neurons read out a relative time code in the olfactory bulb

Play all audios:

Loading...

ABSTRACT Odor stimulation evokes complex spatiotemporal activity in the olfactory bulb, suggesting that both the identity of activated neurons and the timing of their activity convey


information about odors. However, whether and how downstream neurons decipher these temporal patterns remains unknown. We addressed this question by measuring the spiking activity of


downstream neurons while optogenetically stimulating two foci in the olfactory bulb with varying relative timing in mice. We found that the overall spike rates of piriform cortex neurons


(PCNs) were sensitive to the relative timing of activation. Posterior PCNs showed higher sensitivity to relative input times than neurons in the anterior piriform cortex. In contrast,


olfactory bulb neurons rarely showed such sensitivity. Thus, the brain can transform a relative time code in the periphery into a firing rate–based representation in central brain areas,


providing evidence for the relevance of a relative time–based code in the olfactory bulb. Access through your institution Buy or subscribe This is a preview of subscription content, access


via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy


this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *


Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE CIRCADIAN CLOCK IN THE PIRIFORM CORTEX INTRINSICALLY


TUNES DAILY CHANGES OF ODOR-EVOKED NEURAL ACTIVITY Article Open access 27 March 2023 LONG-RANGE GABAERGIC PROJECTIONS CONTRIBUTE TO CORTICAL FEEDBACK CONTROL OF SENSORY PROCESSING Article


Open access 12 November 2022 FAST UPDATING FEEDBACK FROM PIRIFORM CORTEX TO THE OLFACTORY BULB RELAYS MULTIMODAL IDENTITY AND REWARD CONTINGENCY SIGNALS DURING RULE-REVERSAL Article Open


access 22 January 2025 REFERENCES * Adrian, E.D. The impulses produced by sensory nerve endings: part I. _J. Physiol. (Lond.)_ 61, 49–72 (1926). Article  CAS  Google Scholar  * Wehr, M.


& Laurent, G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. _Nature_ 384, 162–166 (1996). Article  CAS  PubMed  Google Scholar  * VanRullen, R.,


Guyonneau, R. & Thorpe, S.J. Spike times make sense. _Trends Neurosci._ 28, 1–4 (2005). Article  CAS  PubMed  Google Scholar  * Laurent, G. A systems perspective on early olfactory


coding. _Science_ 286, 723–728 (1999). Article  CAS  PubMed  Google Scholar  * Hopfield, J.J. Pattern recognition computation using action potential timing for stimulus representation.


_Nature_ 376, 33–36 (1995). Article  CAS  PubMed  Google Scholar  * Spors, H. & Grinvald, A. Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. _Neuron_


34, 301–315 (2002). Article  CAS  PubMed  Google Scholar  * Wesson, D.W., Carey, R.M., Verhagen, J.V. & Wachowiak, M. Rapid encoding and perception of novel odors in the rat. _PLoS


Biol._ 6, e82 (2008). Article  PubMed  PubMed Central  CAS  Google Scholar  * Macrides, F. & Chorover, S.L. Olfactory bulb units: activity correlated with inhalation cycles and odor


quality. _Science_ 175, 84–87 (1972). Article  CAS  PubMed  Google Scholar  * Cang, J. & Isaacson, J.S. _In vivo_ whole-cell recording of odor-evoked synaptic transmission in the rat


olfactory bulb. _J. Neurosci._ 23, 4108–4116 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Margrie, T.W. & Schaefer, A.T. Theta oscillation coupled spike latencies


yield computational vigor in a mammalian sensory system. _J. Physiol. (Lond.)_ 546, 363–374 (2003). Article  CAS  Google Scholar  * Shusterman, R., Smear, M.C., Koulakov, A.A. & Rinberg,


D. Precise olfactory responses tile the sniff cycle. _Nat. Neurosci._ 14, 1039–1044 (2011). Article  CAS  PubMed  Google Scholar  * Cury, K.M. & Uchida, N. Robust odor coding via


inhalation-coupled transient activity in the mammalian olfactory bulb. _Neuron_ 68, 570–585 (2010). Article  CAS  PubMed  Google Scholar  * Blumhagen, F. et al. Neuronal filtering of


multiplexed odor representations. _Nature_ 479, 493–498 (2011). Article  CAS  PubMed  Google Scholar  * Smear, M., Shusterman, R., O'Connor, R., Bozza, T. & Rinberg, D. Perception


of sniff phase in mouse olfaction. _Nature_ 479, 397–400 (2011). Article  CAS  PubMed  Google Scholar  * Miura, K., Mainen, Z.F. & Uchida, N. Odor representations in olfactory cortex:


distributed rate coding and decorrelated population activity. _Neuron_ 74, 1087–1098 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kadohisa, M. & Wilson, D.A. Olfactory


cortical adaptation facilitates detection of odors against background. _J. Neurophysiol._ 95, 1888–1896 (2006). Article  PubMed  Google Scholar  * Stettler, D.D. & Axel, R.


Representations of odor in the piriform cortex. _Neuron_ 63, 854–864 (2009). Article  CAS  PubMed  Google Scholar  * Luna, V.M. & Schoppa, N.E. GABAergic circuits control input-spike


coupling in the piriform cortex. _J. Neurosci._ 28, 8851–8859 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Apicella, A., Yuan, Q., Scanziani, M. & Isaacson, J.S.


Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli. _J. Neurosci._ 30, 14255–14260 (2010). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Davison, I.G. & Ehlers, M.D. Neural circuit mechanisms for pattern detection and feature combination in olfactory cortex. _Neuron_ 70, 82–94 (2011). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Dhawale, A.K., Hagiwara, A., Bhalla, U.S., Murthy, V.N. & Albeanu, D.F. Non-redundant odor coding by sister mitral cells revealed by light addressable


glomeruli in the mouse. _Nat. Neurosci._ 13, 1404–1412 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Arenkiel, B.R. et al. _In vivo_ light-induced activation of neural


circuitry in transgenic mice expressing channelrhodopsin-2. _Neuron_ 54, 205–218 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Carey, R.M., Verhagen, J.V., Wesson, D.W.,


Pirez, N. & Wachowiak, M. Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats. _J. Neurophysiol._ 101, 1073–1088 (2009). Article  PubMed  Google


Scholar  * Wachowiak, M. All in a sniff: olfaction as a model for active sensing. _Neuron_ 71, 962–973 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Uchida, N. &


Mainen, Z.F. Speed and accuracy of olfactory discrimination in the rat. _Nat. Neurosci._ 6, 1224–1229 (2003). Article  CAS  PubMed  Google Scholar  * Davison, I.G. & Katz, L.C. Sparse


and selective odor coding by mitral/tufted neurons in the main olfactory bulb. _J. Neurosci._ 27, 2091–2101 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nagayama, S.,


Takahashi, Y.K., Yoshihara, Y. & Mori, K. Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb. _J. Neurophysiol._ 91, 2532–2540 (2004). Article 


PubMed  Google Scholar  * Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. _J. R. Stat. Soc. Series B Stat.


Methodol._ 57, 289–300 (1995). Google Scholar  * Stokes, C.C. & Isaacson, J.S. From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in


olfactory cortex. _Neuron_ 67, 452–465 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Suzuki, N. & Bekkers, J.M. Microcircuits mediating feedforward and feedback


synaptic inhibition in the piriform cortex. _J. Neurosci._ 32, 919–931 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Satou, M., Mori, K., Tazawa, Y. & Takagi, S.F.


Interneurons mediating fast postsynaptic inhibition in pyriform cortex of the rabbit. _J. Neurophysiol._ 50, 89–101 (1983). Article  CAS  PubMed  Google Scholar  * Poo, C. & Isaacson,


J.S. Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. _Neuron_ 62, 850–861 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Buck, L.B. The molecular architecture of odor and pheromone sensing in mammals. _Cell_ 100, 611–618 (2000). Article  CAS  PubMed  Google Scholar  * Mori, K. & Sakano, H. How is the


olfactory map formed and interpreted in the Mammalian brain? _Annu. Rev. Neurosci._ 34, 467–499 (2011). Article  CAS  PubMed  Google Scholar  * Stopfer, M., Jayaraman, V. & Laurent, G.


Intensity versus identity coding in an olfactory system. _Neuron_ 39, 991–1004 (2003). Article  CAS  PubMed  Google Scholar  * Perez-Orive, J. et al. Oscillations and sparsening of odor


representations in the mushroom body. _Science_ 297, 359–365 (2002). Article  CAS  PubMed  Google Scholar  * Carey, R.M. & Wachowiak, M. Effect of sniffing on the temporal structure of


mitral/tufted cell output from the olfactory bulb. _J. Neurosci._ 31, 10615–10626 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Junek, S., Kludt, E., Wolf, F. & Schild,


D. Olfactory coding with patterns of response latencies. _Neuron_ 67, 872–884 (2010). Article  CAS  PubMed  Google Scholar  * Schaefer, A.T. & Margrie, T.W. Spatiotemporal


representations in the olfactory system. _Trends Neurosci._ 30, 92–100 (2007). Article  CAS  PubMed  Google Scholar  * Haberly, L.B. Summed potentials evoked in opossum prepyriform cortex.


_J. Neurophysiol._ 36, 775–788 (1973). Article  CAS  PubMed  Google Scholar  * Franks, K.M. et al. Recurrent circuitry dynamically shapes the activation of piriform cortex. _Neuron_ 72,


49–56 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Poo, C. & Isaacson, J.S. A major role for intracortical circuits in the strength and tuning of odor-evoked


excitation in olfactory cortex. _Neuron_ 72, 41–48 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hagiwara, A., Pal, S.K., Sato, T.F., Wienisch, M. & Murthy, V.N.


Optophysiological analysis of associational circuits in the olfactory cortex. _Front. Neural Circuits_ 6, 18 (2012). Article  PubMed  PubMed Central  Google Scholar  * Mouly, A.M., Litaudon,


P., Chabaud, P., Ravel, N. & Gervais, R. Spatiotemporal distribution of a late synchronized activity in olfactory pathways following stimulation of the olfactory bulb in rats. _Eur. J.


Neurosci._ 10, 1128–1135 (1998). Article  CAS  PubMed  Google Scholar  * Oswald, A.M. & Urban, N.N. Interactions between behaviorally relevant rhythms and synaptic plasticity alter


coding in the piriform cortex. _J. Neurosci._ 32, 6092–6104 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Suzuki, N. & Bekkers, J.M. Neural coding by two classes of


principal cells in the mouse piriform cortex. _J. Neurosci._ 26, 11938–11947 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Branco, T., Clark, B.A. & Hausser, M.


Dendritic discrimination of temporal input sequences in cortical neurons. _Science_ 329, 1671–1675 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bathellier, B., Margrie,


T.W. & Larkum, M.E. Properties of piriform cortex pyramidal cell dendrites: implications for olfactory circuit design. _J. Neurosci._ 29, 12641–12652 (2009). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Padmanabhan, K. & Urban, N.N. Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. _Nat. Neurosci._ 13,


1276–1282 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Angelo, K. et al. A biophysical signature of network affiliation and sensory processing in mitral cells. _Nature_


488, 375–378 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and


silencing. _Nat. Neurosci._ 15, 793–802 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, X.W., Model, P. & Heintz, N. Homologous recombination based modification in


_Escherichia coli_ and germline transmission in transgenic mice of a bacterial artificial chromosome. _Nat. Biotechnol._ 15, 859–865 (1997). Article  CAS  PubMed  Google Scholar  *


Schmitzer-Torbert, N. & Redish, A.D. Neuronal activity in the rodent dorsal striatum in sequential navigation: separation of spatial and reward responses on the multiple T task. _J.


Neurophysiol._ 91, 2259–2272 (2004). Article  PubMed  Google Scholar  * Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted


optical control of neural activity. _Nat. Neurosci._ 8, 1263–1268 (2005). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank C. Dulac (Harvard University)


for sharing resources generously, comments on the manuscript and providing _Tbet-cre; ChR2__loxP/loxP_ mice (generated by A.L.). We thank E. Soucy and T. Sato for technical support and D.F.


Albeanu and A.K. Dhawale for technical advice. We thank Y. Ben-Shaul, C. Poo, N. Eshel and J.Y. Cohen for their comments on the manuscript. This work was supported by Human Frontier Science


Program (R.H.), a Howard Hughes Medical Institute Collaborative Innovation Award, a Smith Family New Investigator Award, the Alfred Sloan Foundation and the Milton Fund (N.U.), and a grant


from the US National Institutes of Health (V.N.M.). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University,


Cambridge, Massachusetts, USA Rafi Haddad, Anne Lanjuin, Venkatesh N Murthy & Naoshige Uchida * Allen Institute for Brain Science, Seattle, Washington, USA Linda Madisen & Hongkui


Zeng Authors * Rafi Haddad View author publications You can also search for this author inPubMed Google Scholar * Anne Lanjuin View author publications You can also search for this author


inPubMed Google Scholar * Linda Madisen View author publications You can also search for this author inPubMed Google Scholar * Hongkui Zeng View author publications You can also search for


this author inPubMed Google Scholar * Venkatesh N Murthy View author publications You can also search for this author inPubMed Google Scholar * Naoshige Uchida View author publications You


can also search for this author inPubMed Google Scholar CONTRIBUTIONS R.H. and N.U. conceived the experiment. R.H. performed the experiment. A.L. generated and characterized the _Tbet-cre;


ChR2__loxP/loxP_ mice, and L.M. and H.Z. generated and characterized the _ChR2__loxP/loxP_ mice. V.N.M. provided the _Omp-ChR2_ mice. R.H. and N.U. wrote the paper and A.L., V.N.M. and H.Z.


provided feedback on the manuscript. CORRESPONDING AUTHOR Correspondence to Naoshige Uchida. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests.


SUPPLEMENTARY INFORMATION SUPPLEMENTARY TEXT AND FIGURES Supplementary Figures 1–10 (PDF 5930 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Haddad,


R., Lanjuin, A., Madisen, L. _et al._ Olfactory cortical neurons read out a relative time code in the olfactory bulb. _Nat Neurosci_ 16, 949–957 (2013). https://doi.org/10.1038/nn.3407


Download citation * Received: 30 January 2013 * Accepted: 24 April 2013 * Published: 19 May 2013 * Issue Date: July 2013 * DOI: https://doi.org/10.1038/nn.3407 SHARE THIS ARTICLE Anyone you


share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative