Caveolae and signalling in cancer

Caveolae and signalling in cancer

Play all audios:

Loading...

KEY POINTS * Lipid rafts are cell membrane microdomains that are enriched for cholesterol and signalling proteins. Lipid rafts can have a planar or a non-planar configuration. Caveolae are a


subset of lipid rafts that are invaginated, non-planar structures. Caveolins are the main integral membrane proteins of caveolae and are required for their formation. * Caveolin 1 (CAV1) is


a key regulator of cell signalling. The caveolin scaffolding domain binds to many divergent signalling molecules and modulates their activity. In many of these instances CAV1 represses


signalling cascades and its downregulation leads to signalling activation. For example, the activity of endothelial nitric oxide synthase (eNOS), G proteins, SRC family tyrosine kinases and


members of the RAS family are all repressed by binding to CAV1. Loss of _CAV1_ frequently leads to the activation of signalling cascades, with tumorigenic effects such as increased cell


motility and proliferation. * Alterations in caveolae have a strong cancer-specific prognostic value. Three caveolar components have all been shown to be reduced or absent in the tumour


stroma of high-risk cancer patients. These caveolar biomarkers are CAV1, cavin 1 and CD36. * Loss of CAV1 expression in the tumour microenvironment is consistently associated with poor


clinical outcomes in a wide variety of cancers, including breast, prostate, pancreatic, oesophageal and gastric carcinomas, as well as melanomas. By contrast, there is no universal pattern


of CAV1 expression in epithelial cancer cells that is associated with clinical outcome. * Alterations in caveolae in the tumour microenvironment promote paracrine tumour growth via


myofibroblast differentiation, transforming growth factor-β (TGFβ) activation, oxidative stress, autophagy and catabolism, as well as premature senescence. * Altered caveolae in the tumour


microenvironment induce tumour metabolic heterogeneity. The loss of CAV1 generates a catabolic tumour microenvironment that is characterized by increased glycolysis and the generation of


L-lactate, ketone bodies and free amino acids. Conversely, cancer cells have increased oxidative metabolism (OXPHOS) and resistance to apoptosis, when there is a loss of CAV1 in the tumour


microenvironment. ABSTRACT It has been over 20 years since the discovery that caveolar lipid rafts function as signalling organelles. Lipid rafts create plasma membrane heterogeneity, and


caveolae are the most extensively studied subset of lipid rafts. A newly emerging paradigm is that changes in caveolae also generate tumour metabolic heterogeneity. Altered caveolae create a


catabolic tumour microenvironment, which supports oxidative mitochondrial metabolism in cancer cells and which contributes to dismal survival rates for cancer patients. In this Review, we


discuss the role of caveolae in tumour progression, with a special emphasis on their metabolic and cell signalling effects, and their capacity to transform the tumour microenvironment.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this


journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS CAVEOLIN-1 MEDIATES THE UTILIZATION OF EXTRACELLULAR PROTEINS FOR SURVIVAL IN REFRACTORY GASTRIC CANCER Article Open access 02 November 2023 A


NOVEL TRPM7/_O_-GLCNAC AXIS MEDIATES TUMOUR CELL MOTILITY AND METASTASIS BY STABILISING C-MYC AND CAVEOLIN-1 IN LUNG CARCINOMA Article Open access 20 July 2020 CAVEOLIN-1 SUPPRESSES TUMOR


FORMATION THROUGH THE INHIBITION OF THE UNFOLDED PROTEIN RESPONSE Article Open access 03 August 2020 REFERENCES * Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure


of cell membranes. _Science_ 175, 720–731 (1972). Article  CAS  PubMed  Google Scholar  * Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. _Science_ 327, 46–50


(2010). Article  CAS  PubMed  Google Scholar  * Holopainen, J. M., Subramanian, M. & Kinnunen, P. K. Sphingomyelinase induces lipid microdomain formation in a fluid


phosphatidylcholine/sphingomyelin membrane. _Biochemistry_ 37, 17562–17570 (1998). Article  CAS  PubMed  Google Scholar  * Veatch, S. L. & Keller, S. L. Organization in lipid membranes


containing cholesterol. _Phys. Rev. Lett._ 89, 268101 (2002). Article  CAS  PubMed  Google Scholar  * Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. _Cell_


68, 673–682 (1992). Article  CAS  PubMed  Google Scholar  * Simons, K. & Ikonen, E. Functional rafts in cell membranes. _Nature_ 387, 569–572 (1997). Article  CAS  PubMed  Google Scholar


  * Parton, R. G. & Simons, K. The multiple faces of caveolae. _Nature Rev. Mol. Cell Biol._ 8, 185–194 (2007). Article  CAS  Google Scholar  * Pike, L. J. Rafts defined: a report on the


Keystone Symposium on lipid rafts and cell function. _J. Lipid Res._ 47, 1597–1598 (2006). Article  CAS  PubMed  Google Scholar  * Parton, R. G. & del Pozo, M. A. Caveolae as plasma


membrane sensors, protectors and organizers. _Nature Rev. Mol. Cell Biol._ 14, 98–112 (2013). Article  CAS  Google Scholar  * Stuermer, C. A. The reggie/flotillin connection to growth.


_Trends Cell Biol._ 20, 6–13 (2010). Article  CAS  PubMed  Google Scholar  * Brown, D. A. & London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. _J.


Biol. Chem._ 275, 17221–17224 (2000). Article  CAS  PubMed  Google Scholar  * Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains


during transport to the apical cell surface. _Cell_ 68, 533–544 (1992). Article  CAS  PubMed  Google Scholar  * Lisanti, M. P., Scherer, P. E., Tang, Z. & Sargiacomo, M. Caveolae,


caveolin and caveolin-rich membrane domains: a signalling hypothesis. _Trends Cell Biol._ 4, 231–235 (1994). THIS IS THE FIRST PAPER TO PROPOSE THE HYPOTHESIS THAT CAVEOLAE REPRESENT


SIGNALLING MICRODOMAINS AT THE PLASMA MEMBRANE. Article  CAS  PubMed  Google Scholar  * Garcia-Cardena, G., Oh, P., Liu, J., Schnitzer, J. E. & Sessa, W. C. Targeting of nitric oxide


synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. _Proc. Natl Acad. Sci. USA_ 93, 6448–6453 (1996). Article  CAS  PubMed  Google Scholar  *


Galbiati, F. et al. The dually acylated NH2-terminal domain of gi1α is sufficient to target a green fluorescent protein reporter to caveolin-enriched plasma membrane domains. Palmitoylation


of caveolin-1 is required for the recognition of dually acylated g-protein α subunits _in vivo_. _J. Biol. Chem._ 274, 5843–5850 (1999). Article  CAS  PubMed  Google Scholar  * Tao, N.,


Wagner, S. J. & Lublin, D. M. CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails. _J. Biol. Chem._ 271, 22315–22320 (1996). Article  CAS  PubMed  Google Scholar  *


Dietzen, D. J., Hastings, W. R. & Lublin, D. M. Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. _J.


Biol. Chem._ 270, 6838–6842 (1995). Article  CAS  PubMed  Google Scholar  * Palade, G. E. Fine structure of blood capillaries. _J. Appl. Phys._ 24, 1424–1436 (1953). Google Scholar  *


Yamada, E. The fine structure of the gall bladder epithelium of the mouse. _J. Biophys. Biochem. Cytol._ 1, 445–458 (1955). Article  CAS  PubMed  PubMed Central  Google Scholar  * Okamoto,


T., Schlegel, A., Scherer, P. E. & Lisanti, M. P. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. _J. Biol. Chem._


273, 5419–5422 (1998). Article  CAS  PubMed  Google Scholar  * Owen, D. M., Magenau, A., Williamson, D. & Gaus, K. The lipid raft hypothesis revisited—new insights on raft composition


and function from super-resolution fluorescence microscopy. _Bioessays_ 34, 739–747 (2012). Article  CAS  PubMed  Google Scholar  * Schlormann, W. et al. The shape of caveolae is omega-like


after glutaraldehyde fixation and cup-like after cryofixation. _Histochem. Cell Biol._ 133, 223–228 (2010). Article  CAS  PubMed  Google Scholar  * Sotgia, F. et al. Caveolin-1 and cancer


metabolism in the tumor microenvironment: markers, models, and mechanisms. _Annu. Rev. Pathol._ 7, 423–467 (2012). Article  CAS  PubMed  Google Scholar  * Lajoie, P. & Nabi, I. R.


Regulation of raft-dependent endocytosis. _J. Cell. Mol. Med._ 11, 644–653 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Parat, M. O., Anand-Apte, B. & Fox, P. L.


Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. _Mol. Biol. Cell_ 14, 3156–3168 (2003). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. _Proc. Natl Acad. Sci. USA_ 92, 10339–10343 (1995). THIS IS THE FIRST PAPER TO DEMONSTRATE THAT CAV1 IS A


CHOLESTEROL-BINDING PROTEIN. Article  CAS  PubMed  Google Scholar  * Sargiacomo, M. et al. Oligomeric structure of caveolin: implications for caveolae membrane organization. _Proc. Natl


Acad. Sci. USA_ 92, 9407–9411 (1995). Article  CAS  PubMed  Google Scholar  * Couet, J., Li, S., Okamoto, T., Ikezu, T. & Lisanti, M. P. Identification of peptide and protein ligands for


the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. _J. Biol. Chem._ 272, 6525–6533 (1997). Article  CAS  PubMed  Google Scholar


  * Li, S., Couet, J. & Lisanti, M. P. Src tyrosine kinases, Gα subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates


the auto-activation of Src tyrosine kinases. _J. Biol. Chem._ 271, 29182–29190 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Drab, M. et al. Loss of caveolae, vascular


dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. _Science_ 293, 2449–2452 (2001). Article  CAS  PubMed  Google Scholar  * Razani, B. et al. Caveolin-1 null mice are


viable but show evidence of hyperproliferative and vascular abnormalities. _J. Biol. Chem._ 276, 38121–38138 (2001). REFERENCES 30 AND 31 ARE THE FIRST PAPERS TO DESCRIBE THE GENERATION AND


INITIAL PHENOTYPIC CHARACTERIZATION OF _CAV1_ -KNOCKOUT MOUSE MODELS. Article  CAS  PubMed  Google Scholar  * Fra, A. M., Williamson, E., Simons, K. & Parton, R. G. De novo formation of


caveolae in lymphocytes by expression of VIP21-caveolin. _Proc. Natl Acad. Sci. USA_ 92, 8655–8659 (1995). Article  CAS  PubMed  Google Scholar  * Vinten, J. et al. A 60-kDa protein abundant


in adipocyte caveolae. _Cell Tissue Res._ 305, 99–106 (2001). Article  CAS  PubMed  Google Scholar  * Voldstedlund, M., Thuneberg, L., Tranum-Jensen, J., Vinten, J. & Christensen, E. I.


Caveolae, caveolin and cav-p60 in smooth muscle and renin-producing cells in the rat kidney. _Acta Physiol. Scand._ 179, 179–188 (2003). Article  CAS  PubMed  Google Scholar  * Hill, M. M.


et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. _Cell_ 132, 113–124 (2008). THIS IS THE FIRST PAPER TO SHOW THAT CAVIN IS REQUIRED FOR


CAVEOLAE FORMATION. Article  CAS  PubMed  PubMed Central  Google Scholar  * Bastiani, M. et al. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. _J. Cell Biol._


185, 1259–1273 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fairn, G. D. et al. High-resolution mapping reveals topologically distinct cellular pools of


phosphatidylserine. _J. Cell Biol._ 194, 257–275 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hansen, C. G., Shvets, E., Howard, G., Riento, K. & Nichols, B. J.


Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae. _Nature Commun._ 4, 1831 (2013). Article  CAS  Google Scholar  * Shastry, S. et al.


Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. _Am. J. Med. Genet. A_ 152A, 2245–2253 (2010). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Rajab, A. et al. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN


mutations. _PLoS Genet._ 6, e1000874 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bai, L. et al. Down-regulation of the cavin family proteins in breast cancer. _J. Cell


Biochem._ 113, 322–328 (2012). Article  CAS  PubMed  Google Scholar  * Zochbauer-Muller, S. et al. Expression of the candidate tumor suppressor gene hSRBC is frequently lost in primary lung


cancers with and without DNA methylation. _Oncogene_ 24, 6249–6255 (2005). Article  CAS  PubMed  Google Scholar  * Souto, R. P. et al. Immunopurification and characterization of rat


adipocyte caveolae suggest their dissociation from insulin signaling. _J. Biol. Chem._ 278, 18321–18329 (2003). Article  CAS  PubMed  Google Scholar  * Daumke, O. et al. Architectural and


mechanistic insights into an EHD ATPase involved in membrane remodelling. _Nature_ 449, 923–927 (2007). Article  CAS  PubMed  Google Scholar  * Moren, B. et al. EHD2 regulates caveolar


dynamics via ATP-driven targeting and oligomerization. _Mol. Biol. Cell_ 23, 1316–1329 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Senju, Y., Itoh, Y., Takano, K.,


Hamada, S. & Suetsugu, S. Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. _J. Cell Sci._ 124, 2032–2040 (2011). Article  CAS  PubMed  Google Scholar  * Hansen, C.


G., Howard, G. & Nichols, B. J. Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. _J. Cell Sci._ 124, 2777–2785 (2011). Article  CAS  PubMed  Google Scholar  *


Parton, R. G., Way, M., Zorzi, N. & Stang, E. Caveolin-3 associates with developing T-tubules during muscle differentiation. _J. Cell Biol._ 136, 137–154 (1997). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. _J. Cell Biol._ 127, 1199–1215 (1994). Article  CAS  PubMed  Google


Scholar  * Boucrot, E., Howes, M. T., Kirchhausen, T. & Parton, R. G. Redistribution of caveolae during mitosis. _J. Cell Sci._ 124, 1965–1972 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * del Pozo, M. A. et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. _Nature Cell Biol._ 7, 901–908 (2005). Article  CAS  PubMed


  Google Scholar  * Furuchi, T. & Anderson, R. G. Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). _J. Biol. Chem._ 273, 21099–21104


(1998). Article  CAS  PubMed  Google Scholar  * Fielding, C. J., Bist, A. & Fielding, P. E. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in


fibroblast monolayers. _Proc. Natl Acad. Sci. USA_ 94, 3753–3758 (1997). Article  CAS  PubMed  Google Scholar  * Feron, O., Dessy, C., Moniotte, S., Desager, J. P. & Balligand, J. L.


Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. _J. Clin. Invest._ 103, 897–905 (1999). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Frank, P. G. et al. Caveolin-1 and regulation of cellular cholesterol homeostasis. _Am. J. Physiol. Heart Circ. Physiol._ 291, H677–H686 (2006).


Article  CAS  PubMed  Google Scholar  * Bosch, M. et al. Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. _Curr. Biol._ 21, 681–686


(2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Martinez-Outschoorn, U. E., Lisanti, M. P. & Sotgia, F. Catabolic cancer-associated fibroblasts transfer energy and


biomass to anabolic cancer cells, fueling tumor growth. _Semin. Cancer Biol._ 25, 47–60 (2014). Article  CAS  PubMed  Google Scholar  * Witkiewicz, A. K. et al. An absence of stromal


caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. _Am. J. Pathol._ 174, 2023–2034 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Sloan, E. K. et al. Stromal cell expression of caveolin-1 predicts outcome in breast cancer. _Am. J. Pathol._ 174, 2035–2043 (2009). REFERENCES 58 AND 59 ARE THE FIRST PAPERS TO


DEMONSTRATE THAT LOSS OF STROMAL CAV1 EXPRESSION IS ASSOCIATED WITH POOR CLINICAL OUTCOME IN PATIENTS WITH BREAST CANCER. Article  CAS  PubMed  PubMed Central  Google Scholar  * Simpkins, S.


A., Hanby, A. M., Holliday, D. L. & Speirs, V. Clinical and functional significance of loss of caveolin-1 expression in breast cancer-associated fibroblasts. _J. Pathol._ 227, 490–498


(2012). Article  CAS  PubMed  Google Scholar  * Sotgia, F. et al. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor


microenvironment. _Breast Cancer Res._ 13, 213 (2011). Article  PubMed  PubMed Central  Google Scholar  * Trimmer, C. et al. Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor


suppressors in the stromal microenvironment: a new genetically tractable model for human cancer associated fibroblasts. _Cancer Biol. Ther._ 11, 383–394 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Williams, T. M. et al. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis _in vivo_. Role of Cav-1 in cell


invasiveness and matrix metalloproteinase (MMP-2/9) secretion. _J. Biol. Chem._ 279, 51630–51646 (2004). Article  CAS  PubMed  Google Scholar  * Witkiewicz, A. K. et al. Using the “reverse


Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. _Cell Cycle_ 11, 1108–1117 (2012). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. _Cell_ 146, 148–163


(2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ayala, G. et al. Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is


functionally relevant to tumour progression. _J. Pathol._ 231, 77–87 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Giatromanolaki, A., Koukourakis, M. I., Koutsopoulos, A.,


Mendrinos, S. & Sivridis, E. The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer. _Cancer Biol. Ther._ 13, 1284–1289 (2012). Article 


PubMed  PubMed Central  Google Scholar  * Di Vizio, D. et al. An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation.


_Cell Cycle_ 8, 2420–2424 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jia, Y. et al. Down-regulation of stromal caveolin-1 expression in esophageal squamous cell


carcinoma: a potent predictor of lymph node metastases, early tumor recurrence, and poor prognosis. _Ann. Surg. Oncol._ 21, 329–336 (2014). Article  PubMed  Google Scholar  * Zhao, X. et al.


Caveolin-1 expression level in cancer associated fibroblasts predicts outcome in gastric cancer. _PLoS ONE_ 8, e59102 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wu, K.


N. et al. Loss of stromal caveolin-1 expression in malignant melanoma metastases predicts poor survival. _Cell Cycle_ 10, 4250–4255 (2011). Article  CAS  PubMed  Google Scholar  * Chen, D.


& Che, G. Value of caveolin-1 in cancer progression and prognosis: Emphasis on cancer-associated fibroblasts, human cancer cells and mechanism of caveolin-1 expression (Review). _Oncol.


Lett._ 8, 1409–1421 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Savage, K. et al. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic


breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and _in situ_ hybridization analysis. _Clin. Cancer Res._ 13, 90–101 (2007). Article  CAS  PubMed  Google Scholar  *


Yang, G., Truong, L. D., Wheeler, T. M. & Thompson, T. C. Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. _Cancer Res._ 59, 5719–5723


(1999). CAS  PubMed  Google Scholar  * Thompson, T. C., Timme, T. L., Li, L. & Goltsov, A. Caveolin-1, a metastasis-related gene that promotes cell survival in prostate cancer.


_Apoptosis_ 4, 233–237 (1999). Article  CAS  PubMed  Google Scholar  * Sunaga, N. et al. Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell


lung cancer. _Cancer Res._ 64, 4277–4285 (2004). Article  CAS  PubMed  Google Scholar  * Felicetti, F. et al. Caveolin-1 tumor-promoting role in human melanoma. _Int. J. Cancer_ 125,


1514–1522 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, H. et al. Restoration of caveolin-1 expression suppresses growth and metastasis of head and neck squamous


cell carcinoma. _Br. J. Cancer_ 99, 1684–1694 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Murakami, S. et al. Caveolin-I overexpression is a favourable prognostic factor


for patients with extrahepatic bile duct carcinoma. _Br. J. Cancer_ 88, 1234–1238 (2003). CAS  PubMed  Google Scholar  * Bender, F. C., Reymond, M. A., Bron, C. & Quest, A. F. Caveolin-1


levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. _Cancer Res._ 60, 5870–5878 (2000). CAS 


PubMed  Google Scholar  * Wiechen, K. et al. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. _Am. J. Pathol._ 159, 1635–1643 (2001).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Lin, M. I., Yu, J., Murata, T. & Sessa, W. C. Caveolin-1-deficient mice have increased tumor microvascular permeability,


angiogenesis, and growth. _Cancer Res._ 67, 2849–2856 (2007). Article  CAS  PubMed  Google Scholar  * Friedrich, T. et al. Deficiency of caveolin-1 in Apcmin/+ mice promotes colorectal


tumorigenesis. _Carcinogenesis_ 34, 2109–2118 (2013). Article  CAS  PubMed  Google Scholar  * Capozza, F. et al. Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal


hyperplasia and tumor formation. _Am. J. Pathol._ 162, 2029–2039 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Capozza, F. et al. Genetic ablation of Cav1 differentially


affects melanoma tumor growth and metastasis in mice: role of Cav1 in Shh heterotypic signaling and transendothelial migration. _Cancer Res._ 72, 2262–2274 (2012). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Mercier, I. et al. Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and


anti-aging drug. _Am. J. Pathol._ 181, 278–293 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Moon, H. et al. PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains


in prostate cancer. _Oncogene_ 33, 3561–3570 (2013). THIS PAPER SUGGESTS THAT LOSS OF STROMAL CAVIN 1 EXPRESSION IS ASSOCIATED WITH POOR OUTCOME IN PATIENTS WITH PROSTATE CANCER. Article 


CAS  PubMed  Google Scholar  * DeFilippis, R. A. et al. CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. _Cancer Discov._ 2,


826–839 (2012). THIS PAPER INDICATES THAT LOSS OF STROMAL CD36 EXPRESSION IS ASSOCIATED WITH AGGRESSIVE BREAST CANCER. Article  CAS  PubMed  PubMed Central  Google Scholar  * Frank, P. G. et


al. Stabilization of caveolin-1 by cellular cholesterol and scavenger receptor class B type I. _Biochemistry_ 41, 11931–11940 (2002). Article  CAS  PubMed  Google Scholar  * Garcia-Cardena,


G., Fan, R., Stern, D. F., Liu, J. & Sessa, W. C. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. _J. Biol. Chem._ 271,


27237–27240 (1996). Article  CAS  PubMed  Google Scholar  * Galbiati, F. et al. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44


MAP kinase cascade. _EMBO J._ 17, 6633–6648 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Couet, J., Sargiacomo, M. & Lisanti, M. P. Interaction of a receptor tyrosine


kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. _J. Biol. Chem._ 272, 30429–30438 (1997). Article  CAS  PubMed  Google


Scholar  * Song, K. S. et al. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae


microdomains. _J. Biol. Chem._ 271, 9690–9697 (1996). Article  CAS  PubMed  Google Scholar  * Garcia-Cardena, G. et al. Dissecting the interaction between nitric oxide synthase (NOS) and


caveolin. Functional significance of the nos caveolin binding domain _in vivo_. _J. Biol. Chem._ 272, 25437–25440 (1997). Article  CAS  PubMed  Google Scholar  * Ariotti, N. et al. Caveolae


regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. _J. Cell Biol._ 204, 777–792 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Lee, S. W., Reimer, C. L., Oh, P., Campbell, D. B. & Schnitzer, J. E. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. _Oncogene_ 16, 1391–1397


(1998). Article  CAS  PubMed  Google Scholar  * Galbiati, F. et al. Caveolin-1 expression negatively regulates cell cycle progression by inducing G0/G1 arrest via a


p53/p21(WAF1/Cip1)-dependent mechanism. _Mol. Biol. Cell_ 12, 2229–2244 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hulit, J. et al. The cyclin D1 gene is


transcriptionally repressed by caveolin-1. _J. Biol. Chem._ 275, 21203–21209 (2000). Article  CAS  PubMed  Google Scholar  * Koleske, A. J., Baltimore, D. & Lisanti, M. P. Reduction of


caveolin and caveolae in oncogenically transformed cells. _Proc. Natl Acad. Sci. USA_ 92, 1381–1385 (1995). Article  CAS  PubMed  Google Scholar  * Engelman, J. A., Zhang, X. L., Razani, B.,


Pestell, R. G. & Lisanti, M. P. p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a


signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. _J. Biol. Chem._ 274, 32333–32341 (1999). Article  CAS  PubMed  Google Scholar  * Sherif, Z. A. &


Sultan, A. S. Divergent control of Cav-1 expression in non-cancerous Li-Fraumeni syndrome and human cancer cell lines. _Cancer Biol. Ther._ 14, 29–38 (2013). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Hayashi, K. et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. _Cancer Res._ 61, 2361–2364 (2001). CAS  PubMed  Google Scholar  *


Lee, H. et al. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1−/− null mice show mammary


epithelial cell hyperplasia. _Am. J. Pathol._ 161, 1357–1369 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bonuccelli, G. et al. Caveolin-1 (P132L), a common breast cancer


mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature. _Am. J. Pathol._ 174, 1650–1662 (2009). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Patani, N. et al. Non-existence of caveolin-1 gene mutations in human breast cancer. _Breast Cancer Res. Treat._ 131, 307–310 (2012). Article  CAS  PubMed  Google Scholar 


* Joshi, B. et al. Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. _Cancer Res._ 68, 8210–8220 (2008). Article  CAS 


PubMed  Google Scholar  * Samarakoon, R. et al. Redox-induced Src kinase and caveolin-1 signaling in TGFβ1-initiated SMAD2/3 activation and PAI-1 expression. _PLoS ONE_ 6, e22896 (2011).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhuang, L., Lin, J., Lu, M. L., Solomon, K. R. & Freeman, M. R. Cholesterol-rich lipid rafts mediate akt-regulated survival in


prostate cancer cells. _Cancer Res._ 62, 2227–2231 (2002). CAS  PubMed  Google Scholar  * Xia, H. et al. Pathologic caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis. _Am. J.


Pathol._ 176, 2626–2637 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Trimboli, A. J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. _Nature_


461, 1084–1091 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sumitomo, M. et al. Synergy in tumor suppression by direct interaction of neutral endopeptidase with PTEN.


_Cancer Cell_ 5, 67–78 (2004). Article  CAS  PubMed  Google Scholar  * Midgley, A. C. et al. Transforming growth factor-β1 (TGFβ1)-stimulated fibroblast to myofibroblast differentiation is


mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. _J. Biol. Chem._ 288, 14824–14838 (2013). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Calon, A., Tauriello, D. V. & Batlle, E. TGFβ in CAF-mediated tumor growth and metastasis. _Semin. Cancer Biol._ 25, 15–22 (2014). Article  CAS  PubMed


  Google Scholar  * Kojima, Y. et al. Autocrine TGFβ and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. _Proc. Natl


Acad. Sci. USA_ 107, 20009–20014 (2010). Article  PubMed  Google Scholar  * Guido, C. et al. Metabolic reprogramming of cancer-associated fibroblasts by TGFβ drives tumor growth: connecting


TGFβ signaling with “Warburg-like” cancer metabolism and L-lactate production. _Cell Cycle_ 11, 3019–3035 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rosenthal, E. et al.


Elevated expression of TGFβ1 in head and neck cancer-associated fibroblasts. _Mol. Carcinog._ 40, 116–121 (2004). Article  CAS  PubMed  Google Scholar  * Calon, A. et al. Dependency of


colorectal cancer on a TGFβ-driven program in stromal cells for metastasis initiation. _Cancer Cell_ 22, 571–584 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ting, H. J.


et al. Silibinin prevents prostate cancer cell-mediated differentiation of naive fibroblasts into cancer-associated fibroblast phenotype by targeting TGF β2. _Mol. Carcinog._


http://dx.doi.org/10.1002/mc.22135 (2015). * Razani, B. et al. Caveolin-1 regulates transforming growth factor TGFβ/SMAD signaling through an interaction with the TGFβ type I receptor. _J.


Biol. Chem._ 276, 6727–6738 (2001). Article  CAS  PubMed  Google Scholar  * Stuelten, C. H. et al. Breast cancer cells induce stromal fibroblasts to express MMP9 via secretion of TNFα and


TGFβ. _J. Cell Sci._ 118, 2143–2153 (2005). Article  CAS  PubMed  Google Scholar  * Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates


TGFβ and promotes tumor invasion and angiogenesis. _Genes Dev._ 14, 163–176 (2000). PubMed  PubMed Central  Google Scholar  * Grubisha, M. J., Cifuentes, M. E., Hammes, S. R. & Defranco,


D. B. A local paracrine and endocrine network involving TGFβ, Cox-2, ROS, and estrogen receptor β influences reactive stromal cell regulation of prostate cancer cell motility. _Mol.


Endocrinol._ 26, 940–954 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Toullec, A. et al. Oxidative stress promotes myofibroblast differentiation and tumour spreading.


_EMBO Mol. Med._ 2, 211–230 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bailey, K. M. & Liu, J. Caveolin-1 up-regulation during epithelial to mesenchymal transition


is mediated by focal adhesion kinase. _J. Biol. Chem._ 283, 13714–13724 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, L. et al. Caveolin-1 promotes autoregulatory,


Akt-mediated induction of cancer-promoting growth factors in prostate cancer cells. _Mol. Cancer Res._ 7, 1781–1791 (2009). Article  CAS  PubMed  Google Scholar  * Meyer, C. et al. Distinct


dedifferentiation processes affect caveolin-1 expression in hepatocytes. _Cell Commun. Signal_ 11, 6 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Asterholm, I. W., Mundy,


D. I., Weng, J., Anderson, R. G. & Scherer, P. E. Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. _Cell. Metab._ 15, 171–185 (2012).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Martinez-Outschoorn, U. E. et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1


induction and NFκB activation in the tumor stromal microenvironment. _Cell Cycle_ 9, 3515–3533 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chiavarina, B. et al. HIF1-α


functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-specific oncogenesis. _Cell Cycle_ 9, 3534–3551


(2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shaul, P. W. et al. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. _J. Biol. Chem._ 271,


6518–6522 (1996). Article  CAS  PubMed  Google Scholar  * Ju, H., Zou, R., Venema, V. J. & Venema, R. C. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits


synthase activity. _J. Biol. Chem._ 272, 18522–18525 (1997). Article  CAS  PubMed  Google Scholar  * Brouet, A. et al. Antitumor effects of _in vivo_ caveolin gene delivery are associated


with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. _Faseb J._ 19, 602–604 (2005). Article  CAS  PubMed  Google Scholar  * Augsten, M. et al. Cancer-associated


fibroblasts expressing CXCL14 rely upon Nos1-derived nitric oxide signaling for their tumor supporting properties. _Cancer Res._ 74, 2999–3010 (2014). Article  CAS  PubMed  Google Scholar 


* Bolanos, J. P., Peuchen, S., Heales, S. J., Land, J. M. & Clark, J. B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. _J. Neurochem._


63, 910–916 (1994). Article  CAS  PubMed  Google Scholar  * Riobo, N. A. et al. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.


_Biochem. J._ 359, 139–145 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Moncada, S. & Erusalimsky, J. D. Does nitric oxide modulate mitochondrial energy generation and


apoptosis? _Nature Rev. Mol. Cell Biol._ 3, 214–220 (2002). Article  CAS  Google Scholar  * Xu, W., Liu, L., Charles, I. G. & Moncada, S. Nitric oxide induces coupling of mitochondrial


signalling with the endoplasmic reticulum stress response. _Nature Cell Biol._ 6, 1129–1134 (2004). Article  CAS  PubMed  Google Scholar  * Galkin, A. & Moncada, S. S-nitrosation of


mitochondrial complex I depends on its structural conformation. _J. Biol. Chem._ 282, 37448–37453 (2007). Article  CAS  PubMed  Google Scholar  * Peterson, T. E. et al. Opposing effects of


reactive oxygen species and cholesterol on endothelial nitric oxide synthase and endothelial cell caveolae. _Circ. Res._ 85, 29–37 (1999). Article  CAS  PubMed  Google Scholar  * Parat, M.


O., Stachowicz, R. Z. & Fox, P. L. Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells. _Biochem. J._ 361, 681–688 (2002). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Whitaker-Menezes, D. et al. Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated


fibroblasts. _Cell Cycle_ 10, 1772–1783 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Whitaker-Menezes, D. et al. Hyperactivation of oxidative mitochondrial metabolism in


epithelial cancer cells _in situ_: visualizing the therapeutic effects of metformin in tumor tissue. _Cell Cycle_ 10, 4047–4064 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar 


* Erez, N., Truitt, M., Olson, P., Arron, S. T. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an


NF-κB-dependent manner. _Cancer Cell_ 17, 135–147 (2010). Article  CAS  PubMed  Google Scholar  * Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional


regulation of HIF-1α. _Nature_ 453, 807–811 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Subramaniam, K. S. et al. Cancer-associated fibroblasts promote proliferation of


endometrial cancer cells. _PLoS ONE_ 8, e68923 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vicent, S. et al. Cross-species functional analysis of cancer-associated


fibroblasts identifies a critical role for CLCF1 and IL-6 in non-small cell lung cancer _in vivo_. _Cancer Res._ 72, 5744–5756 (2012). Article  CAS  PubMed  Google Scholar  * Erez, N.,


Glanz, S., Raz, Y., Avivi, C. & Barshack, I. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. _Biochem. Biophys. Res. Commun._ 437,


397–402 (2013). Article  CAS  PubMed  Google Scholar  * Martinez-Outschoorn, U. E. et al. Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal


caveolin-1 as a key regulator. _Cell Cycle_ 10, 1784–1793 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sotgia, F. et al. Caveolin-1−/− null mammary stromal fibroblasts


share characteristics with human breast cancer-associated fibroblasts. _Am. J. Pathol._ 174, 746–761 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Park, D. S. et al.


Caveolin-1 null−/− mice show dramatic reductions in life span. _Biochemistry_ 42, 15124–15131 (2003). Article  CAS  PubMed  Google Scholar  * Le Lay, S. et al. The lipoatrophic caveolin-1


deficient mouse model reveals autophagy in mature adipocytes. _Autophagy_ 6, 754–763 (2010). Article  CAS  PubMed  Google Scholar  * Chaudhri, V. K. et al. Metabolic alterations in lung


cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor. _Mol. Cancer Res._ 11, 579–592 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. _Cell_ 126, 121–134 (2006). Article  CAS  PubMed  Google Scholar  * Yang, G. et al. The chemokine


growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. _Proc. Natl Acad. Sci. USA_ 103, 16472–16477 (2006). Article  CAS


  PubMed  Google Scholar  * Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. _Cell_ 120, 513–522 (2005). Article  CAS  PubMed  Google


Scholar  * Paradis, V. et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. _Hum. Pathol._ 32, 327–332 (2001). Article  CAS  PubMed  Google


Scholar  * Sun, Y. et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. _Nature Med._ 18, 1359–1368 (2012). Article  CAS


  PubMed  Google Scholar  * Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between


cancer and aging. _Proc. Natl Acad. Sci. USA_ 98, 12072–12077 (2001). Article  CAS  PubMed  Google Scholar  * Bavik, C. et al. The gene expression program of prostate fibroblast senescence


modulates neoplastic epithelial cell proliferation through paracrine mechanisms. _Cancer Res._ 66, 794–802 (2006). Article  CAS  PubMed  Google Scholar  * Dimmer, K. S., Friedrich, B., Lang,


F., Deitmer, J. W. & Broer, S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. _Biochem. J._ 350, 219–227 (2000).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ullah, M. S., Davies, A. J. & Halestrap, A. P. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by


hypoxia through a HIF-1α-dependent mechanism. _J. Biol. Chem._ 281, 9030–9037 (2006). Article  CAS  PubMed  Google Scholar  * Martins, D. et al. Loss of caveolin-1 and gain of MCT4


expression in the tumor stroma: key events in the progression from an _in situ_ to an invasive breast carcinoma. _Cell Cycle_ 12, 2684–2690 (2013). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Cowell, C. F. et al. Progression from ductal carcinoma _in situ_ to invasive breast cancer: revisited. _Mol. Oncol._ 7, 859–869 (2013). Article  PubMed  PubMed Central 


Google Scholar  * Pavlides, S. et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. _Cell Cycle_ 8, 3984–4001 (2009). THIS IS THE


FIRST PAPER TO DEMONSTRATE THAT AEROBIC GLYCOLYSIS (THE WARBURG EFFECT) OCCURS IN CAFS AND THE TUMOUR STROMA. Article  CAS  PubMed  Google Scholar  * Shiroto, T. et al. Caveolin-1 is a


critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. _PLoS ONE_ 9, e87871 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Martinez-Outschoorn, U. E. et al. Ketone bodies and two-compartment tumor metabolism: stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. _Cell Cycle_ 11,


3956–3963 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fiaschi, T. et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma


interplay. _Cancer Res._ 72, 5130–5140 (2012). Article  CAS  PubMed  Google Scholar  * Brauer, H. A. et al. Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast


cancer. _Clin. Cancer Res._ 19, 571–585 (2013). Article  CAS  PubMed  Google Scholar  * Larsson, N. G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and


embryogenesis in mice. _Nature Genet._ 18, 231–236 (1998). Article  CAS  PubMed  Google Scholar  * Bonuccelli, G. et al. Ketones and lactate “fuel” tumor growth and metastasis: Evidence that


epithelial cancer cells use oxidative mitochondrial metabolism. _Cell Cycle_ 9, 3506–3514 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vegran, F., Boidot, R., Michiels,


C., Sonveaux, P. & Feron, O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. _Cancer Res._ 71,


2550–2560 (2011). Article  CAS  PubMed  Google Scholar  * Ramanathan, A., Wang, C. & Schreiber, S. L. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic


measurements. _Proc. Natl Acad. Sci. USA_ 102, 5992–5997 (2005). Article  CAS  PubMed  Google Scholar  * Chiavarina, B. et al. Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated


fibroblasts drives stromal nutrient production and tumor growth. _Cancer Biol. Ther._ 12, 1101–1113 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sanita, P. et al.


Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. _BMC Cancer_ 14, 154 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. _Nature Med._ 17, 1498–1503 (2011). Article  CAS  PubMed  Google Scholar  * Kim,


H. M., Kim do, H., Jung, W. H. & Koo, J. S. Metabolic phenotypes in primary unknown metastatic carcinoma. _J. Transl. Med._ 12, 2 (2014). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. _Proc. Natl


Acad. Sci. USA_ 91, 10625–10629 (1994). Article  CAS  PubMed  Google Scholar  * Kasischke, K. A., Vishwasrao, H. D., Fisher, P. J., Zipfel, W. R. & Webb, W. W. Neural activity triggers


neuronal oxidative metabolism followed by astrocytic glycolysis. _Science_ 305, 99–103 (2004). Article  CAS  PubMed  Google Scholar  * Wallace, D. C. Mitochondria and cancer. _Nature Rev.


Cancer_ 12, 685–698 (2012). Article  CAS  Google Scholar  * Birsoy, K. et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. _Nature_ 508, 108–112


(2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, X. et al. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised


microenvironments. _Nature Commun._ 5, 3295 (2014). Article  CAS  Google Scholar  * Ni Chonghaile, T. et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic


chemotherapy. _Science_ 334, 1129–1133 (2011). Article  CAS  PubMed  Google Scholar  * Lee, H. et al. Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the


c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). _J. Biol. Chem._


276, 35150–35158 (2001). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS The authors apologize that they were unable to cite many primary references owing to space


limitations. U.E.M.-O. was supported, in part, by funding from the US National Cancer Institute of the National Institutes of Health under Award Number K08 CA175193-01A1. M.P.L. and F.S.


were supported, in part, by funding from the European Union (ERC Advanced Grant), Breakthrough Breast Cancer and the Manchester Cancer Research Centre (MCRC). AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, 19107, Pennsylvania, USA Ubaldo E. Martinez-Outschoorn * Breakthrough


Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, M20 4BX, UK Federica Sotgia & Michael P. Lisanti * Manchester Centre for Cellular


Metabolism (MCCM), University of Manchester, M20 4BX, Manchester, UK Federica Sotgia & Michael P. Lisanti Authors * Ubaldo E. Martinez-Outschoorn View author publications You can also


search for this author inPubMed Google Scholar * Federica Sotgia View author publications You can also search for this author inPubMed Google Scholar * Michael P. Lisanti View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Federica Sotgia or Michael P. Lisanti. ETHICS DECLARATIONS COMPETING


INTERESTS The authors declare no competing financial interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR


FIG. 4 POWERPOINT SLIDE FOR FIG. 5 POWERPOINT SLIDE FOR FIG. 6 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Martinez-Outschoorn, U., Sotgia, F. &


Lisanti, M. Caveolae and signalling in cancer. _Nat Rev Cancer_ 15, 225–237 (2015). https://doi.org/10.1038/nrc3915 Download citation * Published: 24 March 2015 * Issue Date: April 2015 *


DOI: https://doi.org/10.1038/nrc3915 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative