The learned safety paradigm as a mouse model for neuropsychiatric research

The learned safety paradigm as a mouse model for neuropsychiatric research

Play all audios:

Loading...

ABSTRACT Fear conditioning is one of the most widely used animal models for studying the neurobiological basis of fear and anxiety states. Conditioned inhibition of fear (or learned safety),


however, is a relatively unexplored behavioral paradigm addressing the aspect of regulation of fear, which is central to survival and mental health. Although fear conditioning is achieved


by pairing a previously neutral, conditioned stimulus (CS) with an aversive, unconditioned stimulus (US), learned safety training consists of a series of explicitly unpaired CS–US


presentations. Animals are trained for 3 d, one session per day, and learn to associate the CS with protection from the impending danger of the aversive events. The entire procedure can be


completed within 7 d. The protocol has been successfully used to study the molecular underpinnings of a behavioral intervention for depression. This paradigm complements currently used


animal tests in neuropsychiatric research addressing the dysregulation of emotional behaviors in genetic, pharmacological or environmental mouse models of human affective disorders. Access


through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal


Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices


may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support


SIMILAR CONTENT BEING VIEWED BY OTHERS DIFFERENTIAL RECRUITMENT OF BRAIN CIRCUITS DURING FEAR EXTINCTION IN NON-STRESSED COMPARED TO STRESS RESILIENT ANIMALS Article Open access 25 January


2024 REFINEMENT OF THE STRESS-ENHANCED FEAR LEARNING MODEL OF POST-TRAUMATIC STRESS DISORDER: A BEHAVIORAL AND MOLECULAR ANALYSIS Article 20 October 2022 SEROTONIN 5-HT2C RECEPTOR KNOCKOUT


IN MICE ATTENUATES FEAR RESPONSES IN CONTEXTUAL OR CUED BUT NOT COMPOUND CONTEXT-CUE FEAR CONDITIONING Article Open access 11 February 2022 REFERENCES * Davis, M. & Shi, C. The extended


amygdala: are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety? _Ann. NY Acad. Sci._ 877, 281–291 (1999).


Article  CAS  Google Scholar  * LeDoux, J.E. Emotion circuits in the brain. _Annu. Rev. Neurosci._ 23, 155–184 (2000). Article  CAS  Google Scholar  * Phelps, E.A. & LeDoux, J.E.


Contributions of the amygdala to emotion processing: from animal models to human behavior. _Neuron_ 48, 175–187 (2005). Article  CAS  Google Scholar  * Rescorla, R.A. Conditioned inhibition


of fear resulting from negative CS–US contingencies. _J. Comp. Physiol. Psychol._ 67, 504–509 (1969). Article  CAS  Google Scholar  * Pavlov, I.P. _Conditioned Reflexes_ (Dover, New York,


1927). * Vouimba, R.M., Garcia, R., Baudry, M. & Thompson, R.F. Potentiation of conditioned freezing following dorsomedial prefrontal cortex lesions does not interfere with fear


reduction in mice. _Behav. Neurosci._ 114, 720–724 (2000). Article  CAS  Google Scholar  * Heldt, S.A. & Falls, W.A. Destruction of the inferior colliculus disrupts the production and


inhibition of fear conditioned to an acoustic stimulus. _Behav. Brain Res._ 144, 175–185 (2003). Article  Google Scholar  * Pollak, D.D. et al. An animal model of a behavioral intervention


for depression. _Neuron_ 60, 149–161 (2008). Article  CAS  Google Scholar  * Rogan, M.T., Leon, K.S., Perez, D.L. & Kandel, E.R. Distinct neural signatures for safety and danger in the


amygdala and striatum of the mouse. _Neuron_ 46, 309–320 (2005). Article  CAS  Google Scholar  * Watkins, L.R. et al. Reversal of spinal cord non-opiate analgesia by conditioned


anti-analgesia in the rat. _Pain_ 71, 237–247 (1997). Article  CAS  Google Scholar  * Watkins, L.R. et al. Neurocircuitry of conditioned inhibition of analgesia: effects of amygdala, dorsal


raphe, ventral medullary, and spinal cord lesions on antianalgesia in the rat. _Behav. Neurosci._ 112, 360–378 (1998). Article  CAS  Google Scholar  * Dinsmoor, J.A. Stimuli inevitably


generated by behavior that avoids electric shock are inherently reinforcing. _J. Exp. Anal. Behav._ 75, 311–333 (2001). Article  CAS  Google Scholar  * Rescorla, R.A. Establishment of a


positive reinforcer through contrast with shock. _J. Comp. Physiol. Psychol._ 67, 260–263 (1969). Article  CAS  Google Scholar  * Santarelli, L. et al. Genetic and pharmacological disruption


of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. _Proc. Natl Acad. Sci. USA_ 98, 1912–1917 (2001). Article  CAS  Google Scholar  *


Sahay, A. & Hen, R. Adult hippocampal neurogenesis in depression. _Nat. Neurosci._ 10, 1110–1115 (2007). Article  CAS  Google Scholar  * Maren, S. The amygdala, synaptic plasticity, and


fear memory. _Ann. NY Acad. Sci._ 985, 106–113 (2003). Article  Google Scholar  * LaBar, K.S. & Cabeza, R. Cognitive neuroscience of emotional memory. _Nat. Rev. Neurosci._ 7, 54–64


(2006). Article  CAS  Google Scholar  * Maren, S. & Quirk, G.J. Neuronal signalling of fear memory. _Nat. Rev. Neurosci._ 5, 844–852 (2004). Article  CAS  Google Scholar  * Anderson,


A.K. et al. Dissociated neural representations of intensity and valence in human olfaction. _Nat. Neurosci._ 6, 196–202 (2003). Article  CAS  Google Scholar  * Weiner, I. & Arad, M.


Using the pharmacology of latent inhibition to model domains of pathology in schizophrenia and their treatment. _Behav. Brain Res._ 204, 369–386 (2009). Article  CAS  Google Scholar  *


Swerdlow, N.R., Weber, M., Qu, Y., Light, G.A. & Braff, D.L. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. _Psychopharmacology (Berl)_


199, 331–388 (2008). Article  CAS  Google Scholar  * van Gaalen, M.M. & Steckler, T. Behavioural analysis of four mouse strains in an anxiety test battery. _Behav. Brain Res._ 115,


95–106 (2000). Article  CAS  Google Scholar  * Brinks, V., de Kloet, E.R. & Oitzl, M.S. Strain specific fear behaviour and glucocorticoid response to aversive events: modelling PTSD in


mice. _Prog. Brain Res._ 167, 257–261 (2008). Article  CAS  Google Scholar  * Schweizer, M.C., Henniger, M.S. & Sillaber, I. Chronic mild stress (CMS) in mice: of anhedonia,


'anomalous anxiolysis' and activity. _PLoS One_ 4, e4326 (2009). Article  Google Scholar  * Milner, L.C. & Crabbe, J.C. Three murine anxiety models: results from multiple


inbred strain comparisons. _Genes Brain Behav._ 7, 496–505 (2008). Article  CAS  Google Scholar  * Holmes, A., Wrenn, C.C., Harris, A.P., Thayer, K.E. & Crawley, J.N. Behavioral profiles


of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. _Genes Brain Behav._ 1, 55–69 (2002). Article  CAS  Google Scholar  * Griebel, G., Belzung,


C., Perrault, G. & Sanger, D.J. Differences in anxiety-related behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. _Psychopharmacology (Berl)_ 148, 164–170


(2000). Article  CAS  Google Scholar  * Trullas, R. & Skolnick, P. Differences in fear motivated behaviors among inbred mouse strains. _Psychopharmacology (Berl)_ 111, 323–331 (1993).


Article  CAS  Google Scholar  * Schaefer, T.L., Vorhees, C.V. & Williams, M.T. Mouse plasmacytoma-expressed transcript 1 knock out induced 5-HT disruption results in a lack of cognitive


deficits and an anxiety phenotype complicated by hypoactivity and defensiveness. _Neuroscience_ 164, 1431–1443 (2009). Article  CAS  Google Scholar  * Bortolato, M., Godar, S.C., Davarian,


S., Chen, K. & Shih, J.C. Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B-deficient mice. _Neuropsychopharmacology_ 34, 2746–2757 (2009). Article  CAS


  Google Scholar  * Welch, J.M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. _Nature_ 448, 894–900 (2007). Article  CAS  Google Scholar  *


Klemenhagen, K.C., Gordon, J.A., David, D.J., Hen, R. & Gross, C.T. Increased fear response to contextual cues in mice lacking the 5-HT1A receptor. _Neuropsychopharmacology_ 31, 101–111


(2006). Article  CAS  Google Scholar  * Shumyatsky, G.P. et al. stathmin, a gene enriched in the amygdala, controls both learned and innate fear. _Cell_ 123, 697–709 (2005). Article  CAS 


Google Scholar  * Gross, C. et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. _Nature_ 416, 396–400 (2002). Article  CAS  Google


Scholar  * Rupprecht, R. et al. Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. _Science_ 325, 490–493 (2009). Article  CAS  Google Scholar 


* Yokoyama, F. et al. Anxiolytic-like profiles of histamine H3 receptor agonists in animal models of anxiety: a comparative study with antidepressants and benzodiazepine anxiolytic.


_Psychopharmacology (Berl)_ 205, 177–187 (2009). Article  CAS  Google Scholar  * Hovatta, I. et al. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. _Nature_ 438, 662–666


(2005). Article  CAS  Google Scholar  * Rudolph, U. et al. Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. _Nature_ 401, 796–800 (1999). Article 


CAS  Google Scholar  * Rutten, K. et al. Enhanced long-term potentiation and impaired learning in phosphodiesterase 4D-knockout (PDE4D) mice. _Eur. J. Neurosci._ 28, 625–632 (2008). Article


  Google Scholar  * Matzel, L.D., Babiarz, J., Townsend, D.A., Grossman, H.C. & Grumet, M. Neuronal cell adhesion molecule deletion induces a cognitive and behavioral phenotype


reflective of impulsivity. _Genes Brain Behav._ 7, 470–480 (2008). Article  CAS  Google Scholar  * Reijmers, L.G. et al. A mutant mouse with a highly specific contextual fear-conditioning


deficit found in an _N_-ethyl-_N_-nitrosourea (ENU) mutagenesis screen. _Learn Mem._ 13, 143–149 (2006). Article  CAS  Google Scholar  * Chiba, S., Nishiyama, T., Yoshikawa, M. & Yamada,


Y. The antinociceptive effects of midazolam on three different types of nociception in mice. _J. Pharmacol. Sci._ 109, 71–77 (2009). Article  CAS  Google Scholar  * Noble, F., Benturquia,


N., Bilkei-Gorzo, A., Zimmer, A. & Roques, B.P. Use of preproenkephalin knockout mice and selective inhibitors of enkephalinases to investigate the role of enkephalins in various


behaviours. _Psychopharmacology (Berl)_ 196, 327–335 (2008). Article  CAS  Google Scholar  * Kabbaj, M., Devine, D.P., Savage, V.R. & Akil, H. Neurobiological correlates of individual


differences in novelty-seeking behavior in the rat: differential expression of stress-related molecules. _J. Neurosci._ 20, 6983–6988 (2000). Article  CAS  Google Scholar  * Joels, M., Pu,


Z., Wiegert, O., Oitzl, M.S. & Krugers, H.J. Learning under stress: how does it work? _Trends Cogn. Sci._ 10, 152–158 (2006). Article  Google Scholar  * Sandi, C. & Pinelo-Nava, M.T.


Stress and memory: behavioral effects and neurobiological mechanisms. _Neural. Plast._ 2007, 78970 (2007). Article  Google Scholar  * Luksys, G., Gerstner, W. & Sandi, C. Stress,


genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning. _Nat. Neurosci._ 12, 1180–1186 (2009). Article  CAS  Google Scholar  * Lu, A. et al. Conditional


mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. _Mol. Psychiatry_ 13, 1028–1042 (2008). Article  CAS  Google Scholar  * Tschenett,


A. et al. Reduced anxiety and improved stress coping ability in mice lacking NPY-Y2 receptors. _Eur. J. Neurosci._ 18, 143–148 (2003). Article  Google Scholar  * Campbell, T., Lin, S.,


DeVries, C. & Lambert, K. Coping strategies in male and female rats exposed to multiple stressors. _Physiol. Behav._ 78, 495–504 (2003). Article  CAS  Google Scholar  * Steiner, M.A. et


al. Antidepressant-like behavioral effects of impaired cannabinoid receptor type 1 signaling coincide with exaggerated corticosterone secretion in mice. _Psychoneuroendocrinology_ 33, 54–67


(2008). Article  CAS  Google Scholar  * Bowers, S.L., Bilbo, S.D., Dhabhar, F.S. & Nelson, R.J. Stressor-specific alterations in corticosterone and immune responses in mice. _Brain


Behav. Immun._ 22, 105–113 (2008). Article  CAS  Google Scholar  * Yang, R.J. et al. Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and


fear learning. _Neuropsychopharmacology_ 33, 2595–2604 (2008). Article  CAS  Google Scholar  * Deacon, R.M. Housing, husbandry and handling of rodents for behavioral experiments. _Nat.


Protoc._ 1, 936–946 (2006). Article  Google Scholar  * Crabbe, J.C., Wahlsten, D. & Dudek, B.C. Genetics of mouse behavior: interactions with laboratory environment. _Science_ 284,


1670–1672 (1999). Article  CAS  Google Scholar  * Chesler, E.J., Wilson, S.G., Lariviere, W.R., Rodriguez-Zas, S.L. & Mogil, J.S. Influences of laboratory environment on behavior. _Nat.


Neurosci._ 5, 1101–1102 (2002). Article  CAS  Google Scholar  * Oxenkrug, G.F. Genetic and hormonal regulation of tryptophan kynurenine metabolism: implications for vascular cognitive


impairment, major depressive disorder, and aging. _Ann. NY Acad. Sci._ 1122, 35–49 (2007). Article  CAS  Google Scholar  * Pollak, D.D. et al. A translational bridge between mouse and human


models of learned safety. _Ann. Med._ 42, 127–134 (2010). Article  Google Scholar  * Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation


by indoleamine 2,3-dioxygenase. _Nat. Med._ 9, 1269–1274 (2003). Article  CAS  Google Scholar  Download references AUTHOR INFORMATION Author notes * Daniela D Pollak and Francisco J Monje:


These authors contributed equally to this work. AUTHORS AND AFFILIATIONS * Department of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria


Daniela D Pollak & Francisco J Monje * Department of Pediatrics, Division of Pediatric Neuroscience, Medical University of Vienna, Vienna, Austria Gert Lubec Authors * Daniela D Pollak


View author publications You can also search for this author inPubMed Google Scholar * Francisco J Monje View author publications You can also search for this author inPubMed Google Scholar


* Gert Lubec View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS D.D.P. jointly conceived the study with F.J.M.; D.D.P. conducted behavioral


experiments; D.D.P. and F.J.M. interpreted and analyzed the data; G.L. and D.D.P. wrote the paper. CORRESPONDING AUTHOR Correspondence to Daniela D Pollak. ETHICS DECLARATIONS COMPETING


INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Pollak, D., Monje, F. & Lubec, G. The


learned safety paradigm as a mouse model for neuropsychiatric research. _Nat Protoc_ 5, 954–962 (2010). https://doi.org/10.1038/nprot.2010.64 Download citation * Published: 29 April 2010 *


Issue Date: May 2010 * DOI: https://doi.org/10.1038/nprot.2010.64 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative