Play all audios:
ABSTRACT Ultracold atoms confined by engineered magnetic or optical potentials are ideal to study phenomena otherwise difficult to realize or probe in the solid state, thanks to the ability
to control the atomic interaction strength, number of species, density and geometry. Here, we review quantum transport phenomena in atomic gases that mirror and can either better elucidate
or show fundamental differences with respect to those observed in mesoscopic and nanoscopic systems. We discuss the significant progress in transport experiments in atomic gases, the
similarities and differences between transport in cold atoms and in condensed matter systems, and survey theoretical predictions that are difficult to verify in conventional set-ups. Access
through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal
Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices
may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support
SIMILAR CONTENT BEING VIEWED BY OTHERS ULTRACOLD CHEMISTRY AS A TESTBED FOR FEW-BODY PHYSICS Article 16 May 2024 PARAMETRIC TUNING OF QUANTUM PHASE TRANSITIONS IN ULTRACOLD REACTIONS Article
Open access 26 November 2024 QUANTUM MIXTURES OF ULTRACOLD GASES OF NEUTRAL ATOMS Article 06 November 2024 REFERENCES * Pethick, C. J. & Smith, H. _Bose–Einstein Condensation in Dilute
Gases_ 2nd edn (Cambridge Univ. Press, 2008). Book Google Scholar * Jaksch, D. & Zoller, P. The cold atom Hubbard toolbox. _Ann. Phys._ 315, 52–79 (2005). Article ADS MATH Google
Scholar * Lewenstein, M. et al. Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. _Adv. Phys._ 56, 243–379 (2007). Article ADS Google Scholar *
Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. _Nature Phys._ 8, 264–266 (2012). Article ADS Google Scholar * Bloch, I., Dalibard, J. & Nascimbene, S.
Quantum simulations with ultracold quantum gases. _Nature Phys._ 8, 267–276 (2012). Article ADS Google Scholar * Strohmaier, N. et al. Interaction-controlled transport of an ultracold
Fermi gas. _Phys. Rev. Lett._ 99, 220601 (2007). Article ADS Google Scholar * Schneider, U. et al. Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with
ultracold atoms. _Nature Phys._ 8, 213–218 (2012). Article ADS Google Scholar * Eckel, S. et al. Hysteresis in a quantized superfluid “atomtronic” circuit. _Nature_ 506, 200–203 (2014).
Article ADS Google Scholar * Salger, T. et al. Directed transport of atoms in a Hamiltonian quantum ratchet. _Science_ 326, 1241–1243 (2009). Article ADS Google Scholar * Brantut, J.
P., Meineke, J., Stadler, D., Krinner, S. & Esslinger, T. Conduction of ultracold fermions through a mesoscopic channel. _Science_ 337, 1069–1071 (2012). Article ADS Google Scholar *
Krinner, S., Stadler, D., Husmann, D., Brantut, J. P. & Esslinger, T. Observation of quantized conductance in neutral matter. _Nature_ 517, 64–67 (2015). Article ADS Google Scholar *
Sommer, A., Ku, M., Roati, G. & Zwierlein, M. W. Universal spin transport in a strongly interacting Fermi gas. _Nature_ 472, 201–204 (2011). Article ADS Google Scholar * Brantut, J.
P. et al. A thermoelectric heat engine with ultracold atoms. _Science_ 342, 713–715 (2013). Article ADS Google Scholar * Cheneau, M. et al. Light-cone-like spreading of correlations in a
quantum many-body system. _Nature_ 481, 484–487 (2012). Article ADS Google Scholar * Krinner, S., Stadler, D., Meineke, J., Brantut, J. P. & Esslinger, T. Superfluidity with disorder
in a thin film of quantum gas. _Phys. Rev. Lett._ 110, 100601 (2013). Article ADS Google Scholar * Stadler, D., Krinner, S., Meineke, J., Brantut, J. P. & Esslinger, T. Observing the
drop of resistance in the flow of a superfluid Fermi gas. _Nature_ 491, 736–739 (2012). Article ADS Google Scholar * Atala, M. et al. Observation of chiral currents with ultracold atoms
in bosonic ladders. _Nature Phys._ 10, 588–593 (2014). Article ADS Google Scholar * Ben Dahan, M., Peik, E., Reichel, J., Castin, Y. & Salomon, C. Bloch oscillations of atoms in an
optical potential. _Phys. Rev. Lett._ 76, 4508–4511 (1996). Article ADS Google Scholar * Poli, N. et al. Precision measurement of gravity with cold atoms in an optical lattice and
comparison with a classical gravimeter. _Phys. Rev. Lett._ 106, 038501 (2011). Article ADS Google Scholar * Morsch, O. & Oberthaler, M. Dynamics of Bose-Einstein condensates in
optical lattices. _Rev. Mod. Phys._ 78, 179–215 (2006). Article ADS Google Scholar * Di Ventra, M. _Electrical Transport in Nanoscale Systems_ (Cambridge Univ. Press, 2008). Book Google
Scholar * Lee, J. G., McIlvain, B. J., Lobb, C. J. & Hill, W. T. III Analogs of basic electronic circuit elements in a free-space atom chip. _Sci. Rep._ 3, 1034 (2013). Article ADS
Google Scholar * van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. _Phys. Rev. Lett._ 60, 848–850 (1988). Article ADS Google Scholar *
Chien, C. C., Di Ventra, M. & Zwolak, M. Landauer, Kubo, and microcanonical approaches to quantum transport and noise: A comparison and implications for cold-atom dynamics. _Phys. Rev.
A_ 90, 023624 (2014). Article ADS Google Scholar * Desbuquois, R. et al. Superfluid behaviour of a two-dimensional Bose gas. _Nature Phys._ 8, 645–648 (2012). Article ADS Google Scholar
* Rye, C. et al. Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap. _Phys. Rev. Lett._ 99, 260401 (2007). Article ADS Google Scholar * Wright, K. C.,
Blakestad, R. B., Lobb, C. J., Phillips, W. D. & Campbell, G. K. Driving phase slips in a superfluid atom circuit with a rotating weak link. _Phys. Rev. Lett._ 110, 025302 (2013).
Article ADS Google Scholar * Beattie, S., Moulder, S., Fletcher, R. J. & Hadzibabic, Z. Persistent currents in spinor condensates. _Phys. Rev. Lett._ 110, 025301 (2013). Article ADS
Google Scholar * Albiez, M. et al. Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. _Phys. Rev. Lett._ 95, 010402 (2005). Article ADS
Google Scholar * Levy, S., Lahoud, E., Shomroni, I. & Steinhauer, J. The a.c. and d.c. Josephson effects in a Bose-Einstein condensate. _Nature_ 449, 579–583 (2007). Article ADS
Google Scholar * Eckel, S., Jendrzejewski, F., Kumar, A., Lobb, C. J. & Campbell, G. K. Interferometric measurement of the current–phase relationship of a superfluid weak link. _Phys.
Rev. X_ 4, 031052 (2014). Google Scholar * Ryu, C., Blackburn, P. W., Blinova, A. A. & Boshier, M. G. Experimental realization of Josephson junctions for an atom SQUID. _Phys. Rev.
Lett._ 111, 205301 (2013). Article ADS Google Scholar * Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. _Nature_ 471, 319–324 (2011). Article ADS Google
Scholar * Celi, A. et al. Synthetic gauge fields in synthetic dimensions. _Phys. Rev. Lett._ 112, 043001 (2014). Article ADS Google Scholar * Lin, Y. J. et al. Bose–Einstein condensate
in a uniform light-induced vector potential. _Phys. Rev. Lett._ 102, 130401 (2009). Article ADS Google Scholar * Lin, Y. J., Compton, R. L., Jimenez-Garcia, K., Porto, J. V. &
Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. _Nature_ 462, 628–632 (2009). Article ADS Google Scholar * Goldman, N., Juzeliunas, G., Ohberg, P. & Spielman,
I. B. Light-induced gauge fields for ultracold atoms. _Rep. Prog. Phys._ 77, 126401 (2014). Article ADS Google Scholar * Galitski, V. & Spielman, I. B. Spin orbit coupling in quantum
gases. _Nature_ 494, 49–54 (2013). Article ADS Google Scholar * LeBlanc, L. J. et al. Observation of a superfluid Hall effect. _Proc. Natl Acad. Sci. USA_ 109, 10811–10814 (2012). Article
ADS Google Scholar * Beeler, M. C. et al. The spin Hall effect in a quantum gas. _Nature_ 498, 201–204 (2013). Article ADS Google Scholar * Jiménez-Garcia, K. et al. Peierls
substitution in an engineered lattice potential. _Phys. Rev. Lett._ 108, 225303 (2012). Article ADS Google Scholar * Struck, J. Tunable gauge potential for neutral and spinless particles
in driven optical lattices. _Phys. Rev. Lett._ 108, 225304 (2012). Article ADS Google Scholar * Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold
fermions. _Nature_ 515, 237–240 (2014). Article ADS Google Scholar * Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. _Phys.
Rev. Lett._ 111, 185301 (2013). Article ADS Google Scholar * Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with
laser-assisted tunneling in optical lattices. _Phys. Rev. Lett._ 111, 185302 (2013). Article ADS Google Scholar * Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands
with ultracold bosonic atoms. _Nature Phys._ 11, 162–166 (2015). Article ADS Google Scholar * Goldman, N. et al. Direct imaging of topological edge states in cold-atom systems. _Proc.
Natl Acad. Sci. USA_ 110, 6736–6741 (2013). Article ADS Google Scholar * Peotta, S., Chien, C. C. & Di Ventra, M. Phase-induced transport in atomic gases: From superfluid to Mott
insulator. _Phys. Rev. A_ 90, 053615 (2014). Article ADS Google Scholar * Nakajima, T. et al. Topological Thouless pumping of ultracold fermions. Preprint at:
http://arXiv.org/abs/1507.02223 (2015). * Lohse, M., Scweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical
superlattice. Preprint at: http://arXiv.org/abs/1507.02225 (2015). * Cao, C. et al. Universal quantum viscosity in a unitary Fermi gas. _Science_ 331, 58–61 (2011). Article ADS Google
Scholar * Bardon, A. B. et al. Transverse demagnetization dynamics of a unitary Fermi gas. _Science_ 344, 722–724 (2014). Article ADS Google Scholar * Ronzheimer, J. P. et al. Expansion
dynamics of interacting bosons in homogeneous lattices in one and two dimensions. _Phys. Rev. Lett._ 110, 205301 (2013). Article ADS Google Scholar * Hung, C. L., Zhang, X., Gemelke, N.
& Chin, C. Slow mass transport and statistical evolution of an atomic gas across the superfluid Mott-insulator transition. _Phys. Rev. Lett._ 104, 160403 (2010). Article ADS Google
Scholar * McKay, D. C., Meldgin, C., Chen, D. & DeMarco, B. Slow thermalization between a lattice and free Bose gas. _Phys. Rev. Lett._ 111, 063002 (2013). Article ADS Google Scholar
* Billy, J. et al. Direct observation of Anderson localization of matter waves in a controlled disorder. _Nature_ 453, 891–894 (2008). Article ADS Google Scholar * Roati, G. et al.
Anderson localization of a non-interacting Bose–Einstein condensate. _Nature_ 453, 895–898 (2008). Article ADS Google Scholar * Kondov, S. S., McGehee, W. R., Zirbel, J. J. & DeMarco,
B. Three-dimensional Anderson localization of ultracold matter. _Science_ 334, 66–68 (2011). Article ADS Google Scholar * Sanchez-Palencia, L. & Lewenstein, M. Disordered quantum
gases under control. _Nature Phys._ 6, 87–95 (2010). Article ADS Google Scholar * Ott, H. et al. Collisionally induced transport in periodic potentials. _Phys. Rev. Lett._ 92, 160601
(2004). Article ADS Google Scholar * Labouvie, R., Santra, B., Heun, S., Wimberger, S. & Ott, H. Negative differential conductivity in an interacting quantum gas. _Phys. Rev. Lett._
115, 050601 (2015). Article ADS Google Scholar * Chien, C. C., Gruss, D., Di Ventra, M. & Zwolak, M. Interaction-induced conducting non-conducting transition of ultra-cold atoms in
one-dimensional optical lattices. _New J. Phys._ 15, 063026 (2013). Article ADS Google Scholar * Fallani, L., Lye, J. E., Guarrera, V., Fort, C. & Inguscio, M. Ultracold atoms in a
disordered crystal of light: Towards a Bose glass. _Phys. Rev. Lett._ 98, 130404 (2007). Article ADS Google Scholar * Schreiber, M. et al. Observation of many-body localization of
interacting fermions in a quasirandom optical lattice. _Science_ 349, 842–845 (2015). Article ADS MathSciNet MATH Google Scholar * Stenger, J. et al. Bragg spectroscopy of a
Bose–Einstein condensate. _Phys. Rev. Lett._ 82, 4569–4573 (1999). Article ADS Google Scholar * Seaman, B. T., Krämer, M., Anderson, D. Z. & Holland, M. J. Atomtronics: Ultracold-atom
analogs of electronic devices. _Phys. Rev. A_ 75, 023615 (2007). Article ADS Google Scholar * Jeong, H., Chang, A. M. & Melloch, M. R. The Kondo effect in an artificial quantum dot
molecule. _Science_ 293, 2221–2223 (2001). Article ADS Google Scholar * Törmä, P. & Sengstock, K. (eds) _Quantum Gases Experiments—Exploring Many-Body States_ (Imperial College Press,
2015). Google Scholar * Ho, T. L. & Zhou, Q. Intrinsic heating and cooling in adiabatic processes for bosons in optical lattices. _Phys. Rev. Lett._ 99, 120404 (2007). Article ADS
Google Scholar * Chien, C. C. & Di Ventra, M. Dynamical crossover between the infinite-volume and empty-lattice limits of ultra-cold fermions in 1D optical lattices. _Europhys. Lett._
99, 40003 (2012). Article ADS Google Scholar * Ashcroft, N. W. & Mermin, N. D. _Solid State Physics_ (Thomson Learning, 1976). MATH Google Scholar Download references
ACKNOWLEDGEMENTS S.P. and M.D.V. acknowledge support from the DOE under Grant No. DE-FG02-05ER46204. S.P. acknowledges support from the Academy of Finland through its Centres of Excellence
Programme (2012–2017) under Project No. 251748. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * School of Natural Sciences, University of California, Merced, California 95343, USA Chih-Chun
Chien * Department of Physics, University of California, San Diego, California 92093, USA Sebastiano Peotta & Massimiliano Di Ventra * Department of Applied Physics, COMP Center of
Excellence, Aalto University School of Science, FI-00076 Aalto, Finland Sebastiano Peotta Authors * Chih-Chun Chien View author publications You can also search for this author inPubMed
Google Scholar * Sebastiano Peotta View author publications You can also search for this author inPubMed Google Scholar * Massimiliano Di Ventra View author publications You can also search
for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Chih-Chun Chien. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests.
RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Chien, CC., Peotta, S. & Di Ventra, M. Quantum transport in ultracold atoms. _Nature Phys_ 11,
998–1004 (2015). https://doi.org/10.1038/nphys3531 Download citation * Received: 08 April 2015 * Accepted: 25 September 2015 * Published: 01 December 2015 * Issue Date: December 2015 * DOI:
https://doi.org/10.1038/nphys3531 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently
available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative