The light and dark sides of intestinal intraepithelial lymphocytes

The light and dark sides of intestinal intraepithelial lymphocytes

Play all audios:

Loading...

KEY POINTS * Intraepithelial lymphocytes (IELs) that reside within the epithelium of the intestine form one of the main branches of the immune system. * IELs are almost exclusively


antigen-experienced T cells that are heterogeneous in phenotype, ontogeny, antigen specificity and function. * IELs consist of two main subtypes. The natural IELs consist of T cell


receptor-αβ (TCRαβ)+ T cells and TCRγδ+ T cells that express CD8αα or are negative for both CD4 and CD8. These IELs acquire their activated and functional phenotype, in part, during


self-agonist antigen-based selection in the thymus. Induced IELs consist of CD4+ and CD8αβ+ TCRαβ+ T cells that often co-express CD8αα. They are the progeny of naive T cells that are


conventionally selected in the thymus and acquire their activated phenotype and functional differentiation post-thymically in response to cognate antigens encountered in the periphery. *


IELs serve unique and dual functions. Their 'light side' is their ability to preserve the integrity of the epithelium and prevent damage induced by invading pathogens (protective


immunity) or induced by excessive or aberrant inflammatory immune responses. * IELs also have a 'dark side': as they are located within the fragile, single cell layer of the


epithelium and possess potent cytotoxic effector machinery, they can target the epithelium in a destructive way. Consequently, IELs may drive immunopathological responses in chronic


inflammatory diseases, such as inflammatory bowel disease and coeliac disease. ABSTRACT The intraepithelial lymphocytes (IELs) that reside within the epithelium of the intestine form one of


the main branches of the immune system. As IELs are located at this critical interface between the core of the body and the outside environment, they must balance protective immunity with an


ability to safeguard the integrity of the epithelial barrier: failure to do so would compromise homeostasis of the organism. In this Review, we address how the unique development and


functions of intestinal IELs allow them to achieve this balance. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution


ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article *


Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn


about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS UNCONVENTIONAL IMMUNE CELLS IN THE GUT MUCOSAL BARRIER: REGULATION BY


SYMBIOTIC MICROBIOTA Article Open access 11 September 2023 GROUP 3 INNATE LYMPHOID CELLS IN INTESTINAL HEALTH AND DISEASE Article 11 March 2024 BUTYROPHILIN-LIKE 2 REGULATES SITE-SPECIFIC


ADAPTATIONS OF INTESTINAL ΓΔ INTRAEPITHELIAL LYMPHOCYTES Article Open access 26 July 2021 REFERENCES * Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with


the intestinal microbiota. _Nature Rev. Immunol._ 10, 159–169 (2010). Article  CAS  Google Scholar  * Darlington, D. & Rogers, A. W. Epithelial lymphocytes in the small intestine of the


mouse. _J. Anat._ 100, 813–830 (1966). CAS  PubMed  PubMed Central  Google Scholar  * Bonneville, M. et al. Intestinal intraepithelial lymphocytes are a distinct set of γδ T cells. _Nature_


336, 479–481 (1988). Article  CAS  PubMed  Google Scholar  * Goodman, T. & Lefrancois, L. Expression of the γ-δ T-cell receptor on intestinal CD8+ intraepithelial lymphocytes. _Nature_


333, 855–858 (1988). REFERENCES 3 AND 4 DESCRIBE THE HIGH FREQUENCY OF TCRΓΔ-EXPRESSING T CELLS AMONG IELS. Article  CAS  PubMed  Google Scholar  * Guy-Grand, D. et al. Two gut


intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. _J. Exp. Med._ 173, 471–481 (1991). Article  CAS  PubMed


  Google Scholar  * Cheroutre, H. Starting at the beginning: new perspectives on the biology of mucosal T cells. _Annu. Rev. Immunol._ 22, 217–246 (2004). Article  CAS  PubMed  Google


Scholar  * Sugahara, S. et al. Extrathymic derivation of gut lymphocytes in parabiotic mice. _Immunology_ 96, 57–65 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Suzuki, S.


et al. Low level of mixing of partner cells seen in extrathymic T cells in the liver and intestine of parabiotic mice: its biological implication. _Eur. J. Immunol._ 28, 3719–3729 (1998).


Article  CAS  PubMed  Google Scholar  * Shires, J., Theodoridis, E. & Hayday, A. C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of


gene expression (SAGE). _Immunity_ 15, 419–434 (2001). ONE OF THE FIRST STUDIES TO DESCRIBE THE CYTOTOXIC FUNCTION OF IELS AGAINST VIRUS-INFECTED INTESTINAL EPITHELIAL CELLS. Article  CAS 


PubMed  Google Scholar  * Offit, P. A. & Dudzik, K. I. Rotavirus-specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection. _J. Virol._ 63,


3507–3512 (1989). CAS  PubMed  PubMed Central  Google Scholar  * Tang, F. et al. Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15. _J. Exp.


Med._ 206, 707–719 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chardes, T., Buzoni-Gatel, D., Lepage, A., Bernard, F. & Bout, D. _Toxoplasma gondii_ oral infection


induces specific cytotoxic CD8α/β+ Thy-1+ gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. _J. Immunol._ 153, 4596–4603 (1994). CAS  PubMed  Google Scholar  *


Muller, S., Buhler-Jungo, M. & Mueller, C. Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during an acute virus infection. _J. Immunol._ 164, 1986–1994


(2000). Article  CAS  PubMed  Google Scholar  * Roberts, A. I., O'Connell, S. M., Biancone, L., Brolin, R. E. & Ebert, E. C. Spontaneous cytotoxicity of intestinal intraepithelial


lymphocytes: clues to the mechanism. _Clin. Exp. Immunol._ 94, 527–532 (1993). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ebert, E. C. & Roberts, A. I. Lymphokine-activated


killing by human intestinal lymphocytes. _Cell. Immunol._ 146, 107–116 (1993). Article  CAS  PubMed  Google Scholar  * Guy-Grand, D., Malassis-Seris, M., Briottet, C. & Vassalli, P.


Cytotoxic differentiation of mouse gut thymodependent and independent intraepithelial T lymphocytes is induced locally. Correlation between functional assays, presence of perforin and


granzyme transcripts, and cytoplasmic granules. _J. Exp. Med._ 173, 1549–1552 (1991). Article  CAS  PubMed  Google Scholar  * Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in


thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. _Nature Immunol._ 5, 597–605 (2004). Article  CAS  Google Scholar  * Denning, T. L.


et al. Mouse TCRαβ+CD8αα intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. _J. Immunol._ 178, 4230–4239 (2007). REFERENCES


17 AND 18 SUGGEST THAT CD8ΑΑ+TCRΑΒ+ IEL PRECURSOR CELLS ACQUIRE FUNCTIONAL SPECIALIZATION DURING THEIR DIFFERENTIATION IN THE THYMUS. THEIR UNIQUE FUNCTIONAL AND PHENOTYPIC DIFFERENTIATION


IS REFLECTED IN THE GENE SIGNATURE THAT THEY DISPLAY AT THE MATURE STAGE AS CD8ΑΑ+TCRΑΒ+ IELS. Article  CAS  PubMed  Google Scholar  * Bhagat, G. et al. Small intestinal CD8+TCRγδ+NKG2A+


intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. _J. Clin. Invest._ 118, 281–293 (2008). Article  CAS  PubMed  Google Scholar  * Zhou, R.,


Wei, H., Sun, R., Zhang, J. & Tian, Z. NKG2D recognition mediates Toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice. _Proc. Natl


Acad. Sci. USA_ 104, 7512–7515 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cepek, K. L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin


and the αEβ7 integrin. _Nature_ 372, 190–193 (1994). Article  CAS  PubMed  Google Scholar  * Kilshaw, P. J. & Murant, S. J. A new surface antigen on intraepithelial lymphocytes in the


intestine. _Eur. J. Immunol._ 20, 2201–2207 (1990). Article  CAS  PubMed  Google Scholar  * Leishman, A. J. et al. Precursors of functional MHC class I- or class II-restricted CD8αα+ T cells


are positively selected in the thymus by agonist self-peptides. _Immunity_ 16, 355–364 (2002). THE FIRST REPORT TO DESCRIBE THE THYMIC AGONIST SELECTION PATHWAY FOR MHC CLASS-I- AND MHC


CLASS-II-RESTRICTED IELS USING TCR TRANSGENIC MODELS. Article  CAS  PubMed  Google Scholar  * Gangadharan, D. et al. Identification of pre- and postselection TCRαβ+ intraepithelial


lymphocyte precursors in the thymus. _Immunity_ 25, 631–641 (2006). Article  CAS  PubMed  Google Scholar  * Madakamutil, L. T. et al. CD8αα-mediated survival and differentiation of CD8


memory T cell precursors. _Science_ 304, 590–593 (2004). Article  CAS  PubMed  Google Scholar  * Hershberg, R. et al. Expression of the thymus leukemia antigen in mouse intestinal


epithelium. _Proc. Natl Acad. Sci. USA_ 87, 9727–9731 (1990). Article  CAS  PubMed  PubMed Central  Google Scholar  * Leishman, A. J. et al. T cell responses modulated through interaction


between CD8αα and the nonclassical MHC class I molecule, TL. _Science_ 294, 1936–1939 (2001). IDENTIFIED TLA AS A HIGH-AFFINITY LIGAND FOR CD8ΑΑ AND SHOWED FUNCTIONAL EFFECTS OF THE


INTERACTION BETWEEN TLA AND CD8ΑΑ HOMODIMERS. Article  CAS  PubMed  Google Scholar  * Lefrancois, L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. _J.


Immunol._ 147, 1746–1751 (1991). CAS  PubMed  Google Scholar  * Mosley, R. L., Styre, D. & Klein, J. R. CD4+CD8+ murine intestinal intraepithelial lymphocytes. _Int. Immunol._ 2, 361–365


(1990). Article  CAS  PubMed  Google Scholar  * Ohteki, T. & MacDonald, H. R. Expression of the CD28 costimulatory molecule on subsets of murine intestinal intraepithelial lymphocytes


correlates with lineage and responsiveness. _Eur. J. Immunol._ 23, 1251–1255 (1993). Article  CAS  PubMed  Google Scholar  * Van Houten, N., Mixter, P. F., Wolfe, J. & Budd, R. C. CD2


expression on murine intestinal intraepithelial lymphocytes is bimodal and defines proliferative capacity. _Int. Immunol._ 5, 665–672 (1993). Article  CAS  PubMed  Google Scholar  * Lin, T.


et al. CD3-CD8+ intestinal intraepithelial lymphocytes (IEL) and the extrathymic development of IEL. _Eur. J. Immunol._ 24, 1080–1087 (1994). Article  CAS  PubMed  Google Scholar  * Wang,


R., Wang-Zhu, Y. & Grey, H. Interactions between double positive thymocytes and high affinity ligands presented by cortical epithelial cells generate double negative thymocytes with T


cell regulatory activity. _Proc. Natl Acad. Sci. USA_ 99, 2181–2186 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guy-Grand, D., Cuenod-Jabri, B., Malassis-Seris, M., Selz,


F. & Vassalli, P. Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. _Eur. J. Immunol._ 26, 2248–2256


(1996). Article  CAS  PubMed  Google Scholar  * Huleatt, J. W. & Lefrancois, L. Antigen-driven induction of CD11c on intestinal intraepithelial lymphocytes and CD8+ T cells _in vivo_.


_J. Immunol._ 154, 5684–5693 (1995). CAS  PubMed  Google Scholar  * Guy-Grand, D. et al. Different use of T cell receptor transducing modules in two populations of gut intraepithelial


lymphocytes are related to distinct pathways of T cell differentiation. _J. Exp. Med._ 180, 673–679 (1994). Article  CAS  PubMed  Google Scholar  * Ohno, H., Ono, S., Hirayama, N., Shimada,


S. & Saito, T. Preferential usage of the Fc receptor γ chain in the T cell antigen receptor complex by γ/δ T cells localized in epithelia. _J. Exp. Med._ 179, 365–369 (1994). Article 


CAS  PubMed  Google Scholar  * Park, S. Y. et al. Differential contribution of the FcR γ chain to the surface expression of the T cell receptor among T cells localized in epithelia: analysis


of FcR γ-deficient mice. _Eur. J. Immunol._ 25, 2107–2110 (1995). Article  CAS  PubMed  Google Scholar  * Arstila, T. et al. Identical T cell clones are located within the mouse gut


epithelium and lamina propia and circulate in the thoracic duct lymph. _J. Exp. Med._ 191, 823–834 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lefrancois, L. &


Masopust, D. T cell immunity in lymphoid and non-lymphoid tissues. _Curr. Opin. Immunol._ 14, 503–508 (2002). Article  CAS  PubMed  Google Scholar  * Mowat, A. M. Anatomical basis of


tolerance and immunity to intestinal antigens. _Nature Rev. Immunol._ 3, 331–341 (2003). Article  CAS  Google Scholar  * Neutra, M. R., Mantis, N. J. & Kraehenbuhl, J. P. Collaboration


of epithelial cells with organized mucosal lymphoid tissues. _Nature Immunol._ 2, 1004–1009 (2001). Article  CAS  Google Scholar  * Cheroutre, H. & Lambolez, F. Doubting the TCR


coreceptor function of CD8αα. _Immunity_ 28, 149–159 (2008). Article  CAS  PubMed  Google Scholar  * Regnault, A., Cumano, A., Vassalli, P., Guy-Grand, D. & Kourilsky, P. Oligoclonal


repertoire of the CD8αα and the CD8αβ TCR-α/β murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. _J. Exp. Med._ 180, 1345–1358 (1994). THIS STUDY


DESCRIBES THE OLIGOCLONAL REPERTOIRE OF TCRΑΒ+ IELS IN MICE. Article  CAS  PubMed  Google Scholar  * Cheroutre, H. & Lambolez, F. The thymus chapter in the life of gut-specific intra


epithelial lymphocytes. _Curr._ _Opin. Immunol._ 20, 185–191 (2008). Article  CAS  Google Scholar  * Ishikawa, H. et al. Curriculum vitae of intestinal intraepithelial T cells: their


developmental and behavioral characteristics. _Immunol. Rev._ 215, 154–165 (2007). Article  CAS  PubMed  Google Scholar  * Lambolez, F., Kronenberg, M. & Cheroutre, H. Thymic


differentiation of TCRαβ+ CD8αα+ IELs. _Immunol. Rev._ 215, 178–188 (2007). Article  CAS  PubMed  Google Scholar  * Rocha, B. The extrathymic T-cell differentiation in the murine gut.


_Immunol. Rev._ 215, 166–177 (2007). Article  CAS  PubMed  Google Scholar  * Eberl, G. & Littman, D. R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells.


_Science_ 305, 248–251 (2004). Article  CAS  PubMed  Google Scholar  * Cheroutre, H., Mucida, D. & Lambolez, F. The importance of being earnestly selfish. _Nature Immunol._ 10, 1047–1049


(2009). Article  CAS  Google Scholar  * Hogquist, K. A., Baldwin, T. A. & Jameson, S. C. Central tolerance: learning self-control in the thymus. _Nature Rev. Immunol._ 5, 772–782


(2005). Article  CAS  Google Scholar  * Jensen, K. D. et al. Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make


interferon γ. _Immunity_ 29, 90–100 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Carpenter, A. C. & Bosselut, R. Decision checkpoints in the thymus. _Nature Immunol._


11, 666–673 (2010). Article  CAS  Google Scholar  * Collins, A., Littman, D. R. & Taniuchi, I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. _Nature


Rev. Immunol._ 9, 106–115 (2009). Article  CAS  Google Scholar  * Singer, A., Adoro, S. & Park, J. H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus


CD8-lineage choice. _Nature Rev. Immunol._ 8, 788–801 (2008). Article  CAS  Google Scholar  * Manzano, M., Abadia-Molina, A. C., Garcia-Olivares, E., Gil, A. & Rueda, R. Absolute counts


and distribution of lymphocyte subsets in small intestine of BALB/c mice change during weaning. _J. Nutr._ 132, 2757–2762 (2002). Article  CAS  PubMed  Google Scholar  * Helgeland, L.,


Brandtzaeg, P., Rolstad, B. & Vaage, J. T. Sequential development of intraepithelial γδ and αβ T lymphocytes expressing CD8αβ in neonatal rat intestine: requirement for the thymus.


_Immunology_ 92, 447–456 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Steege, J. C., Buurman, W. A. & Forget, P. P. The neonatal development of intraepithelial and


lamina propria lymphocytes in the murine small intestine. _Dev. Immunol._ 5, 121–128 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Umesaki, Y., Setoyama, H., Matsumoto, S.


& Okada, Y. Expansion of αβ T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. _Immunology_


79, 32–37 (1993). CAS  PubMed  PubMed Central  Google Scholar  * Latthe, M., Terry, L. & MacDonald, T. T. High frequency of CD8αα homodimer-bearing T cells in human fetal intestine.


_Eur. J. Immunol._ 24, 1703–1705 (1994). Article  CAS  PubMed  Google Scholar  * Vaz, N. M. & Faria, A. M. C. _Guia Incompleto de Imunobiologia: Imunologia como se o Organismo


Importasse_. (COPMED, Belo Horizonte, 1993). Google Scholar  * Mota-Santos, T. et al. Divergency in the specificity of the induction and maintenance of neonatal suppression. _Eur. J.


Immunol._ 20, 1717–1721 (1990). REFERENCES 59 AND 62 DESCRIBE THE RELEVANCE OF MICROBIAL COLONIZATION FOR THE DEVELOPMENT OF DIFFERENT IEL POPULATIONS. Article  CAS  PubMed  Google Scholar 


* Pereira, P. et al. Autonomous activation of B and T cells in antigen-free mice. _Eur. J. Immunol._ 16, 685–688 (1986). Article  CAS  PubMed  Google Scholar  * Hashimoto, K., Handa, H.,


Umehara, K. & Sasaki, S. Germfree mice reared on an “antigen-free” diet. _Lab. Anim. Sci._ 28, 38–45 (1978). CAS  PubMed  Google Scholar  * Menezes, J. S. et al. Stimulation by food


proteins plays a critical role in the maturation of the immune system. _Int. Immunol._ 15, 447–455 (2003). Article  CAS  PubMed  Google Scholar  * Staton, T. L. et al. CD8+ recent thymic


emigrants home to and efficiently repopulate the small intestine epithelium. _Nature Immunol._ 7, 482–488 (2006). Article  CAS  Google Scholar  * Grueter, B. et al. Runx3 regulates integrin


αE/CD103 and CD4 expression during development of CD4-/CD8+ T cells. _J. Immunol._ 175, 1694–1705 (2005). Article  CAS  PubMed  Google Scholar  * Staton, T. L., Johnston, B., Butcher, E. C.


& Campbell, D. J. Murine CD8+ recent thymic emigrants are αE integrin-positive and CC chemokine ligand 25 responsive. _J. Immunol._ 172, 7282–7288 (2004). Article  CAS  PubMed  Google


Scholar  * Kunisawa, J. et al. Sphingosine 1-phosphate dependence in the regulation of lymphocyte trafficking to the gut epithelium. _J. Exp. Med._ 204, 2335–2348 (2007). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Yu, S., Bruce, D., Froicu, M., Weaver, V. & Cantorna, M. T. Failure of T cell homing, reduced CD4/CD8αα intraepithelial lymphocytes, and


inflammation in the gut of vitamin D receptor KO mice. _Proc. Natl Acad. Sci. USA_ 105, 20834–20839 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Campbell, D. J. &


Butcher, E. C. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. _J. Exp. Med._ 195, 135–141 (2002). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. _J. Exp.


Med._ 206, 3101–3114 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. _Immunity_ 31, 513–525 (2009).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. _J. Exp. Med._ 206, 3115–3130 (2009). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. _Science_ 307, 254–258 (2005). Article 


CAS  PubMed  Google Scholar  * Agace, W. W. T-cell recruitment to the intestinal mucosa. _Trends Immunol._ 29, 514–522 (2008). Article  CAS  PubMed  Google Scholar  * Iwata, M. et al.


Retinoic acid imprints gut-homing specificity on T cells. _Immunity_ 21, 527–538 (2004). Article  CAS  PubMed  Google Scholar  * Mora, J. R. et al. Selective imprinting of gut-homing T cells


by Peyer's patch dendritic cells. _Nature_ 424, 88–93 (2003). REFERENCES 77 AND 78 IDENTIFIED A ROLE FOR RETINOIC ACID-PRODUCING DCS IN PROMOTING T CELL HOMING TO THE INTESTINE.


Article  CAS  PubMed  Google Scholar  * McDermott, M. R. et al. Impaired intestinal localization of mesenteric lymphoblasts associated with vitamin A deficiency and protein-calorie


malnutrition. _Immunology_ 45, 1–5 (1982). CAS  PubMed  PubMed Central  Google Scholar  * Hammerschmidt, S. I. et al. Stromal mesenteric lymph node cells are essential for the generation of


gut-homing T cells _in vivo_. _J. Exp. Med._ 205, 2483–2490 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Edele, F. et al. Cutting edge: instructive role of peripheral


tissue cells in the imprinting of T cell homing receptor patterns. _J. Immunol._ 181, 3745–3749 (2008). Article  CAS  PubMed  Google Scholar  * Johansson-Lindbom, B. & Agace, W. W.


Generation of gut-homing T cells and their localization to the small intestinal mucosa. _Immunol. Rev._ 215, 226–242 (2007). Article  CAS  PubMed  Google Scholar  * El-Asady, R. et al.


TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. _J. Exp. Med._ 201, 1647–1657 (2005).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ericsson, A., Svensson, M., Arya, A. & Agace, W. W. CCL25/CCR9 promotes the induction and function of CD103 on intestinal


intraepithelial lymphocytes. _Eur. J. Immunol._ 34, 2720–2729 (2004). Article  CAS  PubMed  Google Scholar  * Andrew, D. P., Rott, L. S., Kilshaw, P. J. & Butcher, E. C. Distribution of


α4β7 and αEβ7 integrins on thymocytes, intestinal epithelial lymphocytes and peripheral lymphocytes. _Eur. J. Immunol._ 26, 897–905 (1996). Article  CAS  PubMed  Google Scholar  * Poussier,


P., Ning, T., Banerjee, D. & Julius, M. A unique subset of self-specific intraintestinal T cells maintains gut integrity. _J. Exp. Med._ 195, 1491–1497 (2002). DETAILS A PROTECTIVE ROLE


FOR CD8ΑΑ+TCRΑΒ+ IELS IN PREVENTING INFLAMMATION INDUCED BY CONVENTIONAL CD4+ T CELLS IN A MODEL OF INDUCED COLITIS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Kuhl, A. A. et


al. Aggravation of intestinal inflammation by depletion/deficiency of γδ T cells in different types of IBD animal models. _J. Leukoc. Biol._ 81, 168–175 (2007). Article  PubMed  CAS  Google


Scholar  * Mucida, D. & Cheroutre, H. The many face-lifts of CD4 T helper cells. _Adv. Immunol._ 107, 139–152 (2010). Article  CAS  PubMed  Google Scholar  * Roberts, S. J. et al. T-cell


αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. _Proc. Natl Acad. Sci. USA_ 93, 11774–11779 (1996).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Komano, H. et al. Homeostatic regulation of intestinal epithelia by intraepithelial γδ T cells. _Proc. Natl Acad. Sci. USA_ 92,


6147–6151 (1995). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guy-Grand, D., DiSanto, J. P., Henchoz, P., Malassis-Seris, M. & Vassalli, P. Small bowel enteropathy: role of


intraepithelial lymphocytes and of cytokines (IL-12, IFN-γ, TNF) in the induction of epithelial cell death and renewal. _Eur. J. Immunol._ 28, 730–744 (1998). Article  CAS  PubMed  Google


Scholar  * Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial γδ T cells. _Science_ 266, 1253–1255 (1994). REFERENCES 90–92 DESCRIBE PROTECTIVE ROLES


FOR TCRΓΔ+ IELS IN INTESTINAL EPITHELIAL CELL GROWTH AND TURNOVER AND EPITHELIUM HOMEOSTASIS. Article  CAS  PubMed  Google Scholar  * Mengel, J. et al. Anti-γδ T cell antibody blocks the


induction and maintenance of oral tolerance to ovalbumin in mice. _Immunol. Lett._ 48, 97–102 (1995). Article  CAS  PubMed  Google Scholar  * Fujihashi, K. et al. γδ T cells regulate


mucosally induced tolerance in a dose-dependent fashion. _Int. Immunol._ 11, 1907–1916 (1999). Article  CAS  PubMed  Google Scholar  * Chen, Y., Chou, K., Fuchs, E., Havran, W. L. &


Boismenu, R. Protection of the intestinal mucosa by intraepithelial γδ T cells. _Proc. Natl Acad. Sci. USA_ 99, 14338–14343 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Inagaki-Ohara, K. et al. Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against _Eimeria vermiformis_ infection. _Infect. Immun._ 74, 5292–5301 (2006).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ismail, A. S., Behrendt, C. L. & Hooper, L. V. Reciprocal interactions between commensal bacteria and γδ intraepithelial


lymphocytes during mucosal injury. _J. Immunol._ 182, 3047–3054 (2009). Article  CAS  PubMed  Google Scholar  * Mombaerts, P., Arnoldi, J., Russ, F., Tonegawa, S. & Kaufmann, S. H.


Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen. _Nature_ 365, 53–56 (1993). SHOWS A PROTECTIVE ROLE FOR TCRΑΒ+ AND TCRΓΔ+ IELS AGAINST


INTRACELLULAR BACTERIAL INFECTIONS IN THE INTESTINE. Article  CAS  PubMed  Google Scholar  * Hamada, S. et al. Importance of murine Vδ1γδ T cells expressing interferon-γ and interleukin-17A


in innate protection against _Listeria monocytogenes_ infection. _Immunology_ 125, 170–177 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Andrew, E. M. et al. Delineation of


the function of a major γδ T cell subset during infection. _J. Immunol._ 175, 1741–1750 (2005). Article  CAS  PubMed  Google Scholar  * Tsuchiya, T. et al. Role of γδ T cells in the


inflammatory response of experimental colitis mice. _J. Immunol._ 171, 5507–5513 (2003). Article  CAS  PubMed  Google Scholar  * Witherden, D. A. et al. The junctional adhesion molecule JAML


is a costimulatory receptor for epithelial γδ T cell activation. _Science_ 329, 1205–1210 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lepage, A. C., Buzoni-Gatel, D.,


Bout, D. T. & Kasper, L. H. Gut-derived intraepithelial lymphocytes induce long term immunity against _Toxoplasma gondii_. _J. Immunol._ 161, 4902–4908 (1998). DESCRIBES A ROLE FOR


IFNΓ-PRODUCING TCRΑΒ+CD8ΑΑ+IELS IN THE PROTECTION AGAINST AN INTESTINAL INFECTION WITH PARASITES. CAS  PubMed  Google Scholar  * Roark, C. L., Simonian, P. L., Fontenot, A. P., Born, W. K.


& O'Brien, R. L. γδ T cells: an important source of IL-17. _Curr. Opin. Immunol._ 20, 353–357 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Simpson, S. J. et al.


Expression of pro-inflammatory cytokines by TCRαβ+ and TCRγδ+ T cells in an experimental model of colitis. _Eur. J. Immunol._ 27, 17–25 (1997). Article  CAS  PubMed  Google Scholar  *


Takagaki, Y., DeCloux, A., Bonneville, M. & Tonegawa, S. Diversity of γδ T-cell receptors on murine intestinal intra-epithelial lymphocytes. _Nature_ 339, 712–714 (1989). Article  CAS 


PubMed  Google Scholar  * Kyes, S., Carew, E., Carding, S. R., Janeway, C. A. Jr & Hayday, A. Diversity in T-cell receptor _γ_ gene usage in intestinal epithelium. _Proc. Natl Acad. Sci.


USA_ 86, 5527–5531 (1989). TOGETHER WITH REFERENCE 103, REFERENCES 106 AND 107DESCRIBE THE RESTRICTED REPERTOIRE OF TCRΓΔ+ IELS. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Tanaka, Y., Morita, C. T., Nieves, E., Brenner, M. B. & Bloom, B. R. Natural and synthetic non-peptide antigens recognized by human γδ T cells. _Nature_ 375, 155–158 (1995). Article  CAS


  PubMed  Google Scholar  * O'Brien, R. L. et al. Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen derived from _Mycobacterium tuberculosis_.


_Cell_ 57, 667–674 (1989). Article  CAS  PubMed  Google Scholar  * Yamagata, T., Benoist, C. & Mathis, D. A shared gene-expression signature in innate-like lymphocytes. _Immunol. Rev._


210, 52–66 (2006). Article  CAS  PubMed  Google Scholar  * Mixter, P. F. et al. A model for the origin of TCR-αβ+ CD4-CD8- B220+ cells based on high affinity TCR signals. _J. Immunol._ 162,


5747–5756 (1999). CAS  PubMed  Google Scholar  * Sewell, A. K. et al. Antagonism of cytotoxic T-lymphocyte activation by soluble CD8. _Nature Med._ 5, 399–404 (1999). Article  CAS  PubMed 


Google Scholar  * Cawthon, A. G., Lu, H. & Alexander-Miller, M. A. Peptide requirement for CTL activation reflects the sensitivity to CD3 engagement: correlation with CD8αβ versus CD8αα


expression. _J. Immunol._ 167, 2577–2584 (2001). Article  CAS  PubMed  Google Scholar  * Ma, C. S., Nichols, K. E. & Tangye, S. G. Regulation of cellular and humoral immune responses by


the SLAM and SAP families of molecules. _Annu. Rev. Immunol._ 25, 337–379 (2007). Article  CAS  PubMed  Google Scholar  * Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L.


Preferential localization of effector memory cells in nonlymphoid tissue. _Science_ 291, 2413–2417 (2001). DETAILS PREFERENTIAL EFFECTOR MEMORY CELL DIFFERENTIATION AND CYTOTOXIC FUNCTION OF


INTESTINAL CD8+TCRΑΒ+ IELS IN RESPONSE TO INFECTIONS. Article  CAS  PubMed  Google Scholar  * Hansen, S. G. et al. Effector memory T cell responses are associated with protection of rhesus


monkeys from mucosal simian immunodeficiency virus challenge. _Nature Med._ 15, 293–299 (2009). Article  CAS  PubMed  Google Scholar  * Dharakul, T. et al. Immunization with


baculovirus-expressed recombinant rotavirus proteins VP1, VP4, VP6, and VP7 induces CD8+ T lymphocytes that mediate clearance of chronic rotavirus infection in SCID mice. _J. Virol._ 65,


5928–5932 (1991). CAS  PubMed  PubMed Central  Google Scholar  * Kanwar, S. S., Ganguly, N. K., Walia, B. N. & Mahajan, R. C. Direct and antibody dependent cell mediated cytotoxicity


against _Giardia lamblia_ by splenic and intestinal lymphoid cells in mice. _Gut_ 27, 73–77 (1986). Article  CAS  PubMed  PubMed Central  Google Scholar  * Masopust, D., Vezys, V., Wherry,


E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. _J. Immunol._ 176, 2079–2083 (2006). Article  CAS 


PubMed  Google Scholar  * Masopust, D., Jiang, J., Shen, H. & Lefrancois, L. Direct analysis of the dynamics of the intestinal mucosa CD8 T cell response to systemic virus infection. _J.


Immunol._ 166, 2348–2356 (2001). Article  CAS  PubMed  Google Scholar  * Pope, C. et al. Organ-specific regulation of the CD8 T cell response to _Listeria monocytogenes_ infection. _J.


Immunol._ 166, 3402–3409 (2001). Article  CAS  PubMed  Google Scholar  * Huleatt, J. W., Pilip, I., Kerksiek, K. & Pamer, E. G. Intestinal and splenic T cell responses to enteric


_Listeria monocytogenes_ infection: distinct repertoires of responding CD8 T lymphocytes. _J. Immunol._ 166, 4065–4073 (2001). Article  CAS  PubMed  Google Scholar  * Mehandru, S. et al.


Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. _J. Exp. Med._ 200, 761–770 (2004). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Li, Q. et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. _Nature_ 434, 1148–1152 (2005). Article


  CAS  PubMed  Google Scholar  * Raffatellu, M. et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes _Salmonella_ dissemination from the gut. _Nature Med._


14, 421–428 (2008). Article  CAS  PubMed  Google Scholar  * Prendergast, A. et al. HIV-1 infection is characterized by profound depletion of CD161+ Th17 cells and gradual decline in


regulatory T cells. _AIDS_ 24, 491–502 (2010). Article  PubMed  Google Scholar  * Epple, H. J. et al. Acute HIV infection induces mucosal infiltration with CD4+ and CD8+ T cells, epithelial


apoptosis, and a mucosal barrier defect. _Gastroenterology_ 139, 1289–1300 (2010). Article  CAS  PubMed  Google Scholar  * Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a


mouse model of ulcerative colitis. _J. Clin. Invest._ 118, 534–544 (2008). CAS  PubMed  PubMed Central  Google Scholar  * McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17


and IL-10 by T cells and restrain TH-17 cell-mediated pathology. _Nature Immunol._ 8, 1390–1397 (2007). Article  CAS  Google Scholar  * Mucida, D. et al. Reciprocal TH17 and regulatory T


cell differentiation mediated by retinoic acid. _Science_ 317, 256–260 (2007). Article  CAS  PubMed  Google Scholar  * Mucida, D. et al. Retinoic acid can directly promote TGF-β-mediated


Foxp3+ Treg cell conversion of naive T cells. _Immunity_ 30, 471–472; author reply 472–473 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Coombes, J. L. et al. A


functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. _J. Exp. Med._ 204, 1757–1764 (2007). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Sun, C. M. et al. Small intestine lamina propria dendritic cells promote _de novo_ generation of Foxp3 T reg cells via retinoic acid. _J. Exp.


Med._ 204, 1775–1785 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Curtis, M. M. & Way, S. S. Interleukin-17 in host defence against bacterial, mycobacterial and fungal


pathogens. _Immunology_ 126, 177–185 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Conti, H. R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal


host defense against oral candidiasis. _J. Exp. Med._ 206, 299–311 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * O'Shea, J. J. & Paul, W. E. Mechanisms underlying


lineage commitment and plasticity of helper CD4+ T cells. _Science_ 327, 1098–1102 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hershberg, R. M. et al. Highly polarized


HLA class II antigen processing and presentation by human intestinal epithelial cells. _J. Clin. Invest._ 102, 792–803 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Khanna,


R. et al. Class I processing-defective Burkitt's lymphoma cells are recognized efficiently by CD4+ EBV-specific CTLs. _J. Immunol._ 158, 3619–3625 (1997). CAS  PubMed  Google Scholar 


* Alcami, A. & Koszinowski, U. H. Viral mechanisms of immune evasion. _Immunol. Today_ 21, 447–455 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Giacomelli, R. et al.


Increase of circulating γ/δ T lymphocytes in the peripheral blood of patients affected by active inflammatory bowel disease. _Clin. Exp. Immunol._ 98, 83–88 (1994). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Kanazawa, H., Ishiguro, Y., Munakata, A. & Morita, T. Multiple accumulation of Vδ2+ γδ T-cell clonotypes in intestinal mucosa from patients with


Crohn's disease. _Dig. Dis. Sci._ 46, 410–416 (2001). Article  CAS  PubMed  Google Scholar  * Yeung, M. M. et al. Characterisation of mucosal lymphoid aggregates in ulcerative colitis:


immune cell phenotype and TcR-γδ expression. _Gut_ 47, 215–227 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kawaguchi-Miyashita, M. et al. An accessory role of TCRγδ+


cells in the exacerbation of inflammatory bowel disease in TCRα mutant mice. _Eur. J. Immunol._ 31, 980–988 (2001). Article  CAS  PubMed  Google Scholar  * Mizoguchi, A. et al. Role of the


CD5 molecule on TCR γδ T cell-mediated immune functions: development of germinal centers and chronic intestinal inflammation. _Int. Immunol._ 15, 97–108 (2003). Article  CAS  PubMed  Google


Scholar  * Park, S. G. et al. T regulatory cells maintain intestinal homeostasis by suppressing γδ T cells. _Immunity_ 33, 791–803 (2010). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Guehler, S. R., Finch, R. J., Bluestone, J. A. & Barrett, T. A. Increased threshold for TCR-mediated signaling controls self reactivity of intraepithelial lymphocytes. _J.


Immunol._ 160, 5341–5346 (1998). CAS  PubMed  Google Scholar  * Cheroutre, H. In IBD eight can come before four. _Gastroenterology_ 131, 667–670 (2006). Article  CAS  PubMed  Google Scholar


  * Tajima, M. et al. IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells. _J. Exp. Med._ 205, 1019–1027 (2008). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Nancey, S. et al. CD8+ cytotoxic T cells induce relapsing colitis in normal mice. _Gastroenterology_ 131, 485–496 (2006). Article  CAS  PubMed 


Google Scholar  * Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease.


_Immunity_ 21, 357–366 (2004). Article  CAS  PubMed  Google Scholar  * Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. _Immunity_ 21,


367–377 (2004). TOGETHER WITH REFERENCE 148, REFERENCES 151 AND 152 DESCRIBE A PATHWAY INVOLVING IL-15 THAT INDUCES PATHOGENIC CYTOTOXIC IELS THROUGH NKG2D SIGNALLING. Article  PubMed 


Google Scholar  * Jabri, B. & Sollid, L. M. Tissue-mediated control of immunopathology in coeliac disease. _Nature Rev. Immunol._ 9, 858–870 (2009). Article  CAS  Google Scholar  *


Jabri, B. et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. _Gastroenterology_ 118, 867–879 (2000).


Article  CAS  PubMed  Google Scholar  * Bodd, M. et al. HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. _Mucosal Immunol._ 3, 594–601 (2010). Article  CAS 


PubMed  Google Scholar  * Monteleone, I. et al. Characterization of IL-17A-producing cells in celiac disease mucosa. _J. Immunol._ 184, 2211–2218 (2010). Article  CAS  PubMed  Google Scholar


  * Benahmed, M. et al. Inhibition of TGF-β signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in celiac disease. _Gastroenterology_ 132, 994–1008 (2007). Article 


CAS  PubMed  Google Scholar  * Depaolo, R. W. et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. _Nature_ 471, 220–224 (2011). REPORTS AN


ALTERNATIVE ROLE FOR RETINOIC ACID, SHOWING THAT, IN THE PRESENCE OF IL-15, RETINOIC ACID INDUCES PRO-INFLAMMATORY DCS, LEADING TO THE GENERATION OF PATHOGENIC T CELLS IN THE GUT. Article 


CAS  PubMed  PubMed Central  Google Scholar  * Abraham, C. & Cho, J. H. Inflammatory bowel disease. _N. Engl. J. Med._ 361, 2066–2078 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. _Nature_ 448, 427–434 (2007). Article  CAS  PubMed  Google Scholar  * Uhlig, H. H.


et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. _Immunity_ 25, 309–318 (2006). Article  CAS  PubMed  Google Scholar  * Hue, S. et al.


Interleukin-23 drives innate and T cell-mediated intestinal inflammation. _J. Exp. Med._ 203, 2473–2483 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Duerr, R. H. et al. A


genome-wide association study identifies _IL23R_ as an inflammatory bowel disease gene. _Science_ 314, 1461–1463 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Targan, S. R.


& Karp, L. C. Defects in mucosal immunity leading to ulcerative colitis. _Immunol. Rev._ 206, 296–305 (2005). Article  CAS  PubMed  Google Scholar  * Saenz, S. A., Noti, M. & Artis,


D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. _Trends Immunol._ 31, 407–413 (2010). Article  CAS  PubMed  Google Scholar  * Veillette,


A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56_lck_. _Cell_ 55, 301–308


(1988). Article  CAS  PubMed  Google Scholar  * Arcaro, A. et al. Essential role of CD8 palmitoylation in CD8 coreceptor function. _J. Immunol._ 165, 2068–2076 (2000). Article  CAS  PubMed 


Google Scholar  * Crooks, M. E. & Littman, D. R. Disruption of T lymphocyte positive and negative selection in mice lacking the CD8β chain. _Immunity_ 1, 277–285 (1994). Article  CAS 


PubMed  Google Scholar  * Hayday, A. & Gibbons, D. Brokering the peace: the origin of intestinal T cells. _Mucosal Immunol._ 1, 172–174 (2008). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Kanamori, Y. et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. _J.


Exp. Med._ 184, 1449–1459 (1996). Article  CAS  PubMed  Google Scholar  * Saito, H. et al. Generation of intestinal T cells from progenitors residing in gut cryptopatches. _Science_ 280,


275–278 (1998). Article  CAS  PubMed  Google Scholar  * Lambolez, F. et al. Characterization of T cell differentiation in the murine gut. _J. Exp. Med._ 195, 437–449 (2002). Article  CAS 


PubMed  PubMed Central  Google Scholar  * De Geus, B. et al. Phenotype of intraepithelial lymphocytes in euthymic and athymic mice: implications for differentiation of cells bearing a


CD3-associated γδ T cell receptor. _Eur. J. Immunol._ 20, 291–298 (1990). Article  CAS  PubMed  Google Scholar  * Bandeira, A. et al. Extrathymic origin of intestinal intraepithelial


lymphocytes bearing T-cell antigen receptor γδ. _Proc. Natl Acad. Sci. USA_ 88, 43–47 (1991). Article  CAS  PubMed  PubMed Central  Google Scholar  * Naito, T., Shiohara, T., Hibi, T.,


Suematsu, M. & Ishikawa, H. RORγt is dispensable for the development of intestinal mucosal T cells. _Mucosal Immunol._ 1, 198–207 (2008). Article  CAS  PubMed  Google Scholar  *


Lambolez, F. et al. The thymus exports long-lived fully committed T cell precursors that can colonize primary lymphoid organs. _Nature Immunol._ 7, 76–82 (2006). Article  CAS  Google Scholar


  Download references ACKNOWLEDGEMENTS This is the manuscript number 1364 of the La Jolla Institute for Allergy and Immunology, California, USA. We thank F. van Wijk for helpful discussions


and M. Cheroutre for her contribution. Work in the H.C. laboratory is supported by the National Institutes of Health (RO1 AI050265-06) and the La Jolla Institute for Allergy and Immunology.


Work in the D.M. laboratory is supported by The Rockefeller University, New York, USA, and by the Crohn's & Colitis Foundation of America. AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Laboratory of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, 92037, California, USA Hilde Cheroutre & Florence Lambolez * Laboratory of


Mucosal Immunology, The Rockefeller University, New York, 10065, New York, USA Daniel Mucida Authors * Hilde Cheroutre View author publications You can also search for this author inPubMed 


Google Scholar * Florence Lambolez View author publications You can also search for this author inPubMed Google Scholar * Daniel Mucida View author publications You can also search for this


author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Hilde Cheroutre or Daniel Mucida. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial


interests. RELATED LINKS RELATED LINKS FURTHER INFORMATION Hilde Cheroutre's homepage Daniel Mucida's homepage GLOSSARY * Pathogens Opportunistic organisms that cause acute or


chronic disease following host infection. Derived from the Greek word 'pathos', which means 'suffering'. * Intraepithelial lymphocytes (IELs). These lymphocyte


populations consist mostly of T cells and are found within the epithelial layer of mammalian mucosal linings, such as the gastrointestinal tract and reproductive tract. However, unlike


conventional naive T cells, IELs are antigen- experienced T cells and, on encountering antigens, they immediately release cytokines or mediate killing of infected target cells. * Thymus


leukaemia antigen (TLA). A non-polymorphic, non-classical MHC class I molecule (MHC class I-b family) with a restricted expression pattern. It is constitutively expressed on intestinal


epithelial cells and can be induced on antigen-presenting cells. TLA is structurally incapable of binding or presenting peptide antigens and it does not engage with T cell receptors.


However, the α3 extracellular domain of TLA interacts with CD8α. TLA displays stronger affinity for CD8αα homodimers compared with CD8αβ heterodimers, and CD8αα expression can be detected


with TLA-specific tetramers. * Lamina propria Connective tissue that underlies the epithelium of the mucosa and contains various myeloid and lymphoid cells, including macrophages, dendritic


cells, T cells and B cells. * Microbiota The microorganisms present in normal, healthy individuals. These microorganisms live mostly in the digestive tract but are also found in some other


tissues. * Germ-free mice Mice born and raised in sterile isolators. They are devoid of colonizing microorganisms, but after they have been experimentally colonized by known bacteria, they


are said to be gnotobiotic. * Gut-associated lymphoid tissues Lymphoid structures and aggregates associated with the intestinal mucosa, specifically the tonsils, Peyer's patches,


lymphoid follicles, appendix and caecal patch. Enriched in lymphocytes and specialized dendritic cell and macrophage subsets. * Peyer's patches Groups of lymphoid nodules present in the


small intestine (usually the ileum). They occur in the intestinal wall, opposite the line of attachment of the mesentery. They consist of a dome area, B cell follicles and interfollicular T


cell areas. High endothelial venules are present mainly in the interfollicular areas. * Mesenteric lymph nodes Lymph nodes, located at the base of the mesentery, that collect lymph


(including cells and antigens) draining from the intestinal mucosa. * Microfold cells (M cells). Specialized antigen-sampling cells that are located in the follicle-associated epithelium of


the organized mucosa-associated lymphoid tissues. M cells deliver antigens by transepithelial vesicular transport from the aero-digestive lumen directly to subepithelial lymphoid tissues of


nasopharynx-associated lymphoid tissue and Peyer's patches. * NKG2D (Natural killer group 2, member D). A lectin-type activating receptor that is encoded by the NK complex and is


expressed at the surface of NK cells, NKT cells, natural and induced intraepithelial lymphocytes and conventional T cell receptor-γδ (TCRγδ) T cells, as well as some conventional cytolytic


CD8αβ+TCRαβ+ T cells. The ligands for NKG2D are MHC class I polypeptide-related sequence A (MICA) and MICB in humans, and retinoic acid early transcript 1 (RAE1) and H60 in mice. Such


ligands are generally expressed at the surface of infected, stressed or transformed cells. * Inflammatory bowel disease A chronic condition of the intestine that is characterized by severe


inflammation and mucosal tissue destruction. The most common forms in humans are ulcerative colitis and Crohn's disease. * Coeliac disease Coeliac disease is a condition that damages


the lining of the small intestine and interferes with nutrient absorption. The damage is due to an aberrant immune response to gluten-derived antigens, which are found in wheat, barley, rye


and possibly oats. * Crohn's disease A form of chronic inflammatory bowel disease that can affect the entire gastrointestinal tract but is most common in the colon and terminal ileum.


It is characterized by transmural inflammation, strictures and granuloma formation, and it is thought to result from an abnormal T cell-mediated immune response to commensal bacteria. *


Ulcerative colitis A chronic disease that is characterized by inflammation of the mucosa and sub-mucosa tissues, mainly of the large intestine. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. _Nat Rev Immunol_ 11,


445–456 (2011). https://doi.org/10.1038/nri3007 Download citation * Published: 17 June 2011 * Issue Date: July 2011 * DOI: https://doi.org/10.1038/nri3007 SHARE THIS ARTICLE Anyone you share


the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative