Play all audios:
ABSTRACT The current focus of cardiovascular medicine is on early detection and prevention of disease, to control the escalating costs of health care. To achieve this goal, novel imaging
approaches that allow for early detection of disease and risk stratification are needed. Traditionally, the diagnosis, monitoring, and prognostication of cardiovascular disease were based on
techniques that measured changes in metabolism, blood flow, and biological function. Molecular imaging is emerging as a new tool for the noninvasive detection of biological processes that
can differentiate and characterize tissues before manifestation of gross anatomical features or physiological consequences. Leading the way are techniques involving high-sensitivity
radiotracers that could revolutionize current diagnostic paradigms. This Review provides an overview of selected molecular-based single photon emission CT (SPECT) and PET imaging strategies
for the evaluation of cardiovascular disease—including the evaluation of myocardial metabolism and neurohumoral activity of the heart—and potential future targeted methods of evaluating
critical molecular processes, such as atherosclerosis, ventricular remodeling after myocardial infarction, and ischemia-associated angiogenesis. KEY POINTS * With the growth of genomics and
proteomics has come a requirement for new diagnostic molecular imaging approaches that advance health care through early detection of disease processes * Noninvasive targeted
radiotracer-based SPECT and PET approaches are evolving through both preclinical imaging studies, involving transgenic animals, and advances in imaging technology * Both SPECT and PET, as
nuclear techniques, have unique advantages including high sensitivity and selectivity, which make these approaches particularly suitable for cardiovascular molecular imaging * The
introduction of hybrid SPECT–CT and PET–CT imaging systems has greatly enhanced the performance and accuracy of nuclear imaging * The examples of targeted radiotracer imaging with SPECT and
PET presented in this Review provide insight into the future of noninvasive cardiovascular imaging Access through your institution Buy or subscribe This is a preview of subscription content,
access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn
more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS
OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IMAGING OF ATHEROSCLEROSIS WITH
[64CU]CU-DOTA-TATE IN A TRANSLATIONAL HEAD-TO-HEAD COMPARISON STUDY WITH [18F]FDG, AND NA[18F]F IN RABBITS Article Open access 07 June 2023 UNCOVERING ATHEROSCLEROTIC CARDIOVASCULAR DISEASE
BY PET IMAGING Article 04 April 2024 PET/MR IMAGING OF INFLAMMATION IN ATHEROSCLEROSIS Article 15 December 2022 REFERENCES * National Academy of Engineering. _Greatest Engineering
Achievements of the 20__th_ _Century_ [online], (2009). * Brumley, C. L. & Kuhn, J. A. Radiolabeled monoclonal antibodies. _Aorn J._ 62, 343–350 (1995). CAS PubMed Google Scholar *
Inubushi, M. & Tamaki, N. Radionuclide reporter gene imaging for cardiac gene therapy. _Eur. J. Nucl. Med. Mol. Imaging_ 34 (Suppl. 1), S27–S33 (2007). CAS PubMed Google Scholar *
Sun, N., Lee, A. & Wu, J. C. Long term non-invasive imaging of embryonic stem cells using reporter genes. _Nat. Protoc._ 4, 1192–1201 (2009). CAS PubMed Central PubMed Google Scholar
* Willmann, J. K. _ et al_. Imaging gene expression in human mesenchymal stem cells: from small to large animals. _Radiology_ 252, 117–127 (2009). PubMed Central PubMed Google Scholar *
Hiona, A. & Wu, J. C. Noninvasive radionuclide imaging of cardiac gene therapy: progress and potential. _Nat. Clin. Pract. Cardiovasc. Med._ 5 (Suppl. 2), S87–S95 (2008). CAS PubMed
Google Scholar * Nahrendorf, M. _ et al_. Multimodality cardiovascular molecular imaging, part II. _Circ. Cardiovasc. Imaging_ 2, 56–70 (2009). PubMed Central PubMed Google Scholar *
Sinusas, A. J. _ et al_. Multimodality cardiovascular molecular imaging, part I. _Circ. Cardiovasc. Imaging_ 1, 244–256 (2008). PubMed Google Scholar * Dobrucki, L. W. & Sinusas, A. J.
Molecular imaging. A new approach to nuclear cardiology. _Q. J. Nucl. Med. Mol. Imaging_ 49, 106–115 (2005). CAS PubMed Google Scholar * Dobrucki, L. W. & Sinusas, A. J. Molecular
cardiovascular imaging. _Curr. Cardiol. Rep._ 7, 130–135 (2005). PubMed Google Scholar * Dobrucki, L. W. & Sinusas, A. J. Cardiovascular molecular imaging. _Semin. Nucl. Med._ 35,
73–81 (2005). PubMed Google Scholar * Dobrucki, L. W. & Sinusas, A. J. Imaging angiogenesis. _Curr. Opin. Biotechnol._ 18, 90–96 (2007). CAS PubMed Google Scholar * Blankenberg, F.
G. Molecular imaging: The latest generation of contrast agents and tissue characterization techniques. _J. Cell. Biochem._ 90, 443–453 (2003). CAS PubMed Google Scholar * Sinusas, A. J.
Imaging of angiogenesis. _J. Nucl. Cardiol._ 11, 617–633 (2004). PubMed Google Scholar * Morrison, A. R. & Sinusas, A. J. New molecular imaging targets to characterize myocardial
biology. _Cardiol. Clin._ 27, 329–344 (2009). PubMed Central PubMed Google Scholar * Kim, H. _ et al_. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager
based on eight cadmium zinc telluride (CZT) detector arrays. _Med. Phys._ 33, 465–474 (2006). CAS PubMed Google Scholar * Wagenaar, D. J., Kapusta, M., Li, J. & Patt, B. E. Rationale
for the combination of nuclear medicine with magnetic resonance for pre-clinical imaging. _Technol. Cancer Res. Treat._ 5, 343–350 (2006). PubMed Google Scholar * Tawakol, A. _ et al_. _In
vivo_ 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. _J. Am. Coll. Cardiol._ 48, 1818–1824 (2006).
PubMed Google Scholar * Dilsizian, V. _ et al_. Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. _Circulation_
112, 2169–2174 (2005). PubMed Google Scholar * Kida, K., Akashi, Y. J., Yoneyama, K., Shimokawa, M. & Musha, H. 123I-BMIPP delayed scintigraphic imaging in patients with chronic heart
failure. _Ann. Nucl. Med._ 22, 769–775 (2008). PubMed Google Scholar * Nakamura, A. _ et al_. Ability of (201)Tl and (123)I-BMIPP mismatch to diagnose myocardial ischemia in patients with
suspected coronary artery disease. _Ann. Nucl. Med._ doi: 10.1007/s12149-009-0307–0308 * Nanasato, M. _ et al_. Restored cardiac conditions and left ventricular function after
parathyroidectomy in a hemodialysis patient. Parathyroidectomy improves cardiac fatty acid metabolism assessed by 123I-BMIPP. _Circ. J._ 73, 1956–1960 (2009). PubMed Google Scholar * Shi,
C. Q. _ et al_. Correlation of myocardial p-(123)I-iodophenylpentadecanoic acid retention with (18)F-FDG accumulation during experimental low-flow ischemia. _J. Nucl. Med._ 43, 421–431
(2002). PubMed Google Scholar * Verani, M. S. _ et al_. 123I-IPPA SPECT for the prediction of enhanced left ventricular function after coronary bypass graft surgery. Multicenter IPPA
Viability Trial Investigators. 123I-iodophenylpentadecanoic acid. _J. Nucl. Med._ 41, 1299–1307 (2000). CAS PubMed Google Scholar * Volokh, L., Lahat, C. & Blevis, I. Myocardial
perfusion imaging with an ultra-fast cardiac SPECT camera: a phantom study. _Nuclear Science Symposium Conference Record_ 19–25 October 4636–4639 (2008). * Levy, M. N. Cardiac
sympathetic-parasympathetic interactions. _Fed. Proc._ 43, 2598–2602 (1984). CAS PubMed Google Scholar * Sunagawa, K., Kawada, T. & Nakahara, T. Dynamic nonlinear vago-sympathetic
interaction in regulating heart rate. _Heart Vessels_ 13, 157–174 (1998). CAS PubMed Google Scholar * Zemaityte, D. J., Varoneckas, G. A. & Sokolov, E. N. Interaction between the
parasympathetic and sympathetic divisions of the autonomic nervous system in cardiac rhythm regulation. _Hum. Physiol._ 11, 208–215 (1985). CAS PubMed Google Scholar * Henneman, M. M.,
Bengel, F. M., van der Wall, E. E., Knuuti, J. & Bax, J. J. Cardiac neuronal imaging: application in the evaluation of cardiac disease. _J. Nucl. Cardiol._ 15, 442–455 (2008). PubMed
Google Scholar * Higuchi, T. & Schwaiger, M. Noninvasive imaging of heart failure: neuronal dysfunction and risk stratification. _Heart Fail. Clin._ 2, 193–204 (2006). PubMed Google
Scholar * Carrio, I. Cardiac neurotransmission imaging. _J. Nucl. Med._ 42, 1062–1076 (2001). CAS PubMed Google Scholar * Cleland, J. G., Coletta, A. P., Clark, A. L. & Cullington,
D. Clinical trials update from the American College of Cardiology ADMIRE-HF, PRIMA, STICH, REVERSE, IRIS, partial ventricular support, FIX-HF-5, vagal stimulation, REVIVAL-3, pre-RELAX-AHF,
ACTIVE-A, HF-ACTION, JUPITER, AURORA, and OMEGA. _Eur. J. Heart Fail._ 11, 622–630 (2009). PubMed Google Scholar * Link, J. M. _ et al_. PET measures of pre- and post-synaptic cardiac beta
adrenergic function. _Nucl. Med. Biol._ 30, 795–803 (2003). CAS PubMed Google Scholar * Tseng, H., Link, J. M., Stratton, J. R. & Caldwell, J. H. Cardiac receptor physiology and its
application to clinical imaging: present and future. _J. Nucl. Cardiol._ 8, 390–409 (2001). CAS PubMed Google Scholar * Accuracy of radiolabeled fatty acid analog, BMIPP, in the late
detection of decreased blood flow to the heart (ZEUSS-ACS). NCT00585663. ClinicalTrials.gov [online] (2009). * Cardiac sympathetic activity in patients with the apical ballooning syndrome.
NCT00586183. ClinicalTrials.gov [online] (2007). * Battegay, E. J. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. _J. Mol. Med._ 73, 333–346 (1995). CAS
PubMed Google Scholar * Carmeliet, P. Angiogenesis in health and disease. _Nat. Med._ 9, 653–660 (2003). CAS PubMed Google Scholar * Brack, S. S., Dinkelborg, L. M. & Neri, D.
Molecular targeting of angiogenesis for imaging and therapy. _Eur. J. Nucl. Med. Mol. Imaging_ 31, 1327–1341 (2004). PubMed Google Scholar * Miller, J. C., Pien, H. H., Sahani, D.,
Sorensen, A. G. & Thrall, J. H. Imaging angiogenesis: applications and potential for drug development. _J. Natl Cancer Inst._ 97, 172–187 (2005). CAS PubMed Google Scholar * Ferrara,
N. & Davis-Smyth, T. The biology of vascular endothelial growth factor. _Endocr. Rev._ 18, 4–25 (1997). CAS PubMed Google Scholar * Ferrara, N., Gerber, H. P. & LeCouter, J. The
biology of VEGF and its receptors. _Nat. Med._ 9, 669–676 (2003). CAS PubMed Google Scholar * Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced
by hypoxia may mediate hypoxia-initiated angiogenesis. _Nature_ 359, 843–845 (1992). CAS PubMed Google Scholar * Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular
integrin alpha v beta 3 for angiogenesis. _Science_ 264, 569–571 (1994). CAS PubMed Google Scholar * Brooks, P. C. _ et al_. Integrin alpha v beta 3 antagonists promote tumor regression
by inducing apoptosis of angiogenic blood vessels. _Cell_ 79, 1157–1164 (1994). CAS PubMed Google Scholar * Haas, T. L. & Madri, J. A. Extracellular matrix-driven matrix
metalloproteinase production in endothelial cells: implications for angiogenesis. _Trends Cardiovasc. Med._ 9, 70–77 (1999). CAS PubMed Google Scholar * Haas, T. L. _ et al_. Matrix
metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. _Am. J. Physiol. Heart Circ. Physiol._ 279, H1540–H1547 (2000). CAS PubMed Google Scholar
* Lu, E. _ et al_. Targeted _in vivo_ labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. _Circulation_ 108, 97–103 (2003). CAS
PubMed Google Scholar * Cai, W. _ et al_. PET of vascular endothelial growth factor receptor expression. _J. Nucl. Med._ 47, 2048–2056 (2006). CAS PubMed Google Scholar *
Rodriguez-Porcel, M. _ et al_. Imaging of VEGF receptor in a rat myocardial infarction model using PET. _J. Nucl. Med._ 49, 667–673 (2008). PubMed Google Scholar * Wagner, B. _ et al_.
Noninvasive characterization of myocardial molecular interventions by integrated positron emission tomography and computed tomography. _J. Am. Coll. Cardiol._ 48, 2107–2115 (2006). PubMed
Google Scholar * Sipkins, D. A. _ et al_. Detection of tumor angiogenesis _in vivo_ by alphaVbeta3-targeted magnetic resonance imaging. _Nat. Med._ 4, 623–626 (1998). CAS PubMed Google
Scholar * Haubner, R. _ et al_. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. _J. Nucl. Med._ 42, 326–336 (2001). CAS
PubMed Google Scholar * Haubner, R. _ et al_. Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. _J. Nucl. Med._ 40, 1061–1071 (1999). CAS
PubMed Google Scholar * Haubner, R. _ et al_. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography.
_Cancer Res._ 61, 1781–1785 (2001). CAS PubMed Google Scholar * Pfaff, M. _ et al_. Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V
beta 3, and alpha 5 beta 1 integrins. _J. Biol. Chem._ 269, 20233–20238 (1994). CAS PubMed Google Scholar * Harris, T. D. _ et al_. Design, synthesis, and evaluation of radiolabeled
integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. _Cancer Biother. Radiopharm._ 18, 627–641 (2003). CAS PubMed Google Scholar * Sadeghi, M. M. _ et al_.
Imaging αvβ3 integrin in vascular injury: does this reflect increased integrin expression or activation? _Circulation_ 108 (17 Suppl.), 1868 (2003). Google Scholar * Meoli, D. F. _ et al_.
Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. _J. Clin. Invest._ 113, 1684–1691 (2004). CAS PubMed Central PubMed Google Scholar *
Kalinowski, L. _ et al_. Targeted imaging of hypoxia-induced integrin activation in myocardium early after infarction. _J. Appl. Physiol._ 104, 1504–1512 (2008). CAS PubMed Google Scholar
* Bach-Gansmo, T. _ et al_. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. _J. Nucl. Med._ 47, 1434–1439 (2006). CAS PubMed Google
Scholar * Edwards, D. _ et al_. 99mTc-NC100692--a tracer for imaging vitronectin receptors associated with angiogenesis: a preclinical investigation. _Nucl. Med. Biol._ 35, 365–375 (2008).
CAS PubMed Google Scholar * Indrevoll, B. _ et al_. NC-100717: a versatile RGD peptide scaffold for angiogenesis imaging. _Bioorg. Med. Chem. Lett._ 16, 6190–6193 (2006). CAS PubMed
Google Scholar * Kenny, L. M. _ et al_. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. _J. Nucl. Med._ 49, 879–886
(2008). PubMed Google Scholar * Hua, J. _ et al_. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia.
_Circulation_ 111, 3255–3260 (2005). CAS PubMed Google Scholar * Lindsey, M. L. _ et al_. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction.
_Am. J. Physiol. Heart Circ. Physiol._ 290, H232–H239 (2006). CAS PubMed Google Scholar * Dobrucki, L. W. _ et al_. Serial noninvasive targeted imaging of peripheral angiogenesis:
validation and application of a semiautomated quantitative approach. _J. Nucl. Med._ 50, 1356–1363 (2009). PubMed Google Scholar * Almutairi, A. _ et al_. Biodegradable dendritic
positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. _Proc. Natl Acad. Sci. USA_ 106, 685–690 (2009). CAS PubMed PubMed Central Google Scholar * Haubner, R. _ et
al_. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. _PLoS Med._ 2, e70 (2005). PubMed Central
PubMed Google Scholar * Liu, S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. _Mol. Pharm._ 3, 472–487 (2006). CAS PubMed
Google Scholar * Jaffer, F. A., Libby, P. & Weissleder, R. Molecular imaging of cardiovascular disease. _Circulation_ 116, 1052–1061 (2007). PubMed Google Scholar * Sutton, M. G.
& Sharpe, N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. _Circulation_ 101, 2981–2988 (2000). CAS PubMed Google Scholar * Chung, G. &
Sinusas, A. J. Imaging of matrix metalloproteinase activation and left ventricular remodeling. _Curr. Cardiol. Rep._ 9, 136–142 (2007). PubMed Google Scholar * Su, H. _ et al_. Noninvasive
targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. _Circulation_ 112, 3157–3167 (2005). CAS PubMed Google Scholar * Liu, Y. H. _ et
al_. Hotspot quantification of myocardial focal tracer uptake from molecular targeted SPECT/CT images: experimental validation - art. no. 69150N. _Proceedings—SPIE (The International Society
for Optical Engineering)_ 6915 (Part 1), 69150N–69150N-8 (2008). * Nahrendorf, M. _ et al_. Factor XIII deficiency causes cardiac rupture, impairs wound healing, and aggravates cardiac
remodeling in mice with myocardial infarction. _Circulation_ 113, 1196–1202 (2006). CAS PubMed Central PubMed Google Scholar * Nahrendorf, M. _ et al_. Transglutaminase activity in acute
infarcts predicts healing outcome and left ventricular remodelling: implications for FXIII therapy and antithrombin use in myocardial infarction. _Eur. Heart J._ 29, 445–454 (2008). CAS
PubMed Google Scholar * Shirani, J. & Dilsizian, V. Imaging left ventricular remodeling: targeting the neurohumoral axis. _Nat. Clin. Pract. Cardiovasc. Med._ 5 (Suppl. 2), S57–S62
(2008). CAS PubMed Google Scholar * Dilsizian, V., Eckelman, W. C., Loredo, M. L., Jagoda, E. M. & Shirani, J. Evidence for tissue angiotensin-converting enzyme in explanted hearts of
ischemic cardiomyopathy using targeted radiotracer technique. _J. Nucl. Med._ 48, 182–187 (2007). CAS PubMed Google Scholar * Shirani, J., Narula, J., Eckelman, W. C., Narula, N. &
Dilsizian, V. Early imaging in heart failure: exploring novel molecular targets. _J. Nucl. Cardiol._ 14, 100–110 (2007). PubMed Google Scholar * Trivedi, R. A. _ et al_. Identifying
inflamed carotid plaques using _in vivo_ USPIO-enhanced MR imaging to label plaque macrophages. _Arterioscler. Thromb. Vasc. Biol._ 26, 1601–1606 (2006). CAS PubMed Google Scholar *
Nahrendorf, M. _ et al_. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. _Circulation_ 117, 379–387 (2008). CAS PubMed Google Scholar * Hyafil, F. _ et al_.
Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. _Nat. Med._ 13, 636–641 (2007). CAS PubMed Google Scholar * Schafers, M. _ et al_.
Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall _in vivo_. _Circulation_ 109, 2554–2559 (2004). PubMed Google Scholar * Zhang, J. _ et al_. Molecular
imaging of activated matrix metalloproteinases in vascular remodeling. _Circulation_ 118, 1953–1960 (2008). CAS PubMed Central PubMed Google Scholar * Sadeghi, M. M. _ et al_. Detection
of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin _in vivo_. _Circulation_ 110, 84–90 (2004). CAS PubMed Google Scholar * Matter, C. M. _ et al_. Molecular
imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. _Circ. Res._ 95, 1225–1233 (2004). CAS PubMed Google Scholar * von Lukowicz, T. _ et
al_. Human antibody against C domain of tenascin-C visualizes murine atherosclerotic plaques _ex vivo_. _J. Nucl. Med._ 48, 582–587 (2007). CAS PubMed Google Scholar * Lederman, R. J. _
et al_. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). _Nucl. Med. Commun._ 22, 747–753 (2001). CAS PubMed Google Scholar * Zhu, Q.,
Piao, D., Sadeghi, M. M. & Sinusas, A. J. Simultaneous optical coherence tomography imaging and beta particle detection. _Opt. Lett._ 28, 1704–1706 (2003). CAS PubMed Google Scholar
Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Medicine and Department of Diagnostic Radiology, Section of Cardiovascular Medicine, Yale University School of
Medicine, P. O. Box 208017, New Haven, 06520-8017, CT, USA Lawrence W. Dobrucki & Albert J. Sinusas Authors * Lawrence W. Dobrucki View author publications You can also search for this
author inPubMed Google Scholar * Albert J. Sinusas View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Albert J.
Sinusas. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE
Dobrucki, L., Sinusas, A. PET and SPECT in cardiovascular molecular imaging. _Nat Rev Cardiol_ 7, 38–47 (2010). https://doi.org/10.1038/nrcardio.2009.201 Download citation * Published: 24
November 2009 * Issue Date: January 2010 * DOI: https://doi.org/10.1038/nrcardio.2009.201 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get
shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative