Play all audios:
KEY POINTS * One effect of recombination is to determine the extent of linkage disequilibrium in population DNA samples. * Direct measurement of the recombination rate is difficult and often
impractical. For this reason, population-genetic methods are often used to infer recombination rates from patterns of variation among DNA sequences. * Population-genetic methods can detect
variation in the recombination rate at the level of single genes. * Although simple parsimony methods allow the number of recombination events to be counted, most recombination events are
missed using this approach. * Sophisticated statistical approaches use population-genetic models to estimate recombination rates. * Several statistical methods that estimate the population
recombination rate have been developed. These are influenced by population history, but can provide important insights into details of the recombination process. * Biologically important
inferences can be drawn from these estimators even if the underlying assumptions are oversimplified. * Discrepancies between estimated and experimentally measured rates can reveal important
biological processes. * Estimated recombination rates enable the detailed interpretation of linkage disequilibrium and haplotype data. ABSTRACT Obtaining an accurate measure of how
recombination rates vary across the genome has implications for understanding the molecular basis of recombination, its evolutionary significance and the distribution of linkage
disequilibrium in natural populations. Although measuring the recombination rate is experimentally challenging, good estimates can be obtained by applying population-genetic methods to DNA
sequences taken from natural populations. Statistical methods are now providing insights into the nature and scale of variation in the recombination rate, particularly in humans. Such
knowledge will become increasingly important owing to the growing use of population-genetic methods in biomedical research. Access through your institution Buy or subscribe This is a preview
of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only
$17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during
checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS INFERENCE AND
APPLICATIONS OF ANCESTRAL RECOMBINATION GRAPHS Article 30 September 2024 RANK-INVARIANT ESTIMATION OF INBREEDING COEFFICIENTS Article Open access 25 November 2021 GENETIC LOAD: GENOMIC
ESTIMATES AND APPLICATIONS IN NON-MODEL ANIMALS Article 08 February 2022 REFERENCES * Hartl, D. L. & Clark, A. G. _Principles of Population Genetics_ (Sinauer, Sunderland, 1998). Google
Scholar * Weiss, K. M. & Clark, A. G. Linkage disequilibrium and the mapping of complex human traits. _Trends Genet._ 18, 19–24 (2002). THIS WORK HIGHLIGHTS ISSUES THAT ARE RELATED TO
THE APPLICATION OF LD DATA TO ASSOCIATION STUDIES. CAS PubMed Google Scholar * Kaplan, N. & Morris, R. Prospects for association-based fine mapping of a susceptibility gene for a
complex disease. _Theor. Popul. Biol._ 60, 181–191 (2001). CAS PubMed Google Scholar * Jeffreys, A. J., Ritchie, A. & Neumann, R. High resolution analysis of haplotype diversity and
meiotic crossover in the human _TAP2_ recombination hotspot. _Hum. Mol. Genet._ 9, 725–733 (2000). CAS PubMed Google Scholar * Badge, R. M., Yardley, J., Jeffreys, A. J. & Armour, J.
A. Crossover breakpoint mapping identifies a subtelomeric hotspot for male meiotic recombination. _Hum. Mol. Genet._ 9, 1239–1244 (2000). CAS PubMed Google Scholar * Cullen, M., Erlich,
H., Klitz, W. & Carrington, M. Molecular mapping of a recombination hotspot located in the second intron of the human _TAP2_ locus. _Am. J. Hum. Genet._ 56, 1350–1358 (1995). CAS PubMed
PubMed Central Google Scholar * Zhao, H. Family-based association studies. _Stat. Methods Med. Res._ 9, 563–87 (2000). CAS PubMed Google Scholar * Cardon, L. R. & Bell, J. I.
Association study designs for complex diseases. _Nature Rev. Genet._ 2, 91–99 (2001). CAS PubMed Google Scholar * Jeffreys, A. J., Murray, J. & Neumann, R. High-resolution mapping of
crossovers in human sperm defines a minisatellite-associated recombination hotspot. _Mol. Cell_ 2, 267–273 (1998). CAS PubMed Google Scholar * Fearnhead, P. & Donnelly, P. Estimating
recombination rates from population genetic data. _Genetics_ 159, 1299–1318 (2001). CAS PubMed PubMed Central Google Scholar * Fearnhead, P. & Donnelly, P. Approximate likelihood
methods for estimating local recombination rates. _J. R. Stat. Soc. Ser. B Stat. Methodol._ 64, 657–680 (2002). Google Scholar * Kuhner, M. K., Yamato, J. & Felsenstein, J. Maximum
likelihood estimation of recombination rates from population data. _Genetics_ 156, 1393–1401 (2000). CAS PubMed PubMed Central Google Scholar * Stephens, M. & Donnelly, P. Inference
in molecular population genetics. _J. R. Stat. Soc. Ser. B Stat. Methodol._ 62, 605–635 (2000). Google Scholar * Pritchard, J. K. & Przeworski, M. Linkage disequilibrium in humans:
models and data. _Am. J. Hum. Genet._ 69, 1–14 (2001). A COMPREHENSIVE REVIEW OF LD AND ITS DEPENDENCE ON DEMOGRAPHY; THE PAPER ALSO EXAMINES THE CONNECTION BETWEEN THEORETICAL MODELS AND
EXPERIMENTAL DATA. CAS PubMed PubMed Central Google Scholar * Golding, G. B. The sampling distribution of linkage disequilibrium. _Genetics_ 108, 257–274 (1984). CAS PubMed PubMed
Central Google Scholar * Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. _Nature Genet._ 22, 139–144 (1999). CAS PubMed Google Scholar *
Calafell, F., Grigorenko, E. L., Chikanian, A. A. & Kidd, K. K. Haplotype evolution and linkage disequilibrium: a simulation study. _Hum. Hered._ 51, 85–96 (2000). Google Scholar *
Wang, N., Akey, J. M., Zhang, K., Chakraborty, R. & Jin, L. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history,
recombination, and mutation. _Am. J. Hum. Genet._ 71, 1227–1234 (2002). CAS PubMed PubMed Central Google Scholar * Barton, N. H. Genetic hitchhiking. _Philos. Trans. R. Soc. Lond., B,
Biol. Sci._ 355, 1553–1562 (2000). CAS Google Scholar * Charlesworth, B., Nordborg, M. & Charlesworth, D. The effects of local selection, balanced polymorphism and background selection
on equilibrium patterns of genetic diversity in subdivided populations. _Genet. Res._ 70, 155–174 (1997). CAS PubMed Google Scholar * Chapman, N. H. & Thompson, E. A. Linkage
disequilibrium mapping: the role of population history, size, and structure. _Adv. Genet._ 42, 413–437 (2001). CAS PubMed Google Scholar * Freimer, N. B., Service, S. K. & Slatkin, M.
Expanding on population studies. _Nature Genet._ 17, 371–373 (1997). CAS PubMed Google Scholar * Hudson, R. R. The sampling distribution of linkage disequilibrium under an infinite
allele model without selection. _Genetics_ 109, 611–631 (1985). CAS PubMed PubMed Central Google Scholar * Garner, C. & Slatkin, M. On selecting markers for association studies:
patterns of linkage disequilibrium between two and three diallelic loci. _Genet. Epidemiol_ 24, 57–67 (2003). PubMed Google Scholar * Phillips, M. S. et al. Chromosome-wide distribution of
haplotype blocks and the role of recombination hot spots. _Nature Genet._ 33, 382–387 (2003). A STUDY OF A DENSE MARKER MAP ON CHROMOSOME 19 THAT, TOGETHER WITH A DETAILED THEORETICAL
ANALYSIS, HIGHLIGHTS PROBLEMS IN DEFINING HAPLOTYPE BLOCKS. CAS PubMed Google Scholar * Cardon, L. R. & Abecasis, G. R. Using haplotype blocks to map human complex trait loci. _Trends
Genet._ 19, 135–140 (2003). CAS PubMed Google Scholar * Akey, J. M., Zhang, K., Xiong, M. M. & Jin, L. The effect of single nucleotide polymorphism identification strategies on
estimates of linkage disequilibrium. _Mol. Biol. Evol._ 20, 232–242 (2003). CAS PubMed Google Scholar * Nielsen, R. & Signorovitch, J. Correcting for ascertainment bias when analyzing
SNP data: applications to the estimation of linkage disequilibrium. _Theor. Popul. Biol._ 63, 245–255 (2003). PubMed Google Scholar * Rannala, B. & Slatkin, M. Likelihood analysis of
disequilibrium mapping, and related problems. _Am. J. Hum. Genet._ 62, 459–473 (1998). CAS PubMed PubMed Central Google Scholar * Zollner, S. & von Haeseler, A. A coalescent approach
to study linkage disequilibrium between single-nucleotide polymorphisms. _Am. J. Hum. Genet._ 66, 615–628 (2000). CAS PubMed PubMed Central Google Scholar * Nordborg, M. & Tavare,
S. Linkage disequilibrium: what history has to tell us. _Trends Genet._ 18, 83–90 (2002). A CAREFUL ATTEMPT AT DISCUSSING THE EFFECTS OF POPULATION HISTORY ON LD IN A GENEALOGICAL FRAMEWORK.
CAS PubMed Google Scholar * Stumpf, M. P. H. & Goldstein, D. B. Genealogical and evolutionary inference with the human Y chromosome. _Science_ 291, 1738–1742 (2001). CAS PubMed
Google Scholar * Donnelly, P. & Tavare, S. Coalescents and genealogical structure under neutrality. _Annu. Rev. Genet._ 29, 401–421 (1995). CAS PubMed Google Scholar * Nordborg, M.
in _Handbook of Statistical Genetics_ (eds Balding, D. J. M. B. & Cannings, C.) 179–212 (Wiley, Chichester, 2000). A MODERN EXPOSITION OF THE COALESCENT AND ITS APPLICATION IN MODERN
POPULATION GENETICS. Google Scholar * Hudson, R. R. in _Oxford Surveys in Evolutionary Biology_ (ed. Futuyama, D. J. A.) 1–43 (Oxford University Press, Oxford, 1990). Google Scholar *
Tavare, S. A genealogical view of some stochastic-models in population-genetics. _Stochastic Processes and their Applications Abstr._ 19, 10 (1985). Google Scholar * Tavare, S., Balding, D.
J., Griffiths, R. C. & Donnelly, P. Inferring coalescence times from DNA sequence data. _Genetics_ 145, 505–518 (1997). CAS PubMed PubMed Central Google Scholar * Stephens, M. in
_Handbook of Statistical Genetics_ (eds Balding, D. J. M. B. & Cannings, C.) 213–238 (Wiley, Chichester, 2001). A DETAILED AND HIGHLY ACCESSIBLE ACCOUNT OF STATISTICAL INFERENCE IN
POPULATION GENETICS USING THE COALESCENT. Google Scholar * Griffiths, R. C. & Marjoram, P. Ancestral inference from samples of DNA sequences with recombination. _J. Comput. Biol._ 3,
479–502 (1996). CAS PubMed Google Scholar * Hudson, R. R. & Kaplan, N. L. The coalescent process in models with selection and recombination. _Genetics_ 120, 831–840 (1988). CAS
PubMed PubMed Central Google Scholar * Wiuf, C. & Hein, J. The ancestry of a sample of sequences subject to recombination. _Genetics_ 151, 1217–1228 (1999). CAS PubMed PubMed
Central Google Scholar * Wiuf, C. & Hein, J. Recombination as a point process along sequences. _Theor. Popul. Biol._ 55, 248–259 (1999). CAS PubMed Google Scholar * Kuhner, M. K.,
Beerli, P., Yamato, J. & Felsenstein, J. Usefulness of single nucleotide polymorphism data for estimating population parameters. _Genetics_ 156, 439–447 (2000). CAS PubMed PubMed
Central Google Scholar * Weir, B. S. Inferences about linkage disequilibrium. _Biometrics_ 35, 235–254 (1979). CAS PubMed Google Scholar * Myers, S. R. & Griffiths, R. C. Bounds on
the minimum number of recombination events in a sample history. _Genetics_ 163, 375–394 (2003). CAS PubMed PubMed Central Google Scholar * Wiuf, C. On the minimum number of topologies
explaining a sample of DNA sequences. _Theor. Popul. Biol._ 62, 357–363 (2002). PubMed Google Scholar * Posada, D. & Crandall, K. A. Evaluation of methods for detecting recombination
from DNA sequences: computer simulations. _Proc. Natl Acad. Sci. USA_ 98, 13757–13762 (2001). CAS PubMed PubMed Central Google Scholar * Wiuf, C., Christensen, T. & Hein, J. A
simulation study of the reliability of recombination detection methods. _Mol. Biol. Evol._ 18, 1929–1939 (2001). CAS PubMed Google Scholar * McVean, G. A. A genealogical interpretation of
linkage disequilibrium. _Genetics_ 162, 987–991 (2002). THIS PAPER DISCUSSES LD IN A GENEALOGICAL FRAMEWORK AND SHOWS HOW FEATURES OF THE GENEALOGY ARE CONNECTED TO LD SUMMARY STATISTICS.
PubMed PubMed Central Google Scholar * Myers, S. _The Detection of Recombination Events Using DNA Sequence Data_. Thesis, Univ. Oxford (2003). Google Scholar * Wiuf, C. & Hein, J. On
the number of ancestors to a DNA sequence. _Genetics_ 147, 1459–1468 (1997). CAS PubMed PubMed Central Google Scholar * Kingman, J. F. C. The coalescent. _Stochastic Processes and their
Applications_ 13, 235–248 (1982). Google Scholar * Rosenberg, N. A. & Nordborg, M. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. _Nature Rev. Genet._
3, 380–390 (2002). CAS PubMed Google Scholar * Wiuf, C. & Posada, D. A coalescent model of recombination hotspots. _Genetics_ 164, 407–417 (2003). PubMed PubMed Central Google
Scholar * Cavalli-Sforza, L. L., Mennazzi, P. & Piazza, A. _The History and Geography of Human Genes_ (Princeton Univ. Press, Princeton, 1996). Google Scholar * Rannala, B. Gene
genealogy in a population of variable size. _Heredity_ 78, 417–423 (1997). PubMed Google Scholar * Wakeley, J. & Lessard, S. Theory of the effects of population structure and sampling
on patterns of linkage disequilibrium applied to genomic data from humans. _Genetics_ 164, 1043–1053 (2003). CAS PubMed PubMed Central Google Scholar * Nordborg, M. Linkage
disequilibrium, gene trees and selfing: an ancestral recombination graph with selfing. _Genetics_ 154, 923–929 (2000). CAS PubMed PubMed Central Google Scholar * Hey, J. & Wakeley,
J. A coalescent estimator of the population recombination rate. _Genetics_ 145, 833–846 (1997). CAS PubMed PubMed Central Google Scholar * Wall, J. D. A comparison of estimators of the
population recombination rate. _Mol. Biol. Evol._ 17, 156–163 (2000). CAS PubMed Google Scholar * Cox, D. R. & Hinkley, D. V. _Theoretical Statistics_ (Chapman and Hall, London,
1974). Google Scholar * Casella, G. & Berger, R. L. _Statistical Inference_ (Duxbury, Pacific Grove, 2002). Google Scholar * Steel, M. & Penny, D. Parsimony, likelihood, and the
role of models in molecular phylogenetics. _Mol. Biol. Evol._ 17, 839–850 (2000). CAS PubMed Google Scholar * Reich, D. E. et al. Linkage disequilibrium in the human genome. _Nature_ 411,
199–204 (2001). CAS PubMed Google Scholar * Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. _Science_ 296, 2225–2229 (2002). AN INFLUENTIAL EXPERIMENTAL
STUDY THAT INVESTIGATES THE PRESENCE OF HAPLOTYPE BLOCKS IN DIFFERENT POPULATIONS ACROSS 52 GENOMIC REGIONS. CAS PubMed Google Scholar * Jeffreys, A. J., Kauppi, L. & Neumann, R.
Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. _Nature Genet._ 29, 217–222 (2001). A BEAUTIFUL EXPERIMENTAL STUDY OF RECOMBINATION
HOTSPOTS AND ASSOCIATED PATTERNS OF LD IN A HUMAN POPULATION SAMPLE. CAS PubMed Google Scholar * Clark, A. G. et al. Haplotype structure and population genetic inferences from
nucleotide-sequence variation in human lipoprotein lipase. _Am. J. Hum. Genet._ 63, 595–612 (1998). CAS PubMed PubMed Central Google Scholar * Hudson, R. R. Two-locus sampling
distributions and their application. _Genetics_ 159, 1805–1817 (2001). THE FIRST STUDY TO ESTIMATE RECOMBINATION RATES USING PAIRWISE APPROXIMATION TO THE LIKELIHOOD. CAS PubMed PubMed
Central Google Scholar * McVean, G., Awadalla, P. & Fearnhead, P. A coalescent-based method for detecting and estimating recombination from gene sequences. _Genetics_ 160, 1231–1241
(2002). CAS PubMed PubMed Central Google Scholar * Li, N. & Stephens, M. A new multilocus model for linkage disequilibrium, with application to exploring variations in recombination
rate. _Genetics_ (in the press). * Fearnhead, P. Consistency of estimators of the population-scaled recombination rate. _Theor. Popul. Biol._ 64, 67–79 (2003). PubMed Google Scholar *
Ardlie, K. G., Kruglyak, L. & Seielstad, M. Patterns of linkage disequilibrium in the human genome. _Nature Rev. Genet._ 3, 299–309 (2002). CAS PubMed Google Scholar * Stumpf, M. P.
& Goldstein, D. B. Demography, recombination hotspot intensity, and the block structure of linkage disequilibrium. _Curr. Biol._ 13, 1–8 (2003). CAS PubMed Google Scholar * Stumpf, M.
P. Haplotype diversity and the block structure of linkage disequilibrium. _Trends Genet._ 18, 226–228 (2002). CAS PubMed Google Scholar * Reich, D. E. et al. Human genome sequence
variation and the influence of gene history, mutation and recombination. _Nature Genet._ 32, 135–142 (2002). CAS PubMed Google Scholar * Frisse, L. et al. Gene conversion and different
population histories may explain the contrast between polymorphism and linkage disequilibrium levels. _Am. J. Hum. Genet._ 69, 831–843 (2001). CAS PubMed PubMed Central Google Scholar *
Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. _Nature_ 419, 832–837 (2002). CAS PubMed Google Scholar * Przeworski, M. & Wall,
J. D. Why is there so little intragenic linkage disequilibrium in humans? _Genet. Res._ 77, 143–151 (2001). CAS PubMed Google Scholar * Griffiths, R. C. & Tavare, S. Ancestral
inference in population-genetics. _Stat. Sci._ 9, 307–319 (1994). Google Scholar * Smith, J. M., Smith, N. H., O'Rourke, M. & Spratt, B. G. How clonal are bacteria? _Proc. Natl
Acad. Sci. USA_ 90, 4384–4388 (1993). CAS PubMed PubMed Central Google Scholar * Smith, J. M. The detection and measurement of recombination from sequence data. _Genetics_ 153, 1021–1027
(1999). CAS PubMed PubMed Central Google Scholar * Holmes, E. C. On the origin and evolution of the human immunodeficiency virus (HIV). _Biol. Rev_ 76, 239–254 (2001). CAS PubMed
Google Scholar * Fu, Y. X. Estimating mutation rate and generation time from longitudinal samples of DNA sequences. _Mol. Biol. Evol._ 18, 620–626 (2001). CAS PubMed Google Scholar *
Awadalla, P. The evolutionary genomics of pathogen recombination. _Nature Rev. Genet._ 4, 50–60 (2003). CAS PubMed Google Scholar * Drummond, A. J., Nicholls, G. K., Rodrigo, A. G. &
Solomon, W. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. _Genetics_ 161, 1307–1320 (2002). CAS PubMed PubMed
Central Google Scholar * Grassly, N. C. & Holmes, E. C. A likelihood method for the detection of selection and recombination using nucleotide sequences. _Mol. Biol. Evol._ 14, 239–247
(1997). CAS PubMed Google Scholar * Hey, J. & Harris, E. Population bottlenecks and patterns of human polymorphism. _Mol. Biol. Evol._ 16, 1423–1426 (1999). CAS PubMed Google
Scholar * Nordborg, M. & Donnelly, P. The coalescent process with selfing. _Genetics_ 146, 1185–1195 (1997). CAS PubMed PubMed Central Google Scholar * Przeworski, M. The signature
of positive selection at randomly chosen loci. _Genetics_ 160, 1179–1189 (2002). PubMed PubMed Central Google Scholar * Posada, D. & Wiuf, C. Simulating haplotype blocks in the human
genome. _Bioinformatics_ 19, 289–290 (2003). CAS PubMed Google Scholar * Gillespie, J. H. _Population Genetics: a Concise Guide_ (Johns Hopkins Univ. Press, Baltimore, 1998). Google
Scholar * Wall, J. D. Recombination and the power of statistical tests of neutrality. _Genet. Res._ 74, 65–79 (1999). Google Scholar * Brown, C. J., Garner, E. C., Dunker, A. K. &
Joyce, P. The power to detect recombination using the coalescent. _Mol. Biol. Evol._ 18, 1421–1424 (2001). CAS PubMed Google Scholar * Gillespie, J. H. _The Causes of Molecular Evolution_
(Oxford Univ. Press, Oxford, 1991). Google Scholar * Przeworski, M., Charlesworth, B. & Wall, J. D. Genealogies and weak purifying selection. _Mol. Biol. Evol._ 16, 246–252 (1999). CAS
PubMed Google Scholar * Johnson, G. C. et al. Haplotype tagging for the identification of common disease genes. _Nature Genet._ 29, 233–237 (2001). THIS PAPER PIONEERED THE CONCEPT OF
HAPLOTYPE TAGGING TO DESCRIBE GENETIC VARIATION. CAS PubMed Google Scholar * Wall, J. D. & Pritchard, J. K. Assessing the performance of haplotype block models of linkage
disequilibrium. _Am. J. Hum. Genet._ 73, 502–515 (2003). CAS PubMed PubMed Central Google Scholar * Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the
human genome. _Nature Rev. Genet._ 4, 587–597 (2003). CAS PubMed Google Scholar * Anderson, E. C. & Novembre, J. Finding haplotype block boundaries by using the
minimum-description-length principle. _Am. J. Hum. Genet._ 73, 336–354 (2003). CAS PubMed PubMed Central Google Scholar * Koivisto, M. et al. in _Pac. Symp. Biocomput. 2003_ (eds Altman,
R. B., Dukner, A. K., Hunter, L., Jung, T. A. & Klein, T. E.) 502–513 (World Scientific, Singapore, 2002). Google Scholar * Liu, J. S. _Monte Carlo Strategies in Scientific Computing_
(Springer, New York, 2003). Google Scholar * Nielsen, R. Estimation of population parameters and recombination rates from single nucleotide polymorphisms. _Genetics_ 154, 931–942 (2000).
CAS PubMed PubMed Central Google Scholar * Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. _Am. J. Hum. Genet._
68, 978–989 (2001). CAS PubMed PubMed Central Google Scholar * Watterson, G. A. On the number of segregating sites in genetic models without recombination. _Theor. Popul. Biol._ 7,
256–276 (1975). CAS PubMed Google Scholar Download references ACKNOWLEDGEMENTS We thank A. Jeffreys and P. Donnelly for useful discussions, and C. Wiuf, M. Slatkin, L. Cardon, G. Coop, C.
Spencer and three anonymous referees for their helpful comments on earlier drafts of this manuscript. Generous support through research fellowships from the Wellcome Trust (to M.P.H.S) and
the Royal Society (to G.A.T.M.) is gratefully acknowledged. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biological Sciences, Imperial College of Science, Technology and
Medicine, London, SW7 2AY, UK Michael P. H. Stumpf * Department of Statistics, University of Oxford, Oxford, OX1 3TG, UK Gilean A. T. McVean Authors * Michael P. H. Stumpf View author
publications You can also search for this author inPubMed Google Scholar * Gilean A. T. McVean View author publications You can also search for this author inPubMed Google Scholar ETHICS
DECLARATIONS COMPETING INTERESTS The authors declare that they have no competing financial interests. RELATED LINKS RELATED LINKS DATABASES LOCUSLINK _LTA_ _LTB_ FURTHER INFORMATION Michael
Stumpf's laboratory Gilean McVean's laboratory _LTA_ and _LTB_ genotypes SHOX genotypes Data of Gabriel _et al_. PHASE software GLOSSARY * LINKAGE DISEQUILIBRIUM (LD). A measure of
genetic associations between alleles at different loci, which indicates whether allelic or marker associations on the same chromosome are more common than expected. * MARGINAL GENEALOGY The
part of a genealogical graph that corresponds to a single locus or stretch of DNA that is inherited without recombination. * MARKER ASCERTAINMENT The process by which new genetic markers
are obtained — for example, by re-sequencing a subset of chromosomes in a population sample. If those markers are population-specific then inferences that are based on them in other
populations might be biased through so-called ascertainment bias. * HAPLOTYPE The combination of alleles or genetic markers that is found on a single chromosome of a given individual. *
INFINITE SITES MUTATION MODEL A model that assumes that there are an infinite number of nucleotide sites and consequently that each new mutation occurs at a different locus. * FOUR-GAMETE
TEST (FGT). If all four possible gametes are observed for two bi-allelic loci then this test infers that a recombination event must have occurred between them (under an infinite sites
mutation model). * PER-GENERATION RECOMBINATION RATE (_r_). The probability of a recombination event occurring during meiosis. * EFFECTIVE POPULATION SIZE (_N_e). The size of the ideal
constant-size population, in which the effects of random drift would be the same as those seen in the actual population. * POPULATION RECOMBINATION RATE (_ρ_). Population-genetic parameters
are generally proportional to the product of a molecular per-generation rate (for example, the per-generation recombination rate, _r_) and the effective population size (_N_e). The
population recombination rate has therefore often been defined as _ρ_ = 4_N_er. * CENSUS POPULATION SIZE Actual population size (total number of individuals) as compared to the theoretical
effective population size. * ESTIMATOR A statistical method that is used to obtain a numerical estimate for a quantity of interest, such as a model parameter. * SUMMARY STATISTIC A
statistical function that summarizes complex data in terms of simple numbers (examples include the mean and variance). * VARIANCE A statistic that quantifies the dispersion of data about the
mean. * LIKELIHOOD SURFACE The likelihood of a parameter is proportional to the probability of obtaining the observed data under a parametric model given the model parameter. The likelihood
surface is a function/curve that specifies how well the data agrees with the predictions made by a parametric model for different values of the model parameter. * MARKOV CHAIN MONTE CARLO A
computational technique for the efficient numerical calculation of likelihoods. * RECURSION A repeated mathematical operation that is often used to aid numerical analysis. * GENE CONVERSION
The non-reciprocal transfer of genetic information between homologous genes as a consequence of mismatch repair after heteroduplex formation. * PHASING Determining the haplotype phase (the
arrangement of alleles at two loci on homologous chromosomes) from genotype data using statistical methods. * ASSOCIATION STUDIES A set of methods that are used to correlate polymorphisms in
genotype to polymorphisms in phenotype in populations. * MODEL MIS-SPECIFICATION The consequence of using a parametric model in the inference process that is different from the true model
under which the data was generated. * CPG ISLANDS Genome sequences of >200 base pairs that have high G+C content and CpG frequency. * TEMPLATE SWITCHING The process by which RNA templates
are switched between viral genomes during reverse transcription. * BOTTLENECK A temporary marked reduction in population size. * SELECTIVE SWEEP The process by which positive selection for
a mutation eliminates neutral variation at linked sites. * HARDY–WEINBERG EQUILIBRIUM A state in which the frequency of each diploid genotype at a locus equals that expected from the random
union of alleles. * HAPLOTYPE-BASED APPROACH An approach to association studies in which the co-inheritance of phenotypes and haplotypes — as opposed to single markers — is statistically
analysed. * TAGGING APPROACH Identifying sub-sets of markers ('tags') that describe patterns of association or haplotypes among larger marker sets. * MINIMUM-DESCRIPTION LENGTH
APPROACHES A concept from information theory, in which all of the information contained in a system (for example, a sample of DNA sequences) is described in the most compact form possible.
RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Stumpf, M., McVean, G. Estimating recombination rates from population-genetic data. _Nat Rev Genet_ 4,
959–968 (2003). https://doi.org/10.1038/nrg1227 Download citation * Issue Date: 01 December 2003 * DOI: https://doi.org/10.1038/nrg1227 SHARE THIS ARTICLE Anyone you share the following link
with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt
content-sharing initiative