Pet and spect in cardiovascular molecular imaging

Pet and spect in cardiovascular molecular imaging

Play all audios:

Loading...

ABSTRACT The current focus of cardiovascular medicine is on early detection and prevention of disease, to control the escalating costs of health care. To achieve this goal, novel imaging


approaches that allow for early detection of disease and risk stratification are needed. Traditionally, the diagnosis, monitoring, and prognostication of cardiovascular disease were based on


techniques that measured changes in metabolism, blood flow, and biological function. Molecular imaging is emerging as a new tool for the noninvasive detection of biological processes that


can differentiate and characterize tissues before manifestation of gross anatomical features or physiological consequences. Leading the way are techniques involving high-sensitivity


radiotracers that could revolutionize current diagnostic paradigms. This Review provides an overview of selected molecular-based single photon emission CT (SPECT) and PET imaging strategies


for the evaluation of cardiovascular disease—including the evaluation of myocardial metabolism and neurohumoral activity of the heart—and potential future targeted methods of evaluating


critical molecular processes, such as atherosclerosis, ventricular remodeling after myocardial infarction, and ischemia-associated angiogenesis. KEY POINTS * With the growth of genomics and


proteomics has come a requirement for new diagnostic molecular imaging approaches that advance health care through early detection of disease processes * Noninvasive targeted


radiotracer-based SPECT and PET approaches are evolving through both preclinical imaging studies, involving transgenic animals, and advances in imaging technology * Both SPECT and PET, as


nuclear techniques, have unique advantages including high sensitivity and selectivity, which make these approaches particularly suitable for cardiovascular molecular imaging * The


introduction of hybrid SPECT–CT and PET–CT imaging systems has greatly enhanced the performance and accuracy of nuclear imaging * The examples of targeted radiotracer imaging with SPECT and


PET presented in this Review provide insight into the future of noninvasive cardiovascular imaging Access through your institution Buy or subscribe This is a preview of subscription content,


access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn


more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS


OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IMAGING OF ATHEROSCLEROSIS WITH


[64CU]CU-DOTA-TATE IN A TRANSLATIONAL HEAD-TO-HEAD COMPARISON STUDY WITH [18F]FDG, AND NA[18F]F IN RABBITS Article Open access 07 June 2023 UNCOVERING ATHEROSCLEROTIC CARDIOVASCULAR DISEASE


BY PET IMAGING Article 04 April 2024 PET/MR IMAGING OF INFLAMMATION IN ATHEROSCLEROSIS Article 15 December 2022 REFERENCES * National Academy of Engineering. _Greatest Engineering


Achievements of the 20__th_ _Century_ [online], (2009). * Brumley, C. L. & Kuhn, J. A. Radiolabeled monoclonal antibodies. _Aorn J._ 62, 343–350 (1995). CAS  PubMed  Google Scholar  *


Inubushi, M. & Tamaki, N. Radionuclide reporter gene imaging for cardiac gene therapy. _Eur. J. Nucl. Med. Mol. Imaging_ 34 (Suppl. 1), S27–S33 (2007). CAS  PubMed  Google Scholar  *


Sun, N., Lee, A. & Wu, J. C. Long term non-invasive imaging of embryonic stem cells using reporter genes. _Nat. Protoc._ 4, 1192–1201 (2009). CAS  PubMed Central  PubMed  Google Scholar


  * Willmann, J. K. _ et al_. Imaging gene expression in human mesenchymal stem cells: from small to large animals. _Radiology_ 252, 117–127 (2009). PubMed Central  PubMed  Google Scholar  *


Hiona, A. & Wu, J. C. Noninvasive radionuclide imaging of cardiac gene therapy: progress and potential. _Nat. Clin. Pract. Cardiovasc. Med._ 5 (Suppl. 2), S87–S95 (2008). CAS  PubMed 


Google Scholar  * Nahrendorf, M. _ et al_. Multimodality cardiovascular molecular imaging, part II. _Circ. Cardiovasc. Imaging_ 2, 56–70 (2009). PubMed Central  PubMed  Google Scholar  *


Sinusas, A. J. _ et al_. Multimodality cardiovascular molecular imaging, part I. _Circ. Cardiovasc. Imaging_ 1, 244–256 (2008). PubMed  Google Scholar  * Dobrucki, L. W. & Sinusas, A. J.


Molecular imaging. A new approach to nuclear cardiology. _Q. J. Nucl. Med. Mol. Imaging_ 49, 106–115 (2005). CAS  PubMed  Google Scholar  * Dobrucki, L. W. & Sinusas, A. J. Molecular


cardiovascular imaging. _Curr. Cardiol. Rep._ 7, 130–135 (2005). PubMed  Google Scholar  * Dobrucki, L. W. & Sinusas, A. J. Cardiovascular molecular imaging. _Semin. Nucl. Med._ 35,


73–81 (2005). PubMed  Google Scholar  * Dobrucki, L. W. & Sinusas, A. J. Imaging angiogenesis. _Curr. Opin. Biotechnol._ 18, 90–96 (2007). CAS  PubMed  Google Scholar  * Blankenberg, F.


G. Molecular imaging: The latest generation of contrast agents and tissue characterization techniques. _J. Cell. Biochem._ 90, 443–453 (2003). CAS  PubMed  Google Scholar  * Sinusas, A. J.


Imaging of angiogenesis. _J. Nucl. Cardiol._ 11, 617–633 (2004). PubMed  Google Scholar  * Morrison, A. R. & Sinusas, A. J. New molecular imaging targets to characterize myocardial


biology. _Cardiol. Clin._ 27, 329–344 (2009). PubMed Central  PubMed  Google Scholar  * Kim, H. _ et al_. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager


based on eight cadmium zinc telluride (CZT) detector arrays. _Med. Phys._ 33, 465–474 (2006). CAS  PubMed  Google Scholar  * Wagenaar, D. J., Kapusta, M., Li, J. & Patt, B. E. Rationale


for the combination of nuclear medicine with magnetic resonance for pre-clinical imaging. _Technol. Cancer Res. Treat._ 5, 343–350 (2006). PubMed  Google Scholar  * Tawakol, A. _ et al_. _In


vivo_ 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. _J. Am. Coll. Cardiol._ 48, 1818–1824 (2006).


PubMed  Google Scholar  * Dilsizian, V. _ et al_. Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. _Circulation_


112, 2169–2174 (2005). PubMed  Google Scholar  * Kida, K., Akashi, Y. J., Yoneyama, K., Shimokawa, M. & Musha, H. 123I-BMIPP delayed scintigraphic imaging in patients with chronic heart


failure. _Ann. Nucl. Med._ 22, 769–775 (2008). PubMed  Google Scholar  * Nakamura, A. _ et al_. Ability of (201)Tl and (123)I-BMIPP mismatch to diagnose myocardial ischemia in patients with


suspected coronary artery disease. _Ann. Nucl. Med._ doi: 10.1007/s12149-009-0307–0308 * Nanasato, M. _ et al_. Restored cardiac conditions and left ventricular function after


parathyroidectomy in a hemodialysis patient. Parathyroidectomy improves cardiac fatty acid metabolism assessed by 123I-BMIPP. _Circ. J._ 73, 1956–1960 (2009). PubMed  Google Scholar  * Shi,


C. Q. _ et al_. Correlation of myocardial p-(123)I-iodophenylpentadecanoic acid retention with (18)F-FDG accumulation during experimental low-flow ischemia. _J. Nucl. Med._ 43, 421–431


(2002). PubMed  Google Scholar  * Verani, M. S. _ et al_. 123I-IPPA SPECT for the prediction of enhanced left ventricular function after coronary bypass graft surgery. Multicenter IPPA


Viability Trial Investigators. 123I-iodophenylpentadecanoic acid. _J. Nucl. Med._ 41, 1299–1307 (2000). CAS  PubMed  Google Scholar  * Volokh, L., Lahat, C. & Blevis, I. Myocardial


perfusion imaging with an ultra-fast cardiac SPECT camera: a phantom study. _Nuclear Science Symposium Conference Record_ 19–25 October 4636–4639 (2008). * Levy, M. N. Cardiac


sympathetic-parasympathetic interactions. _Fed. Proc._ 43, 2598–2602 (1984). CAS  PubMed  Google Scholar  * Sunagawa, K., Kawada, T. & Nakahara, T. Dynamic nonlinear vago-sympathetic


interaction in regulating heart rate. _Heart Vessels_ 13, 157–174 (1998). CAS  PubMed  Google Scholar  * Zemaityte, D. J., Varoneckas, G. A. & Sokolov, E. N. Interaction between the


parasympathetic and sympathetic divisions of the autonomic nervous system in cardiac rhythm regulation. _Hum. Physiol._ 11, 208–215 (1985). CAS  PubMed  Google Scholar  * Henneman, M. M.,


Bengel, F. M., van der Wall, E. E., Knuuti, J. & Bax, J. J. Cardiac neuronal imaging: application in the evaluation of cardiac disease. _J. Nucl. Cardiol._ 15, 442–455 (2008). PubMed 


Google Scholar  * Higuchi, T. & Schwaiger, M. Noninvasive imaging of heart failure: neuronal dysfunction and risk stratification. _Heart Fail. Clin._ 2, 193–204 (2006). PubMed  Google


Scholar  * Carrio, I. Cardiac neurotransmission imaging. _J. Nucl. Med._ 42, 1062–1076 (2001). CAS  PubMed  Google Scholar  * Cleland, J. G., Coletta, A. P., Clark, A. L. & Cullington,


D. Clinical trials update from the American College of Cardiology ADMIRE-HF, PRIMA, STICH, REVERSE, IRIS, partial ventricular support, FIX-HF-5, vagal stimulation, REVIVAL-3, pre-RELAX-AHF,


ACTIVE-A, HF-ACTION, JUPITER, AURORA, and OMEGA. _Eur. J. Heart Fail._ 11, 622–630 (2009). PubMed  Google Scholar  * Link, J. M. _ et al_. PET measures of pre- and post-synaptic cardiac beta


adrenergic function. _Nucl. Med. Biol._ 30, 795–803 (2003). CAS  PubMed  Google Scholar  * Tseng, H., Link, J. M., Stratton, J. R. & Caldwell, J. H. Cardiac receptor physiology and its


application to clinical imaging: present and future. _J. Nucl. Cardiol._ 8, 390–409 (2001). CAS  PubMed  Google Scholar  * Accuracy of radiolabeled fatty acid analog, BMIPP, in the late


detection of decreased blood flow to the heart (ZEUSS-ACS). NCT00585663. ClinicalTrials.gov [online] (2009). * Cardiac sympathetic activity in patients with the apical ballooning syndrome.


NCT00586183. ClinicalTrials.gov [online] (2007). * Battegay, E. J. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. _J. Mol. Med._ 73, 333–346 (1995). CAS


  PubMed  Google Scholar  * Carmeliet, P. Angiogenesis in health and disease. _Nat. Med._ 9, 653–660 (2003). CAS  PubMed  Google Scholar  * Brack, S. S., Dinkelborg, L. M. & Neri, D.


Molecular targeting of angiogenesis for imaging and therapy. _Eur. J. Nucl. Med. Mol. Imaging_ 31, 1327–1341 (2004). PubMed  Google Scholar  * Miller, J. C., Pien, H. H., Sahani, D.,


Sorensen, A. G. & Thrall, J. H. Imaging angiogenesis: applications and potential for drug development. _J. Natl Cancer Inst._ 97, 172–187 (2005). CAS  PubMed  Google Scholar  * Ferrara,


N. & Davis-Smyth, T. The biology of vascular endothelial growth factor. _Endocr. Rev._ 18, 4–25 (1997). CAS  PubMed  Google Scholar  * Ferrara, N., Gerber, H. P. & LeCouter, J. The


biology of VEGF and its receptors. _Nat. Med._ 9, 669–676 (2003). CAS  PubMed  Google Scholar  * Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced


by hypoxia may mediate hypoxia-initiated angiogenesis. _Nature_ 359, 843–845 (1992). CAS  PubMed  Google Scholar  * Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular


integrin alpha v beta 3 for angiogenesis. _Science_ 264, 569–571 (1994). CAS  PubMed  Google Scholar  * Brooks, P. C. _ et al_. Integrin alpha v beta 3 antagonists promote tumor regression


by inducing apoptosis of angiogenic blood vessels. _Cell_ 79, 1157–1164 (1994). CAS  PubMed  Google Scholar  * Haas, T. L. & Madri, J. A. Extracellular matrix-driven matrix


metalloproteinase production in endothelial cells: implications for angiogenesis. _Trends Cardiovasc. Med._ 9, 70–77 (1999). CAS  PubMed  Google Scholar  * Haas, T. L. _ et al_. Matrix


metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. _Am. J. Physiol. Heart Circ. Physiol._ 279, H1540–H1547 (2000). CAS  PubMed  Google Scholar 


* Lu, E. _ et al_. Targeted _in vivo_ labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. _Circulation_ 108, 97–103 (2003). CAS 


PubMed  Google Scholar  * Cai, W. _ et al_. PET of vascular endothelial growth factor receptor expression. _J. Nucl. Med._ 47, 2048–2056 (2006). CAS  PubMed  Google Scholar  *


Rodriguez-Porcel, M. _ et al_. Imaging of VEGF receptor in a rat myocardial infarction model using PET. _J. Nucl. Med._ 49, 667–673 (2008). PubMed  Google Scholar  * Wagner, B. _ et al_.


Noninvasive characterization of myocardial molecular interventions by integrated positron emission tomography and computed tomography. _J. Am. Coll. Cardiol._ 48, 2107–2115 (2006). PubMed 


Google Scholar  * Sipkins, D. A. _ et al_. Detection of tumor angiogenesis _in vivo_ by alphaVbeta3-targeted magnetic resonance imaging. _Nat. Med._ 4, 623–626 (1998). CAS  PubMed  Google


Scholar  * Haubner, R. _ et al_. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. _J. Nucl. Med._ 42, 326–336 (2001). CAS


  PubMed  Google Scholar  * Haubner, R. _ et al_. Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. _J. Nucl. Med._ 40, 1061–1071 (1999). CAS 


PubMed  Google Scholar  * Haubner, R. _ et al_. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography.


_Cancer Res._ 61, 1781–1785 (2001). CAS  PubMed  Google Scholar  * Pfaff, M. _ et al_. Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V


beta 3, and alpha 5 beta 1 integrins. _J. Biol. Chem._ 269, 20233–20238 (1994). CAS  PubMed  Google Scholar  * Harris, T. D. _ et al_. Design, synthesis, and evaluation of radiolabeled


integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. _Cancer Biother. Radiopharm._ 18, 627–641 (2003). CAS  PubMed  Google Scholar  * Sadeghi, M. M. _ et al_.


Imaging αvβ3 integrin in vascular injury: does this reflect increased integrin expression or activation? _Circulation_ 108 (17 Suppl.), 1868 (2003). Google Scholar  * Meoli, D. F. _ et al_.


Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. _J. Clin. Invest._ 113, 1684–1691 (2004). CAS  PubMed Central  PubMed  Google Scholar  *


Kalinowski, L. _ et al_. Targeted imaging of hypoxia-induced integrin activation in myocardium early after infarction. _J. Appl. Physiol._ 104, 1504–1512 (2008). CAS  PubMed  Google Scholar


  * Bach-Gansmo, T. _ et al_. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. _J. Nucl. Med._ 47, 1434–1439 (2006). CAS  PubMed  Google


Scholar  * Edwards, D. _ et al_. 99mTc-NC100692--a tracer for imaging vitronectin receptors associated with angiogenesis: a preclinical investigation. _Nucl. Med. Biol._ 35, 365–375 (2008).


CAS  PubMed  Google Scholar  * Indrevoll, B. _ et al_. NC-100717: a versatile RGD peptide scaffold for angiogenesis imaging. _Bioorg. Med. Chem. Lett._ 16, 6190–6193 (2006). CAS  PubMed 


Google Scholar  * Kenny, L. M. _ et al_. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. _J. Nucl. Med._ 49, 879–886


(2008). PubMed  Google Scholar  * Hua, J. _ et al_. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia.


_Circulation_ 111, 3255–3260 (2005). CAS  PubMed  Google Scholar  * Lindsey, M. L. _ et al_. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction.


_Am. J. Physiol. Heart Circ. Physiol._ 290, H232–H239 (2006). CAS  PubMed  Google Scholar  * Dobrucki, L. W. _ et al_. Serial noninvasive targeted imaging of peripheral angiogenesis:


validation and application of a semiautomated quantitative approach. _J. Nucl. Med._ 50, 1356–1363 (2009). PubMed  Google Scholar  * Almutairi, A. _ et al_. Biodegradable dendritic


positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. _Proc. Natl Acad. Sci. USA_ 106, 685–690 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Haubner, R. _ et


al_. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. _PLoS Med._ 2, e70 (2005). PubMed Central 


PubMed  Google Scholar  * Liu, S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. _Mol. Pharm._ 3, 472–487 (2006). CAS  PubMed 


Google Scholar  * Jaffer, F. A., Libby, P. & Weissleder, R. Molecular imaging of cardiovascular disease. _Circulation_ 116, 1052–1061 (2007). PubMed  Google Scholar  * Sutton, M. G.


& Sharpe, N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. _Circulation_ 101, 2981–2988 (2000). CAS  PubMed  Google Scholar  * Chung, G. &


Sinusas, A. J. Imaging of matrix metalloproteinase activation and left ventricular remodeling. _Curr. Cardiol. Rep._ 9, 136–142 (2007). PubMed  Google Scholar  * Su, H. _ et al_. Noninvasive


targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. _Circulation_ 112, 3157–3167 (2005). CAS  PubMed  Google Scholar  * Liu, Y. H. _ et


al_. Hotspot quantification of myocardial focal tracer uptake from molecular targeted SPECT/CT images: experimental validation - art. no. 69150N. _Proceedings—SPIE (The International Society


for Optical Engineering)_ 6915 (Part 1), 69150N–69150N-8 (2008). * Nahrendorf, M. _ et al_. Factor XIII deficiency causes cardiac rupture, impairs wound healing, and aggravates cardiac


remodeling in mice with myocardial infarction. _Circulation_ 113, 1196–1202 (2006). CAS  PubMed Central  PubMed  Google Scholar  * Nahrendorf, M. _ et al_. Transglutaminase activity in acute


infarcts predicts healing outcome and left ventricular remodelling: implications for FXIII therapy and antithrombin use in myocardial infarction. _Eur. Heart J._ 29, 445–454 (2008). CAS 


PubMed  Google Scholar  * Shirani, J. & Dilsizian, V. Imaging left ventricular remodeling: targeting the neurohumoral axis. _Nat. Clin. Pract. Cardiovasc. Med._ 5 (Suppl. 2), S57–S62


(2008). CAS  PubMed  Google Scholar  * Dilsizian, V., Eckelman, W. C., Loredo, M. L., Jagoda, E. M. & Shirani, J. Evidence for tissue angiotensin-converting enzyme in explanted hearts of


ischemic cardiomyopathy using targeted radiotracer technique. _J. Nucl. Med._ 48, 182–187 (2007). CAS  PubMed  Google Scholar  * Shirani, J., Narula, J., Eckelman, W. C., Narula, N. &


Dilsizian, V. Early imaging in heart failure: exploring novel molecular targets. _J. Nucl. Cardiol._ 14, 100–110 (2007). PubMed  Google Scholar  * Trivedi, R. A. _ et al_. Identifying


inflamed carotid plaques using _in vivo_ USPIO-enhanced MR imaging to label plaque macrophages. _Arterioscler. Thromb. Vasc. Biol._ 26, 1601–1606 (2006). CAS  PubMed  Google Scholar  *


Nahrendorf, M. _ et al_. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. _Circulation_ 117, 379–387 (2008). CAS  PubMed  Google Scholar  * Hyafil, F. _ et al_.


Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. _Nat. Med._ 13, 636–641 (2007). CAS  PubMed  Google Scholar  * Schafers, M. _ et al_.


Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall _in vivo_. _Circulation_ 109, 2554–2559 (2004). PubMed  Google Scholar  * Zhang, J. _ et al_. Molecular


imaging of activated matrix metalloproteinases in vascular remodeling. _Circulation_ 118, 1953–1960 (2008). CAS  PubMed Central  PubMed  Google Scholar  * Sadeghi, M. M. _ et al_. Detection


of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin _in vivo_. _Circulation_ 110, 84–90 (2004). CAS  PubMed  Google Scholar  * Matter, C. M. _ et al_. Molecular


imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. _Circ. Res._ 95, 1225–1233 (2004). CAS  PubMed  Google Scholar  * von Lukowicz, T. _ et


al_. Human antibody against C domain of tenascin-C visualizes murine atherosclerotic plaques _ex vivo_. _J. Nucl. Med._ 48, 582–587 (2007). CAS  PubMed  Google Scholar  * Lederman, R. J. _


et al_. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). _Nucl. Med. Commun._ 22, 747–753 (2001). CAS  PubMed  Google Scholar  * Zhu, Q.,


Piao, D., Sadeghi, M. M. & Sinusas, A. J. Simultaneous optical coherence tomography imaging and beta particle detection. _Opt. Lett._ 28, 1704–1706 (2003). CAS  PubMed  Google Scholar 


Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Medicine and Department of Diagnostic Radiology, Section of Cardiovascular Medicine, Yale University School of


Medicine, P. O. Box 208017, New Haven, 06520-8017, CT, USA Lawrence W. Dobrucki & Albert J. Sinusas Authors * Lawrence W. Dobrucki View author publications You can also search for this


author inPubMed Google Scholar * Albert J. Sinusas View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Albert J.


Sinusas. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Dobrucki, L., Sinusas, A. PET and SPECT in cardiovascular molecular imaging. _Nat Rev Cardiol_ 7, 38–47 (2010). https://doi.org/10.1038/nrcardio.2009.201 Download citation * Published: 24


November 2009 * Issue Date: January 2010 * DOI: https://doi.org/10.1038/nrcardio.2009.201 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative