A silicon-based photocathode for water reduction with an epitaxial srtio3 protection layer and a nanostructured catalyst

A silicon-based photocathode for water reduction with an epitaxial srtio3 protection layer and a nanostructured catalyst

Play all audios:

Loading...

ABSTRACT The rapidly increasing global demand for energy combined with the environmental impact of fossil fuels has spurred the search for alternative sources of clean energy. One promising


approach is to convert solar energy into hydrogen fuel using photoelectrochemical cells. However, the semiconducting photoelectrodes used in these cells typically have low efficiencies


and/or stabilities. Here we show that a silicon-based photocathode with a capping epitaxial oxide layer can provide efficient and stable hydrogen production from water. In particular, a thin


epitaxial layer of strontium titanate (SrTiO3) was grown directly on Si(001) by molecular beam epitaxy. Photogenerated electrons can be transported easily through this layer because of the


conduction-band alignment and lattice match between single-crystalline SrTiO3 and silicon. The approach was used to create a metal–insulator–semiconductor photocathode that, under a


broad-spectrum illumination at 100 mW cm−2, exhibits a maximum photocurrent density of 35 mA cm−2 and an open circuit potential of 450 mV; there was no observable decrease in performance


after 35 hours of operation in 0.5 M H2SO4. The performance of the photocathode was also found to be highly dependent on the size and spacing of the structured metal catalyst. Therefore,


mesh-like Ti/Pt nanostructured catalysts were created using a nanosphere lithography lift-off process and an applied-bias photon-to-current efficiency of 4.9% was achieved. Access through


your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12


print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be


subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR


CONTENT BEING VIEWED BY OTHERS ATOMICALLY DISPERSED IRIDIUM CATALYSTS ON SILICON PHOTOANODE FOR EFFICIENT PHOTOELECTROCHEMICAL WATER SPLITTING Article Open access 04 February 2023 WATER


SPLITTING WITH SILICON P–I–N SUPERLATTICES SUSPENDED IN SOLUTION Article 08 February 2023 DEVELOPMENT OF A PHOTOELECTROCHEMICALLY SELF-IMPROVING SI/GAN PHOTOCATHODE FOR EFFICIENT AND DURABLE


H2 PRODUCTION Article 05 April 2021 REFERENCES * Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. _Nature_ 238, 37–38 (1972). Article  CAS 


Google Scholar  * Lewis, N. S. et al. Solar water splitting cells. _Chem. Rev._ 110, 6446–6473 (2010). Article  Google Scholar  * Esposito, D. V., Levin, I., Moffat, T. P. & Talin, A. A.


H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. _Nature Mater._ 12, 562–568 (2013). Article  CAS 


Google Scholar  * Kye, J. et al. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. _ACS Nano_ 7, 6017–6023 (2013). Article 


CAS  Google Scholar  * Sun, K. et al. Nickel oxide functionalized silicon for efficient photo-oxidation of water. _Energy Environ. Sci._ 5, 7872–7877 (2012). Article  CAS  Google Scholar  *


Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. _Nature Mater._ 10, 539–544 (2011). Article  CAS  Google Scholar  * Seger, B. et


al. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n plus p-silicon photocathode. _Angew. Chem. Int. Ed._ 51, 9128–9131 (2012). Article  CAS  Google Scholar


  * Seger, B. et al. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. _J. Am. Chem. Soc._ 135, 1057–1064 (2013). Article  CAS  Google Scholar  * Kenney, M. J. et


al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. _Science_ 342, 836–840 (2013). Article  CAS  Google Scholar  * Reece, S. Y. et al.


Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. _Science_ 334, 645–648 (2011). Article  CAS  Google Scholar  * Pijpers, J. J. H. et al.


Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. _Proc. Natl Acad. Sci. USA_ 108, 10056–10061 (2011). Article  CAS  Google Scholar 


* Sun, K. et al. Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation. _Nano Lett._ 13, 2064–2072 (2013). Article  CAS  Google Scholar  *


Dasgupta, N. P. et al. Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. _J. Am. Chem. Soc._ 135, 12932–12935 (2013). Article  CAS


  Google Scholar  * Paracchino, A. et al. Highly active oxide photocathode for photoelectrochemical water reduction. _Nature Mater._ 10, 456–461 (2011). Article  CAS  Google Scholar  * Khan,


S. U. M., Al-Shahry, M. & Ingler, W. B. Efficient photochemical water splitting by a chemically modified _n_-TiO2 . _Science_ 297, 2243–2245 (2002). Article  CAS  Google Scholar  *


Chen, X. B., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. _Science_ 331, 746–750 (2011). Article


  CAS  Google Scholar  * Warren, S. C. et al. Identifying champion nanostructures for solar water-splitting. _Nature Mater._ 12, 842–849 (2013). Article  CAS  Google Scholar  * Shi, J. et


al. Interface engineering by piezoelectric potential in ZnO–based photoelectrochemical anode. _Nano Lett._ 11, 5587–5593 (2011). Article  CAS  Google Scholar  * McKone, J. R., Pieterick, A.


P., Gray, H. B. & Lewis, N. S. Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. _J. Am. Chem. Soc._ 135, 223–231 (2012). Article  Google Scholar  * Liao, L. et al.


Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. _Nature Nanotech._ 9, 69–73 (2013). Article  Google Scholar  * Khaselev, O. & Turner, J. A. A monolithic


photovoltaic–photoelectrochemical device for hydrogen production via water splitting. _Science_ 280, 425–427 (1998). Article  CAS  Google Scholar  * Li, Y. et al. Cobalt phosphate-modified


barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. _Nature Commun._ 4, 2566 (2013). Article  Google Scholar  * Higashi, M., Domen, K. & Abe,


R. Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. _J. Am. Chem. Soc._ 134, 6968–6971 (2012). Article  CAS  Google Scholar  * Li, Y. et


al. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. _Adv. Mater._ 25, 125–131 (2013). Article  CAS  Google Scholar  * Powell, D. M. et al.


Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. _Energy Environ. Sci._ 5, 5874–5883 (2012). Article 


Google Scholar  * Swanson, R. M. A vision for crystalline silicon photovoltaics. _Prog. Photovoltaics Res. Appl._ 14, 443–453 (2006). Article  Google Scholar  * Sim, U. et al. N-doped


monolayer graphene catalyst on silicon photocathode for hydrogen production. _Energy Environ. Sci._ 6, 3658–3664 (2013). Article  CAS  Google Scholar  * Wang, X. et al. High-performance


silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. _Angew. Chem. Int. Ed._ 50, 9861–9865 (2011). Article  CAS  Google Scholar  * Munoz, E.


C., Schrebler, R. S., Orellana, M. A. & Cordova, R. Rhenium electrodeposition process onto p-Si(100) and electrochemical behaviour of the hydrogen evolution reaction onto p-Si/Re/0.1 M


H2SO4 interface. _J. Electroanal. Chem._ 611, 35–42 (2007). Article  CAS  Google Scholar  * Strandwitz, N. C. et al. Photoelectrochemical behavior of n-type Si(100) electrodes coated with


thin films of manganese oxide grown by atomic layer deposition. _J. Phys. Chem. C_ 117, 4931–4936 (2013). Article  CAS  Google Scholar  * Lana-Villarreal, T., Straboni, A., Pichon, L. &


Alonso-Vante, N. Photoelectrochemical characterization of p-type silicon electrodes covered with tunnelling nitride dielectric films. _Thin Solid Films_ 515, 7376–7381 (2007). Article  CAS 


Google Scholar  * McKee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: the first five monolayers. _Phys. Rev. Lett._ 81, 3014–3017 (1998). Article  CAS  Google


Scholar  * Yu, Z. et al. Advances in heteroepitaxy of oxides on silicon. _Thin Solid Films_ 462–463, 51–56 (2004). Article  Google Scholar  * Warusawithana, M. P. et al. A ferroelectric


oxide made directly on silicon. _Science_ 324, 367–370 (2009). Article  CAS  Google Scholar  * Demkov, A. A. et al. Monolithic integration of oxides on semiconductors. _ECS Transactions_ 54,


255–269 (2013). Article  Google Scholar  * McKee, R. A., Walker, F. J. & Chisholm, M. F. Physical structure and inversion charge at a semiconductor interface with a crystalline oxide.


_Science_ 293, 468–471 (2001). Article  CAS  Google Scholar  * Chambers, S. A. et al. Band discontinuities at epitaxial SrTiO3/Si(001) heterojunctions. _Appl. Phys. Lett._ 77, 1662–1664


(2000). Article  CAS  Google Scholar  * Chambers, S. et al. Band offset and structure of SrTiO3/Si(001) heterojunctions. _J. Vac. Sci. Technol. A_ 19, 934–939 (2001). Article  CAS  Google


Scholar  * Zhang, X. et al. Atomic and electronic structure of the Si/SrTiO3 interface. _Phys. Rev. B_ 68, 125323 (2003). Article  Google Scholar  * Amy, F. et al. Band offsets at


heterojunctions between SrTiO3 and BaTiO3 and Si(100). _J. Appl. Phys._ 96, 1635–1639 (2004). Article  CAS  Google Scholar  * Robertson, J. Band offsets of wide-band-gap oxides and


implications for future electronic devices. _J. Vac. Sci. Technol. B_ 18, 1785–1791 (2000). Article  CAS  Google Scholar  * Yu, Z. et al. Epitaxial perovskite thin films grown on silicon by


molecular beam epitaxy. _J. Vac. Sci. Technol. B_ 18, 1653–1657 (2000). Article  CAS  Google Scholar  * Chang, T. C., Jian, F. Y., Chen, S. C. & Tsai, Y. T. Developments in nanocrystal


memory. _Mater. Today_ 14, 608–615 (2011). Article  CAS  Google Scholar  * Haynes, C. L. & Van Duyne, R. P. Nanosphere lithography: a versatile nanofabrication tool for studies of


size-dependent nanoparticle optics. _J. Phys. Chem. B_ 105, 5599–5611 (2001). Article  CAS  Google Scholar  * Hsu, C. M., Connor, S. T., Tang, M. X. & Cui, Y. Wafer-scale silicon


nanopillars and nanocones by Langmuir–Blodgett assembly and etching. _Appl. Phys. Lett._ 93, 133109 (2008). Article  Google Scholar  * Sze, S. M. & Ng, K. K. _Physics of Semiconductor


Devices_ (Wiley, 2006). Book  Google Scholar  * Wei, Y. et al. Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO3 films. _J. Vac. Sci. Technol. B_ 20,


1402–1405 (2002). Article  CAS  Google Scholar  * Wagner, C. D. Sensitivity factors for XPS analysis of surface atoms. _J. Electron Spectrosc._ 32, 99–102 (1983). Article  CAS  Google


Scholar  * Wagner, C. D., Davis, L. E. & Riggs, W. M. The energy dependence of the electron mean free path. _Surf. Interface Anal._ 2, 53–55 (1980). Article  CAS  Google Scholar 


Download references ACKNOWLEDGEMENTS The authors acknowledge research support from the National Science Foundation (ECCS-1120823 and Award DMR-1207342), the Office of Naval Research (Grant


N00014-10-10489) and the Judson S. Swearingen Regents Chair in Engineering at the University of Texas at Austin. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Electrical and


Computer Engineering, Microelectronics Research Center, University of Texas at Austin, 78712, Texas, USA Li Ji, Xiaohan Li, Haiyu Huang, Jack C. Lee & Edward T. Yu * Department of


Chemistry and Biochemistry, Center for Electrochemistry, University of Texas at Austin, 78712, Texas, USA Li Ji, Shijun Wang & Allen J. Bard * Department of Chemical Engineering,


University of Texas at Austin, 78712, Texas, USA Martin D. McDaniel & John G. Ekerdt * Department of Physics, University of Texas at Austin, 78712, Texas, USA Agham B. Posadas & 


Alexander A. Demkov Authors * Li Ji View author publications You can also search for this author inPubMed Google Scholar * Martin D. McDaniel View author publications You can also search for


this author inPubMed Google Scholar * Shijun Wang View author publications You can also search for this author inPubMed Google Scholar * Agham B. Posadas View author publications You can


also search for this author inPubMed Google Scholar * Xiaohan Li View author publications You can also search for this author inPubMed Google Scholar * Haiyu Huang View author publications


You can also search for this author inPubMed Google Scholar * Jack C. Lee View author publications You can also search for this author inPubMed Google Scholar * Alexander A. Demkov View


author publications You can also search for this author inPubMed Google Scholar * Allen J. Bard View author publications You can also search for this author inPubMed Google Scholar * John G.


Ekerdt View author publications You can also search for this author inPubMed Google Scholar * Edward T. Yu View author publications You can also search for this author inPubMed Google


Scholar CONTRIBUTIONS L.J., M.D.M., J.G.E. and E.T.Y. contributed to the design concept. L.J., X.L., S.W. and H.H. performed the fabrication process and measurements. M.D.M., A.B.P., A.A.D.


and J.G.E. performed the MBE growth. All authors discussed the results and commented on the manuscript. CORRESPONDING AUTHOR Correspondence to Li Ji. ETHICS DECLARATIONS COMPETING INTERESTS


The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information (PDF 642 kb) SUPPLEMENTARY MOVIE 1 Supplementary Movie 1


(AVI 1459 kb) SUPPLEMENTARY MOVIE 2 Supplementary Movie 2 (AVI 1008 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Ji, L., McDaniel, M., Wang, S.


_et al._ A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. _Nature Nanotech_ 10, 84–90 (2015).


https://doi.org/10.1038/nnano.2014.277 Download citation * Received: 05 May 2014 * Accepted: 22 October 2014 * Published: 01 December 2014 * Issue Date: January 2015 * DOI:


https://doi.org/10.1038/nnano.2014.277 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative