Genome engineering using the crispr-cas9 system

Genome engineering using the crispr-cas9 system

Play all audios:

Loading...

ABSTRACT Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short


palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its


guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation


of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs.


This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target


design, gene modifications can be achieved within as little as 1–2 weeks, and modified clonal cell lines can be derived within 2–3 weeks. Access through your institution Buy or subscribe


This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access


$259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are


calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


CRISPR-CAS12A NUCLEASES FUNCTION WITH STRUCTURALLY ENGINEERED CRRNAS: SYNTHETIC TRACRRNA Article Open access 16 July 2022 EFFICIENT ENGINEERING OF HUMAN AND MOUSE PRIMARY CELLS USING


PEPTIDE-ASSISTED GENOME EDITING Article 24 April 2023 HARNESSING NONCANONICAL CRRNA FOR HIGHLY EFFICIENT GENOME EDITING Article Open access 07 May 2024 REFERENCES * Ding, Q. et al. A TALEN


genome-editing system for generating human stem cell-based disease models. _Cell Stem Cell_ 12, 238–251 (2013). Article  CAS  Google Scholar  * Soldner, F. et al. Generation of isogenic


pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. _Cell_ 146, 318–331 (2011). Article  CAS  Google Scholar  * Carlson, D.F. et al. Efficient


TALEN-mediated gene knockout in livestock. _Proc. Natl. Acad. Sci. USA_ 109, 17382–17387 (2012). Article  CAS  Google Scholar  * Geurts, A.M. et al. Knockout rats via embryo microinjection


of zinc-finger nucleases. _Science_ 325, 433–433 (2009). Article  CAS  Google Scholar  * Takasu, Y. et al. Targeted mutagenesis in the silkworm _Bombyx mori_ using zinc finger nuclease mRNA


injection. _Insect Biochem. Molec._ 40, 759–765 (2010). Article  CAS  Google Scholar  * Watanabe, T. et al. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger


and TAL effector nucleases. _Nat. Commun._ 3, 1017 (2012). Article  Google Scholar  * Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. _Science_


300, 763 (2003). Article  Google Scholar  * Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. _Nat. Biotechnol._ 25, 778–785 (2007).


Article  CAS  Google Scholar  * Sander, J.D. et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). _Nat. Methods_ 8, 67–69 (2011). Article  CAS  Google


Scholar  * Wood, A.J. et al. Targeted genome editing across species using ZFNs and TALENs. _Science_ 333, 307 (2011). Article  CAS  Google Scholar  * Christian, M. et al. Targeting DNA


double-strand breaks with TAL effector nucleases. _Genetics_ 186, 757–761 (2010). Article  CAS  Google Scholar  * Zhang, F. et al. Efficient construction of sequence-specific TAL effectors


for modulating mammalian transcription. _Nat. Biotechnol._ 29, 149–153 (2011). Article  Google Scholar  * Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE


nucleases. _Nat. Biotechnol._ 29, 731–734 (2011). Article  CAS  Google Scholar  * Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. _Nat. Biotechnol._ 30, 460–465


(2012). Article  CAS  Google Scholar  * Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. _Science_ 326, 1509–1512 (2009). Article  CAS  Google Scholar


  * Moscou, M.J. & Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. _Science_ 326, 1501 (2009). Article  CAS  Google Scholar  * Sanjana, N.E. et al. A


transcription activator-like effector toolbox for genome engineering. _Nat. Protoc._ 7, 171–192 (2012). Article  CAS  Google Scholar  * Deveau, H., Garneau, J.E. & Moineau, S. CRISPR/Cas


system and its role in phage-bacteria interactions. _Annu. Rev. Microbiol._ 64, 475–493 (2010). Article  CAS  Google Scholar  * Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system


of bacteria and archaea. _Science_ 327, 167–170 (2010). Article  CAS  Google Scholar  * Makarova, K.S. et al. Evolution and classification of the CRISPR-Cas systems. _Nat. Rev. Microbiol._


9, 467–477 (2011). Article  CAS  Google Scholar  * Bhaya, D., Davison, M. & Barrangou, R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and


regulation. _Annu. Rev. Genet._ 45, 273–297 (2011). Article  CAS  Google Scholar  * Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. _Science_ 339, 819–823 (2013).


Article  CAS  Google Scholar  * Mali, P. et al. RNA-guided human genome engineering via Cas9. _Science_ 339, 823–826 (2013). Article  CAS  Google Scholar  * Jinek, M. et al. RNA-programmed


genome editing in human cells. _eLife_ 2, e00471 (2013). Article  Google Scholar  * Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9


RNA-guided endonuclease. _Nat. Biotechnol._ 31, 230–232 (2013). Article  CAS  Google Scholar  * Garneau, J.E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid


DNA. _Nature_ 468, 67–71 (2010). Article  CAS  Google Scholar  * Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. _Science_ 337, 816–821


(2012). Article  CAS  Google Scholar  * Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity


in bacteria. _Proc. Natl. Acad. Sci. USA_ 109, E2579–E2586 (2012). Article  CAS  Google Scholar  * Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S. & Gregory, P.D. Genome editing with


engineered zinc-finger nucleases. _Nat. Rev. Genet._ 11, 636–646 (2010). Article  CAS  Google Scholar  * Hsu, P.D. & Zhang, F. Dissecting neural function using targeted genome


engineering technologies. _ACS Chem. Neurosci._ 3, 603–610 (2012). Article  CAS  Google Scholar  * Perez, E.E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing


using zinc-finger nucleases. _Nat. Biotechnol._ 26, 808–816 (2008). Article  CAS  Google Scholar  * Chen, F. et al. High-frequency genome editing using ssDNA oligonucleotides with


zinc-finger nucleases. _Nat. Methods_ 8, 753–755 (2011). Article  CAS  Google Scholar  * Saleh-Gohari, N. & Helleday, T. Conservative homologous recombination preferentially repairs DNA


double-strand breaks in the S phase of the cell cycle in human cells. _Nucleic Acids Res._ 32, 3683–3688 (2004). Article  CAS  Google Scholar  * Marraffini, L.A. & Sontheimer, E.J.


CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. _Science_ 322, 1843–1845 (2008). Article  CAS  Google Scholar  * Brouns, S.J. et al. Small CRISPR RNAs


guide antiviral defense in prokaryotes. _Science_ 321, 960–964 (2008). Article  CAS  Google Scholar  * Barrangou, R. et al. CRISPR provides acquired resistance against viruses in


prokaryotes. _Science_ 315, 1709–1712 (2007). Article  CAS  Google Scholar  * Sapranauskas, R. et al. The _Streptococcus thermophilus_ CRISPR/Cas system provides immunity in _Escherichia


coli_. _Nucleic Acids Res._ 39, 9275–9282 (2011). Article  CAS  Google Scholar  * Magadan, A.H., Dupuis, M.E., Villion, M. & Moineau, S. Cleavage of phage DNA by the _Streptococcus


thermophilus_ CRISPR3-Cas system. _PLoS ONE_ 7, e40913 (2012). Article  CAS  Google Scholar  * Zhang, Y. et al. Processing-Independent CRISPR RNAs limit natural transformation in _Neisseria


meningitidis_. _Mol. Cell_ 50, 488–503 (2013). Article  CAS  Google Scholar  * Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. _Nat. Biotechnol._ 31,


227–229 (2013). Article  CAS  Google Scholar  * Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. _Cell_ 153,


910–918 (2013). Article  CAS  Google Scholar  * Shen, B. et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. _Cell Res._ 23, 720–723 (2013). Article  CAS  Google


Scholar  * Ran, F.A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. _Cell_ 154, 1380–1389 (2013). Article  CAS  Google Scholar  * Qi, L.S. et al.


Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. _Cell_ 152, 1173–1183 (2013). Article  CAS  Google Scholar  * Chang, N. et al. Genome editing


with RNA-guided Cas9 nuclease in zebrafish embryos. _Cell Res._ 23, 465–472 (2013). Article  CAS  Google Scholar  * Gratz, S.J. et al. Genome engineering of _Drosophila_ with the CRISPR


RNA-guided Cas9 nuclease. _Genetics_ 4, 1029–1035 (2013). Article  Google Scholar  * Friedland, A.E. et al. Heritable genome editing in _C. elegans_ via a CRISPR-Cas9 system. _Nat. Methods_


10, 741–743 (2013). Article  CAS  Google Scholar  * Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. _Nucleic Acids


Res._ 39, e82 (2011). Article  CAS  Google Scholar  * Schmid-Burgk, J.L., Schmidt, T., Kaiser, V., Honing, K. & Hornung, V. A ligation-independent cloning technique for high-throughput


assembly of transcription activator-like effector genes. _Nat. Biotechnol._ 31, 76–81 (2013). Article  CAS  Google Scholar  * Miller, J.C. et al. A TALE nuclease architecture for efficient


genome editing. _Nat. Biotechnol._ 29, 143–148 (2011). Article  CAS  Google Scholar  * Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. _Nat. Biotechnol._ 31, 827–832


(2013). Article  CAS  Google Scholar  * Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. _Nature Biotechnol._ 31, 822–826 (2013). Article


  CAS  Google Scholar  * Tuschl, T. Expanding small RNA interference. _Nat. Biotechnol._ 20, 446–448 (2002). Article  CAS  Google Scholar  * Smithies, O., Gregg, R.G., Boggs, S.S.,


Koralewski, M.A. & Kucherlapati, R.S. Insertion of DNA sequences into the human chromosomal -globin locus by homologous recombination. _Nature_ 317, 230–234 (1985). Article  CAS  Google


Scholar  * Thomas, K.R., Folger, K.R. & Capecchi, M.R. High frequency targeting of genes to specific sites in the mammalian genome. _Cell_ 44, 419–428 (1986). Article  CAS  Google


Scholar  * Hasty, P., Rivera-Perez, J. & Bradley, A. The length of homology required for gene targeting in embryonic stem cells. _Mol. Cell Biol._ 11, 5586–5591 (1991). Article  CAS 


Google Scholar  * Wu, S., Ying, G.X., Wu, Q. & Capecchi, M.R. A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond. _Nat.


Protoc._ 3, 1056–1076 (2008). Article  CAS  Google Scholar  * Elliott, B., Richardson, C., Winderbaum, J., Nickoloff, J.A. & Jasin, M. Gene conversion tracts from double-strand break


repair in mammalian cells. _Mol. Cellular Biol._ 18, 93–101 (1998). Article  CAS  Google Scholar  * Guschin, D.Y. et al. A rapid and general assay for monitoring endogenous gene


modification. _Methods Mol. Biol._ 649, 247–256 (2010). Article  CAS  Google Scholar  * Loman, N.J. et al. Performance comparison of benchtop high-throughput sequencing platforms. _Nat.


Biotechnol._ 30, 434–439 (2012). Article  CAS  Google Scholar  * Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas


systems. _Nat. Biotechnol._ 31, 233–239 (2013). Article  CAS  Google Scholar  * Oliveira, T.Y. et al. Translocation capture sequencing: a method for high throughput mapping of chromosomal


rearrangements. _J. Immunol. Methods_ 375, 176–181 (2012). Article  CAS  Google Scholar  * Gray, S.J. et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene


expression in the peripheral and central nervous system using self-complementary vectors. _Human Gene Ther._ 22, 1143–1153 (2011). Article  CAS  Google Scholar  Download references


ACKNOWLEDGEMENTS We thank B. Holmes for help with computational tools. P.D.H. is a James Mills Pierce Fellow and D.A.S. is a National Science Foundation (NSF) pre-doctoral fellow. V.A. is


supported by NIH Training Grants T32GM007753 and T32GM008313. This work was supported by an NIH Director's Pioneer Award (1DP1-MH100706); an NIH Transformative R01 grant


(1R01-DK097768); the Keck, McKnight, Damon Runyon, Searle Scholars, Vallee, Merkin, Klingenstein and Simons Foundations; Bob Metcalfe; and Jane Pauley. Reagents are available to the academic


community through Addgene and associated protocols; support forums and computational tools are available via the Zhang lab website (http://www.genome-engineering.org/). AUTHOR INFORMATION


Author notes * F Ann Ran and Patrick D Hsu: These authors contributed equally to this work. AUTHORS AND AFFILIATIONS * Broad Institute of Massachusetts Institute of Technology (MIT) and


Harvard, Cambridge, Massachusetts, USA F Ann Ran, Patrick D Hsu, Jason Wright, Vineeta Agarwala, David A Scott & Feng Zhang * McGovern Institute for Brain Research, Cambridge,


Massachusetts, USA F Ann Ran, Patrick D Hsu, David A Scott & Feng Zhang * Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, USA., F Ann Ran, Patrick D Hsu, David


A Scott & Feng Zhang * Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA F Ann Ran, Patrick D Hsu, David A Scott & Feng Zhang * Department of Molecular and


Cellular Biology, Harvard University, Cambridge, Massachusetts, USA F Ann Ran & Patrick D Hsu * Program in Biophysics, Harvard University, MIT, Cambridge, Massachusetts, USA Vineeta


Agarwala * Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA Vineeta Agarwala Authors * F Ann Ran View author publications You can also search for


this author inPubMed Google Scholar * Patrick D Hsu View author publications You can also search for this author inPubMed Google Scholar * Jason Wright View author publications You can also


search for this author inPubMed Google Scholar * Vineeta Agarwala View author publications You can also search for this author inPubMed Google Scholar * David A Scott View author


publications You can also search for this author inPubMed Google Scholar * Feng Zhang View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS


F.A.R., P.D.H., J.W., D.A.S. and F.Z. designed and performed the experiments. V.A. contributed to the online tool. F.A.R., P.D.H. and F.Z. wrote the manuscript with help from all authors.


CORRESPONDING AUTHOR Correspondence to Feng Zhang. ETHICS DECLARATIONS COMPETING INTERESTS A patent application has been filed relating to this work. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


DATA 1 Supplementary sequences (PDF 97 kb) SUPPLEMENTARY DATA 2 pSpCas9(BB) plasmid sequence (TXT 12 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Ran, F., Hsu, P., Wright, J. _et al._ Genome engineering using the CRISPR-Cas9 system. _Nat Protoc_ 8, 2281–2308 (2013). https://doi.org/10.1038/nprot.2013.143 Download citation * Published:


24 October 2013 * Issue Date: November 2013 * DOI: https://doi.org/10.1038/nprot.2013.143 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative