Play all audios:
ABSTRACT The anomalous transport of important materials such as high-temperature superconductors and other ‘bad metals’ is not well understood theoretically. In an incoherent metal,
transport is controlled by the collective diffusion of energy and charge rather than by quasiparticle or momentum relaxation. Here, we explore the possibility of a universal bound _D_ ≳
_ℏν_F2/(_k_B_T_) on the underlying diffusion constants in an incoherent metal. Such a bound is loosely motivated by results from holographic duality, the uncertainty principle and
measurements of diffusion in strongly interacting non-metallic systems. Metals close to saturating this bound are shown to have a linear-in-temperature resistivity with an underlying
dissipative timescale matching that recently deduced from experimental data on a wide range of metals. This bound may therefore be responsible for the ubiquitous appearance of
high-temperature regimes in metals with _T_-linear resistivity. To establish this calls for direct measurements of diffusive processes and of charge susceptibilities in incoherent metals.
Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this
journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now
Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer
support SIMILAR CONTENT BEING VIEWED BY OTHERS RESISTIVITY SATURATION IN KONDO INSULATORS Article Open access 11 October 2021 RISE AND FALL OF LANDAU’S QUASIPARTICLES WHILE APPROACHING THE
MOTT TRANSITION Article Open access 10 March 2021 DISSIPATION-DRIVEN STRANGE METAL BEHAVIOR Article Open access 10 January 2022 REFERENCES * Bruin, J. A. N., Sakai, H., Perry, R. S. &
Mackenzie, A. P. Similarity of scattering rates in metals showing _T_-linear resistivity. _Science_ 339, 804–807 (2013). Article ADS Google Scholar * Sachdev, S. _Quantum Phase
Transitions_ (CUP, 1999). MATH Google Scholar * Zaanen, J. Superconductivity: Why the temperature is high. _Nature_ 430, 512–513 (2004). Article ADS Google Scholar * Hussey, N. E.,
Takenaka, K. & Takagi, H. Universality of the Mott–Ioffe–Regel limit in metals. _Phil. Mag._ 84, 2847–2864 (2004). Article ADS Google Scholar * Gunnarsson, O., Calandra, M. & Han,
J. E. Colloquium: Saturation of electrical resistivity. _Rev. Mod. Phys._ 75, 1085–1099 (2003). Article ADS Google Scholar * Emery, V. J. & Kivelson, S. A. Superconductivity in bad
metals. _Phys. Rev. Lett._ 74, 3253–3256 (1995). Article ADS Google Scholar * Policastro, G., Son, D. T. & Starinets, A. O. The shear viscosity of strongly coupled N = 4
supersymmetric Yang-Mills plasma. _Phys. Rev. Lett._ 87, 081601 (2001). Article ADS Google Scholar * Herzog, C. P., Kovtun, P., Sachdev, S. & Son, D. T. Quantum critical transport,
duality, and M-theory. _Phys. Rev. D_ 75, 085020 (2007). Article ADS MathSciNet Google Scholar * Hartnoll, S. A., Kovtun, P. K., Muller, M. & Sachdev, S. Theory of the Nernst effect
near quantum phase transitions in condensed matter, and in dyonic black holes. _Phys. Rev. B_ 76, 144502 (2007). Article ADS Google Scholar * Kovtun, P., Son, D. T. & Starinets, A. O.
Viscosity in strongly interacting quantum field theories from black hole physics. _Phys. Rev. Lett._ 94, 111601 (2005). Article ADS Google Scholar * Son, D. T. & Starinets, A. O.
Viscosity, black holes, and quantum field theory. _Annu. Rev. Nucl. Part. Sci._ 57, 95–118 (2007). Article ADS Google Scholar * Cremonini, S. The shear viscosity to entropy ratio: A
status report. _Mod. Phys. Lett. B_ 25, 1867–1888 (2011). Article ADS MathSciNet MATH Google Scholar * Adams, A., Carr, L. D., Schäfer, T., Steinberg, P. & Thomas, J. E. Strongly
correlated quantum fluids: Ultracold quantum gases, quantum chromodynamic plasmas, and holographic duality. _New J. Phys._ 14, 115009 (2012). Article ADS MathSciNet Google Scholar *
Ziman, J. M. _Electrons and Phonons_ (OUP, 1960). MATH Google Scholar * Forster, D. _Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions_ (W. A. Benjamin, Advanced Book
Classics, 1975). Google Scholar * Hartnoll, S. A. & Hofman, D. M. Locally critical resistivities from umklapp scattering. _Phys. Rev. Lett._ 108, 241601 (2012). Article ADS Google
Scholar * Mahajan, R., Barkeshli, M. & Hartnoll, S. A. Non-Fermi liquids and the Wiedemann–Franz law. _Phys. Rev. B_ 88, 125107 (2013). Article ADS Google Scholar * Jung, P. &
Rosch, A. Lower bounds for the conductivities of correlated quantum systems. _Phys. Rev. B_ 75, 245104 (2007). Article ADS Google Scholar * Hartnoll, S. A. & Herzog, C. P. Impure
AdS/CFT correspondence. _Phys. Rev. D_ 77, 106009 (2008). Article ADS MathSciNet Google Scholar * Basov, D. N., Averitt, R. D., van der Marel, D., Dressel, M. & Haule, K.
Electrodynamics of correlated electron materials. _Rev. Mod. Phys._ 83, 471–541 (2011). Article ADS Google Scholar * Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S.
Boson localization and the superfluid-insulator transition. _Phys. Rev. B_ 40, 546–570 (1989). Article ADS Google Scholar * Witczak-Krempa, W., Ghaemi, P., Senthil, T. & Kim, Y. B.
Universal transport near a quantum critical Mott transition in two dimensions. _Phys. Rev. B_ 86, 245102 (2012). Article ADS Google Scholar * Metlitski, M. A. & Sachdev, S. Quantum
phase transitions of metals in two spatial dimensions: II. Spin density wave order. _Phys. Rev. B_ 82, 075128 (2010). Article ADS Google Scholar * Prange, R. E. & Kadanoff, L. P.
Transport theory for electron–phonon interactions in metals. _Phys. Rev._ 134, A566 (1964). Article ADS MATH Google Scholar * Koschorreck, M., Pertot, D., Vogt, E. & Köhl, M.
Universal spin dynamics in two-dimensional Fermi gases. _Nature Phys._ 9, 405–409 (2013). Article ADS Google Scholar * Spivak, B. & Kivelson, S. A. Transport in two dimensional
electronic micro-emulsions. _Ann. Phys._ 321, 2071–2115 (2006). Article ADS MATH Google Scholar * Andreev, A. V., Kivelson, S. A. & Spivak, B. Hydrodynamic description of transport
in strongly correlated electron systems. _Phys. Rev. Lett._ 106, 256804 (2011). Article ADS Google Scholar * Balasubramanian, K. & Herzog, C. P. Losing forward momentum
holographically. _Class. Quantum Gravity_ 31, 125010 (2014). Article ADS MATH Google Scholar * Davison, R. A., Schalm, K. & Zaanen, J. Holographic duality and the resistivity of
strange metals. _Phys. Rev. B_ 89, 245116 (2014). Article ADS Google Scholar * Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly
correlated fermion systems and the limit of infinite dimensions. _Rev. Mod. Phys._ 68, 13–125 (1996). Article ADS MathSciNet Google Scholar * Deng, X. et al. How bad metals turn good:
Spectroscopic signatures of resilient quasiparticles. _Phys. Rev. Lett._ 110, 086401 (2013). Article ADS Google Scholar * Pálsson, G. & Kotliar, G. Thermoelectric response near the
density driven Mott transition. _Phys. Rev. Lett._ 80, 4775 (1998). Article ADS Google Scholar * Kovtun, P. & Ritz, A. Universal conductivity and central charges. _Phys. Rev. D_ 78,
066009 (2008). Article ADS Google Scholar * Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. _Rev. Mod. Phys._ 70, 1039–1263 (1998). Article ADS Google Scholar *
Takenaka, K., Nohara, J., Shiozaki, R. & Sugai, S. Incoherent charge dynamics of La2−_x_Sr_x_CuO4: Dynamical localization and resistivity saturation. _Phys. Rev. B_ 68, 134501 (2003).
Article ADS Google Scholar * Van der Marel, D. et al. Quantum critical behaviour in a high-_T_c superconductor. _Nature_ 425, 271–274 (2003). Article ADS Google Scholar * Hwang, J.,
Timusk, T. & Gu, G. D. Doping dependent optical properties of Bi2Sr2CaCu2O8+_δ_ . _J. Phys. Condens. Matter_ 19, 125208 (2007). Article ADS Google Scholar * Boris, A. V. et al.
In-plane spectral weight shift of charge carriers in YBa2Cu3O6.9 . _Science_ 304, 708–710 (2004). Article ADS Google Scholar * Wu, D. et al. Effects of magnetic ordering on dynamical
conductivity: Optical investigations of EuFe2As2 single crystals. _Phys. Rev. B_ 79, 155103 (2009). Article ADS Google Scholar * Schafgans, A. A. et al. Electronic correlations and
unconventional spectral weight transfer in the high-temperature pnictide BaFe2−_x_Co_x_As2 superconductor using infrared spectroscopy. _Phys. Rev. Lett._ 108, 147002 (2012). Article ADS
Google Scholar * Takenaka, K. et al. Collapse of coherent quasiparticle states in _θ_-(BEDT–TTF)2I3 observed by optical spectroscopy. _Phys. Rev. Lett._ 95, 227801 (2005). Article ADS
Google Scholar * Jönsson, P. E. et al. Correlation-driven heavy-fermion formation in LiV2O4 . _Phys. Rev. Lett._ 99, 167402 (2007). Article ADS Google Scholar * Wang, N. L. et al.
Infrared probe of the electronic structure and charge dynamics of Na0.7CoO2 . _Phys. Rev. Lett._ 93, 237007 (2004). Article ADS Google Scholar * Lee, Y. S. et al. Non-Fermi liquid
behavior and scaling of the low-frequency suppression in the optical conductivity spectra of CaRuO3 . _Phys. Rev. B_ 66, 041104(R) (2002). Article ADS Google Scholar * Witczak-Krempa, W.
& Sachdev, S. The quasi-normal modes of quantum criticality. _Phys. Rev. B_ 86, 235115 (2012). Article ADS Google Scholar * Deng, X., Sternbach, A., Haule, K., Basov, D. N. &
Kotliar, G. Shining light on transition metal oxides: Unveiling the hidden Fermi liquid. Preprint at http://arXiv.org/abs/1404.6480 (2014) * Jaramillo, R., Ha, S. D., Silevitch, D. M. &
Ramanathan, S. Origins of bad-metal conductivity and the insulator–metal transition in the rare-earth nickelates. _Nature Phys._ 10, 304–307 (2014). Article ADS Google Scholar * Ando, Y.,
Lavrov, A. N., Komiya, S., Segawa, K. & Sun, X. F. Mobility of the doped holes and the antiferromagnetic correlations in underdoped high-_T_c cuprates. _Phys. Rev. Lett._ 87, 017001
(2001). Article ADS Google Scholar * Hussey, N. E. et al. Dichotomy in the T-linear resistivity in hole-doped cuprates. _Phil. Trans. R. Soc. A_ 369, 1626–1639 (2011). Article ADS
Google Scholar * Orenstein, J. et al. Frequency- and temperature-dependent conductivity in YBa2Cu3O6+_x_ crystals. _Phys. Rev. B_ 42, 6342–6362 (1990). Article ADS Google Scholar *
Uchida, S. et al. Optical spectra of La2−_x_Sr_x_CuO4: Effect of carrier doping on the electronic structure of the CuO2 plane. _Phys. Rev. B_ 43, 7942–7954 (1991). Article ADS Google
Scholar * Taillefer, L. Scattering and pairing in cuprate superconductors. _Annu. Rev. Condens. Matter Phys._ 1, 51–70 (2010). Article ADS Google Scholar * Tanatar, M. A., Paglione, J.,
Petrovic, C. & Taillefer, L. Anisotropic violation of the Wiedemann–Franz law at a quantum critical point. _Science_ 316, 1320–1322 (2007). Article ADS Google Scholar * Pfau, H. et
al. Thermal and electrical transport across a magnetic quantum critical point. _Nature_ 484, 493–497 (2012). Article ADS Google Scholar * Zhang, Y. et al. Determining the Wiedemann–Franz
ratio from the thermal Hall conductivity: Application to Cu and YBa2Cu3O6.95 . _Phys. Rev. Lett._ 84, 2219–2222 (2000). Article ADS Google Scholar * Wu, X. D. et al. Thermal diffusivity
of Bi2Sr2CaCu2O8 single crystals. _ Physica C_ 218, 417–423 (1993). Article ADS Google Scholar * Wu, X. D., Kino, G. S., Fanton, J. T. & Kapitulnik, A. Photothermal microscope for
high-_T_c superconductors and charge density waves. _Rev. Sci. Instrum._ 64, 3321–3327 (1993). Article ADS Google Scholar * Weber, C. P. et al. Observation of spin Coulomb drag in a
two-dimensional electron gas. _Nature_ 437, 1330–1333 (2005). Article ADS Google Scholar * Gedik, N., Orenstein, J., Liang, R., Bonn, D. A. & Hardy, W. N. Diffusion of nonequilibrium
quasi-particles in a cuprate superconductor. _Science_ 300, 1410–1412 (2003). Article ADS Google Scholar * Donos, A. & Gauntlett, J. P. Novel metals and insulators from holography.
_JHEP_ 1406, 007 (2014). Article ADS Google Scholar * Goutéraux, B. Charge transport in holography with momentum dissipation. _JHEP_ 1404, 181 (2014). Article ADS Google Scholar *
Mukerjee, S., Oganesyan, V. & Huse, D. Towards a statistical theory of transport by strongly-interacting lattice fermions. _Phys. Rev. B_ 73, 035113 (2006). Article ADS Google Scholar
* Kadanoff, L. P. & Martin, P. C. Hydrodynamic equations and correlation functions. _Ann. Phys._ 24, 419–469 (1963). Article ADS MathSciNet MATH Google Scholar Download references
ACKNOWLEDGEMENTS I have benefited greatly from discussions with A. Kapitulnik, G. Kotliar, B. Laughlin, A. Mackenzie, R. McKenzie, V. Oganesyan, J. Orenstein, B. Spivak and especially S.
Kivelson. S.A.H. is partially financially supported by a DOE Early Career Award and by a Sloan fellowship. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Physics, Stanford
University, Stanford, California 94305-4060, USA Sean A. Hartnoll Authors * Sean A. Hartnoll View author publications You can also search for this author inPubMed Google Scholar
CORRESPONDING AUTHOR Correspondence to Sean A. Hartnoll. ETHICS DECLARATIONS COMPETING INTERESTS The author declares no competing financial interests. RIGHTS AND PERMISSIONS Reprints and
permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Hartnoll, S. Theory of universal incoherent metallic transport. _Nature Phys_ 11, 54–61 (2015). https://doi.org/10.1038/nphys3174 Download
citation * Received: 24 July 2014 * Accepted: 30 October 2014 * Published: 23 December 2014 * Issue Date: January 2015 * DOI: https://doi.org/10.1038/nphys3174 SHARE THIS ARTICLE Anyone you
share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the
Springer Nature SharedIt content-sharing initiative