Transcriptional programming of the dendritic cell network

Transcriptional programming of the dendritic cell network

Play all audios:

Loading...

KEY POINTS * Dendritic cells (DCs) can be divided into multiple specialized subsets that are pivotal in bridging between the innate and adaptive immune responses. * Specification of DC


subsets is initiated in the bone marrow and generates precursors committed to either the plasmacytoid DC (pDC) or conventional DC lineages. * Terminal differentiation occurs in both


peripheral lymphoid organs and tissues in response to local environmental cues such as cytokines and inflammatory stimuli. * Transcription factors programme the specification and commitment


of precursors to different DC subsets. * Shared transcription factor usage by DC subsets provides a common differentiation pathway for precursor cells, whereas terminal differentiation is


often dictated by a single master regulator of that lineage (for example, E2-2 for pDCs and BATF3 for CD103+ DCs). ABSTRACT Specialized subsets of dendritic cells (DCs) provide a crucial


link between the innate and adaptive immune responses. The genetic programme that coordinates these distinct DC subsets is controlled by both cytokines and transcription factors. The initial


steps in DC specification occur in the bone marrow and result in the generation of precursors committed to either the plasmacytoid or conventional DC pathways. DCs undergo further


differentiation and lineage diversification in peripheral organs in response to local environmental cues. In this Review, we discuss new evidence regarding the coordination of the


specification and commitment of precursor cells to different DC subsets and highlight the ensemble of transcription factors that control these processes. Access through your institution Buy


or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and


online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes


which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS ENVIRONMENTAL SIGNALS RATHER THAN LAYERED ONTOGENY IMPRINT THE FUNCTION OF TYPE 2 CONVENTIONAL DENDRITIC CELLS IN YOUNG AND ADULT MICE Article Open access 19 January 2021 GENETIC


MODELS OF HUMAN AND MOUSE DENDRITIC CELL DEVELOPMENT AND FUNCTION Article 09 September 2020 DISTINCT ONTOGENETIC LINEAGES DICTATE CDC2 HETEROGENEITY Article Open access 13 February 2024


REFERENCES * Bigley, V. et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. _J. Exp. Med._ 208, 227–234 (2011). Article  CAS  PubMed Central  PubMed  Google


Scholar  * Dickinson, R. E. et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. _Blood_ 118, 2656–2658 (2011). Article


  CAS  PubMed  Google Scholar  * Hambleton, S. et al. _IRF8_ mutations and human dendritic-cell immunodeficiency. _N. Engl. J. Med._ 365, 127–138 (2011). THIS STUDY PROVIDES GENETIC EVIDENCE


OF THE FUNCTION OF IRF8 IN HUMAN DC DEVELOPMENT AND ALLOWS FOR COMPARISON WITH MOUSE GENE-KNOCKOUT APPROACHES. Article  CAS  PubMed Central  PubMed  Google Scholar  * Liu, K. &


Nussenzweig, M. C. Origin and development of dendritic cells. _Immunol. Rev._ 234, 45–54 (2010). Article  CAS  PubMed  Google Scholar  * Jakubzick, C. et al. Lymph-migrating, tissue-derived


dendritic cells are minor constituents within steady-state lymph nodes. _J. Exp. Med._ 205, 2839–2850 (2008). Article  CAS  PubMed Central  PubMed  Google Scholar  * Belz, G. T. et al.


Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. _Proc. Natl Acad. Sci. USA_ 101,


8670–8675 (2004). Article  CAS  PubMed Central  PubMed  Google Scholar  * Bedoui, S. et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. _Nature


Immunol._ 10, 488–495 (2009). Article  CAS  Google Scholar  * Vremec, D., Pooley, J., Hochrein, H., Wu, L. & Shortman, K. CD4 and CD8 expression by dendritic cell subtypes in mouse


thymus and spleen. _J. Immunol._ 164, 2978–2986 (2000). Article  CAS  PubMed  Google Scholar  * Vremec, D. et al. The surface phenotype of dendritic cells purified from mouse thymus and


spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. _J. Exp. Med._ 176, 47–58 (1992). Article  CAS  PubMed  Google Scholar  * den Haan, J. M., Lehar, S. M.


& Bevan, M. J. CD8+ but not CD8− dendritic cells cross-prime cytotoxic T cells _in vivo_. _J. Exp. Med._ 192, 1685–1696 (2000). Article  CAS  PubMed Central  PubMed  Google Scholar  *


Allan, R. S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. _Science_ 301, 1925–1928 (2003). Article  CAS  PubMed  Google Scholar  * Belz, G.


T. et al. Cutting edge: conventional CD8α+ dendritic cells are generally involved in priming CTL immunity to viruses. _J. Immunol._ 172, 1996–2000 (2004). Article  CAS  PubMed  Google


Scholar  * Edelson, B. T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. _J. Exp. Med._ 207, 823–836 (2010).


CAS  PubMed Central  PubMed  Google Scholar  * GeurtsvanKessel, C. H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b− but not plasmacytoid dendritic


cells. _J. Exp. Med._ 205, 1621–1634 (2008). Article  CAS  PubMed Central  PubMed  Google Scholar  * Kim, T. S. & Braciale, T. J. Respiratory dendritic cell subsets differ in their


capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. _PLoS ONE_ 4, e4204 (2009). Article  PubMed Central  CAS  PubMed  Google Scholar  * Smith, C. M. et al.


Cutting edge: conventional CD8α+ dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. _J. Immunol._ 170, 4437–4440 (2003). Article


  CAS  PubMed  Google Scholar  * Lukens, M. V., Kruijsen, D., Coenjaerts, F. E., Kimpen, J. L. & van Bleek, G. M. Respiratory syncytial virus-induced activation and migration of


respiratory dendritic cells and subsequent antigen presentation in the lung-draining lymph node. _J. Virol._ 83, 7235–7243 (2009). Article  CAS  PubMed Central  PubMed  Google Scholar  *


Allenspach, E. J., Lemos, M. P., Porrett, P. M., Turka, L. A. & Laufer, T. M. Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. _Immunity_


29, 795–806 (2008). Article  CAS  PubMed Central  PubMed  Google Scholar  * Mount, A. M. et al. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation. _PLoS ONE_


3, e1691 (2008). Article  PubMed Central  CAS  PubMed  Google Scholar  * Pooley, J. L., Heath, W. R. & Shortman, K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells


by CD8− dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. _J. Immunol._ 166, 5327–5330 (2001). Article  CAS  PubMed  Google Scholar  * Naik, S. H. et al.


Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. _Nature Immunol._ 7, 663–671 (2006). Article  CAS  Google Scholar  * Lundie, R. J. et al. Blood-stage


_Plasmodium_ infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8α+ dendritic cells. _Proc. Natl Acad. Sci. USA_ 105, 14509–14514 (2008). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Sponaas, A. M. et al. Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells. _J.


Exp. Med._ 203, 1427–1433 (2006). Article  CAS  PubMed Central  PubMed  Google Scholar  * Chorro, L. et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and


inflammation-associated expansion of the epidermal LC network. _J. Exp. Med._ 206, 3089–3100 (2009). Article  CAS  PubMed Central  PubMed  Google Scholar  * Perussia, B., Fanning, V. &


Trinchieri, G. A leukocyte subset bearing HLA-DR antigens is responsible for _in vitro_ α interferon production in response to viruses. _Nat. Immun. Cell Growth Regul._ 4, 120–137 (1985).


CAS  PubMed  Google Scholar  * Trinchieri, G., Santoli, D., Dee, R. R. & Knowles, B. B. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed


cells. Identification of the anti-viral activity as interferon and characterization of the human effector lymphocyte subpopulation. _J. Exp. Med._ 147, 1299–1313 (1978). Article  CAS  PubMed


  Google Scholar  * Reizis, B., Bunin, A., Ghosh, H. S., Lewis, K. L. & Sisirak, V. Plasmacytoid dendritic cells: recent progress and open questions. _Annu. Rev. Immunol._ 29, 163–183


(2011). Article  CAS  PubMed Central  PubMed  Google Scholar  * Reizis, B., Colonna, M., Trinchieri, G., Barrat, F. & Gilliet, M. Plasmacytoid dendritic cells: one-trick ponies or


workhorses of the immune system? _Nature Rev. Immunol._ 11, 558–565 (2011). Article  CAS  Google Scholar  * Hohl, T. M. et al. _Aspergillus fumigatus_ triggers inflammatory responses by


stage-specific β-glucan display. _PLoS Pathog._ 1, e30 (2005). Article  PubMed Central  CAS  PubMed  Google Scholar  * Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric


acid and activating inflammatory dendritic cells. _J. Exp. Med._ 205, 869–882 (2008). Article  CAS  PubMed Central  PubMed  Google Scholar  * Leon, B., Lopez-Bravo, M. & Ardavin, C.


Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against _Leishmania_. _Immunity_ 26, 519–531 (2007). Article  CAS 


PubMed  Google Scholar  * Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against


bacterial infection. _Immunity_ 19, 59–70 (2003). Article  CAS  PubMed  Google Scholar  * Cheong, C. et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic


cells for immune T cell areas. _Cell_ 143, 416–429 (2010). THIS STUDY IDENTIFIED THE CONDITIONS UNDER WHICH MONOCYTE-DERIVED DCS DEVELOP AND HIGHLIGHTED THEIR ACQUISITION OF HIGHLY EFFICIENT


CROSS-PRESENTING CAPACITY DURING INFLAMMATION. Article  CAS  PubMed Central  PubMed  Google Scholar  * den Haan, J. M. & Bevan, M. J. Constitutive versus activation-dependent


cross-presentation of immune complexes by CD8+ and CD8− dendritic cells _in vivo_. _J. Exp. Med._ 196, 817–827 (2002). Article  CAS  PubMed Central  PubMed  Google Scholar  * McDonnell, A.


M., Prosser, A. C., van Bruggen, I., Robinson, B. W. & Currie, A. J. CD8α+ DC are not the sole subset cross-presenting cell-associated tumor antigens from a solid tumor. _Eur. J.


Immunol._ 40, 1617–1627 (2010). Article  CAS  PubMed  Google Scholar  * Naik, S. H. et al. Cutting edge: generation of splenic CD8+ and CD8− dendritic cell equivalents in Fms-like tyrosine


kinase 3 ligand bone marrow cultures. _J. Immunol._ 174, 6592–6597 (2005). Article  CAS  PubMed  Google Scholar  * Brasel, K., De Smedt, T., Smith, J. L. & Maliszewski, C. R. Generation


of murine dendritic cells from Flt3-ligand-supplemented bone marrow cultures. _Blood_ 96, 3029–3039 (2000). CAS  PubMed  Google Scholar  * D'Amico, A. & Wu, L. The early progenitors


of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. _J. Exp. Med._ 198, 293–303 (2003). Article  CAS  PubMed


Central  PubMed  Google Scholar  * Karsunky, H., Merad, M., Cozzio, A., Weissman, I. L. & Manz, M. G. Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and


myeloid-committed progenitors to Flt3+ dendritic cells _in vivo_. _J. Exp. Med._ 198, 305–313 (2003). Article  CAS  PubMed Central  PubMed  Google Scholar  * Onai, N. et al. Identification


of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. _Nature Immunol._ 8, 1207–1216 (2007). Article  CAS  Google Scholar  * Onai,


N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A. & Manz, M. G. Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell


development. _J. Exp. Med._ 203, 227–238 (2006). Article  CAS  PubMed Central  PubMed  Google Scholar  * Holmes, M. L., Carotta, S., Corcoran, L. M. & Nutt, S. L. Repression of Flt3 by


Pax5 is crucial for B-cell lineage commitment. _Genes Dev._ 20, 933–938 (2006). Article  CAS  PubMed Central  PubMed  Google Scholar  * Waskow, C. et al. The receptor tyrosine kinase Flt3 is


required for dendritic cell development in peripheral lymphoid tissues. _Nature Immunol._ 9, 676–683 (2008). Article  CAS  Google Scholar  * Kingston, D. et al. The concerted action of


GM-CSF and Flt3-ligand on _in vivo_ dendritic cell homeostasis. _Blood_ 114, 835–843 (2009). Article  CAS  PubMed  Google Scholar  * McKenna, H. J. et al. Mice lacking Flt3 ligand have


deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. _Blood_ 95, 3489–3497 (2000). CAS  PubMed  Google Scholar  * Laouar, Y., Welte,


T., Fu, X. Y. & Flavell, R. A. STAT3 is required for Flt3L-dependent dendritic cell differentiation. _Immunity_ 19, 903–912 (2003). Article  CAS  PubMed  Google Scholar  * Ginhoux, F. et


al. The origin and development of nonlymphoid tissue CD103+ DCs. _J. Exp. Med._ 206, 3115–3130 (2009). THIS STUDY PROVIDES AN EXTENSIVE ANALYSIS OF THE TRANSCRIPTION FACTOR AND CYTOKINE


REQUIREMENTS OF DCS IN NON-LYMPHOID TISSUES. Article  CAS  PubMed Central  PubMed  Google Scholar  * Vremec, D. et al. The influence of granulocyte/macrophage colony-stimulating factor on


dendritic cell levels in mouse lymphoid organs. _Eur. J. Immunol._ 27, 40–44 (1997). Article  CAS  PubMed  Google Scholar  * Bogunovic, M. et al. Origin of the lamina propria dendritic cell


network. _Immunity_ 31, 513–525 (2009). Article  CAS  PubMed Central  PubMed  Google Scholar  * Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and


functions. _Immunity_ 31, 502–512 (2009). Article  CAS  PubMed  Google Scholar  * Esashi, E. et al. The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by


suppressing transcription factor IRF8. _Immunity_ 28, 509–520 (2008). Article  CAS  PubMed Central  PubMed  Google Scholar  * Varol, C. et al. Monocytes give rise to mucosal, but not


splenic, conventional dendritic cells. _J. Exp. Med._ 204, 171–180 (2007). Article  CAS  PubMed Central  PubMed  Google Scholar  * Geissmann, F. et al. Development of monocytes, macrophages,


and dendritic cells. _Science_ 327, 656–661 (2010). Article  CAS  PubMed Central  PubMed  Google Scholar  * MacDonald, K. P. et al. The colony-stimulating factor 1 receptor is expressed on


dendritic cells during differentiation and regulates their expansion. _J. Immunol._ 175, 1399–1405 (2005). Article  CAS  PubMed  Google Scholar  * Sasmono, R. T. et al. A macrophage


colony-stimulating factor receptor–green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. _Blood_ 101, 1155–1163 (2003). Article  CAS 


PubMed  Google Scholar  * Ginhoux, F. et al. Langerhans cells arise from monocytes _in vivo_. _Nature Immunol._ 7, 265–273 (2006). Article  CAS  Google Scholar  * Lin, H. et al. Discovery of


a cytokine and its receptor by functional screening of the extracellular proteome. _Science_ 320, 807–811 (2008). Article  CAS  PubMed  Google Scholar  * Fancke, B., Suter, M., Hochrein, H.


& O'Keeffe, M. M-CSF: a novel plasmacytoid and conventional dendritic cell poietin. _Blood_ 111, 150–159 (2008). Article  CAS  PubMed  Google Scholar  * Manz, M. G., Traver, D.,


Miyamoto, T., Weissman, I. L. & Akashi, K. Dendritic cell potentials of early lymphoid and myeloid progenitors. _Blood_ 97, 3333–3341 (2001). Article  CAS  PubMed  Google Scholar  * Wu,


L. et al. Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. _Blood_ 98, 3376–3382 (2001). Article  CAS  PubMed  Google Scholar  * Naik, S.


H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived _in vitro_ and _in vivo_. _Nature Immunol._ 8, 1217–1226 (2007). Article 


CAS  Google Scholar  * Schmid, M. A., Kingston, D., Boddupalli, S. & Manz, M. G. Instructive cytokine signals in dendritic cell lineage commitment. _Immunol. Rev._ 234, 32–44 (2010).


Article  CAS  PubMed  Google Scholar  * Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood


lineage commitment. _Cell_ 121, 295–306 (2005). Article  CAS  PubMed  Google Scholar  * Fogg, D. K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells.


_Science_ 311, 83–87 (2006). THIS STUDY PROSPECTIVELY IDENTIFIED THE COMMON PROGENITOR OF THE MONOCYTE AND MACROPHAGE LINEAGE AND THE DC LINEAGE. Article  CAS  PubMed  Google Scholar  * Liu,


K. et al. _In vivo_ analysis of dendritic cell development and homeostasis. _Science_ 324, 392–397 (2009). REFERENCES 21, 40, 61 AND 65 TOGETHER MAP THE DEVELOPMENTAL STEPS OF DCS FROM


THEIR EARLIEST PRECURSORS IN THE BONE MARROW TO MATURE CELLS IN THE PERIPHERAL TISSUES. Article  CAS  PubMed Central  PubMed  Google Scholar  * Carotta, S. et al. The transcription factor


PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. _Immunity_ 32, 628–641 (2010). THIS STUDY IDENTIFIED PU.1 AS A MASTER REGULATOR OF


ALL DC LINEAGES AND A KEY REGULATOR OF FLT3 EXPRESSION. Article  CAS  PubMed  Google Scholar  * Back, J., Allman, D., Chan, S. & Kastner, P. Visualizing PU.1 activity during


hematopoiesis. _Exp. Hematol._ 33, 395–402 (2005). Article  CAS  PubMed  Google Scholar  * Nutt, S. L., Metcalf, D., D'Amico, A., Polli, M. & Wu, L. Dynamic regulation of PU.1


expression in multipotent hematopoietic progenitors. _J. Exp. Med._ 201, 221–231 (2005). Article  CAS  PubMed Central  PubMed  Google Scholar  * Anderson, K. L. et al. Transcription factor


PU.1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells. _J. Immunol._ 164, 1855–1861 (2000). Article  CAS  PubMed  Google Scholar  * Guerriero, A.,


Langmuir, P. B., Spain, L. M. & Scott, E. W. PU.1 is required for myeloid-derived but not lymphoid-derived dendritic cells. _Blood_ 95, 879–885 (2000). CAS  PubMed  Google Scholar  *


Bakri, Y. et al. Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. _Blood_ 105, 2707–2716 (2005). Article  CAS  PubMed  Google Scholar  * DeKoter, R. P. &


Singh, H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. _Science_ 288, 1439–1441 (2000). Article  CAS  PubMed  Google Scholar  * Nerlov, C. & Graf,


T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. _Genes Dev._ 12, 2403–2412 (1998). Article  CAS  PubMed Central  PubMed  Google Scholar  * John, L. B.


& Ward, A. C. The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity. _Mol. Immunol._ 48, 1272–1278 (2011). Article  CAS  PubMed  Google Scholar  * Wu, L.,


Nichogiannopoulou, A., Shortman, K. & Georgopoulos, K. Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid


lineage. _Immunity_ 7, 483–492 (1997). Article  CAS  PubMed  Google Scholar  * Ng, S. Y., Yoshida, T., Zhang, J. & Georgopoulos, K. Genome-wide lineage-specific transcriptional networks


underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. _Immunity_ 30, 493–507 (2009). Article  CAS  PubMed Central  PubMed  Google Scholar  * Allman, D. et al. Ikaros is


required for plasmacytoid dendritic cell differentiation. _Blood_ 108, 4025–4034 (2006). Article  CAS  PubMed Central  PubMed  Google Scholar  * van der Meer, L. T., Jansen, J. H. & van


der Reijden, B. A. Gfi1 and Gfi1b: key regulators of hematopoiesis. _Leukemia_ 24, 1834–1843 (2010). Article  CAS  PubMed  Google Scholar  * Rathinam, C. et al. The transcriptional repressor


Gfi1 controls STAT3-dependent dendritic cell development and function. _Immunity_ 22, 717–728 (2005). Article  CAS  PubMed  Google Scholar  * Cisse, B. et al. Transcription factor E2–2 is


an essential and specific regulator of plasmacytoid dendritic cell development. _Cell_ 135, 37–48 (2008). Article  CAS  PubMed Central  PubMed  Google Scholar  * Spits, H., Couwenberg, F.,


Bakker, A. Q., Weijer, K. & Uittenbogaart, C. H. Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin


of pre-DC2. _J. Exp. Med._ 192, 1775–1784 (2000). Article  CAS  PubMed Central  PubMed  Google Scholar  * Kanno, Y., Levi, B. Z., Tamura, T. & Ozato, K. Immune cell-specific


amplification of interferon signaling by the IRF-4/8–PU.1 complex. _J. Interferon Cytokine Res._ 25, 770–779 (2005). Article  CAS  PubMed  Google Scholar  * Reizis, B. Regulation of


plasmacytoid dendritic cell development. _Curr. Opin. Immunol._ 22, 206–211 (2010). Article  CAS  PubMed Central  PubMed  Google Scholar  * Ghosh, H. S., Cisse, B., Bunin, A., Lewis, K. L.


& Reizis, B. Continuous expression of the transcription factor E2–2 maintains the cell fate of mature plasmacytoid dendritic cells. _Immunity_ 33, 905–916 (2010). TOGETHER WITH REFERENCE


80, THIS STUDY HIGHLIGHTS THE ROLE OF E2-2 IN PDC DEVELOPMENT AND IN MAINTAINING PDC IDENTITY. Article  CAS  PubMed Central  PubMed  Google Scholar  * Monticelli, L. A. et al.


Transcriptional regulator Id2 controls survival of hepatic NKT cells. _Proc. Natl Acad. Sci. USA_ 106, 19461–19466 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yokota, Y.


et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. _Nature_ 25, 702–706 (1999). Article  Google Scholar  * Hacker, C. et


al. Transcriptional profiling identifies Id2 function in dendritic cell development. _Nature Immunol._ 4, 380–386 (2003). Article  CAS  Google Scholar  * Carotta, S., Pang, S. H., Nutt, S.


L. & Belz, G. T. Identification of the earliest NK-cell precursor in the mouse BM. _Blood_ 117, 5449–5452 (2011). Article  CAS  PubMed  Google Scholar  * Jackson, J. T. et al. Id2


expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages. _EMBO J._ 30, 2690–2704 (2011). THIS STUDY DESCRIBES AN ID2 REPORTER MOUSE


STRAIN AND MAPS THE FUNCTION OF ID2 RELATIVE TO OTHER TRANSCRIPTION FACTORS, SUCH AS BATF3 AND IRF8. Article  CAS  PubMed Central  PubMed  Google Scholar  * Schiavoni, G. et al. ICSBP is


essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8α+ dendritic cells. _J. Exp. Med._ 196, 1415–1425 (2002). Article  CAS 


PubMed Central  PubMed  Google Scholar  * Schotte, R., Nagasawa, M., Weijer, K., Spits, H. & Blom, B. The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell


development. _J. Exp. Med._ 200, 1503–1509 (2004). Article  CAS  PubMed Central  PubMed  Google Scholar  * Tsujimura, H., Tamura, T. & Ozato, K. Cutting edge: IFN consensus sequence


binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. _J. Immunol._ 170, 1131–1135 (2003). Article  CAS  PubMed  Google Scholar


  * Tailor, P., Tamura, T., Morse, H. C. & Ozato, K. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. _Blood_ 111, 1942–1945 (2008).


Article  CAS  PubMed Central  PubMed  Google Scholar  * Smith, M. A. et al. Positive regulatory domain I (PRDM1) and IRF8/PU.1 counter-regulate MHC class II transactivator (CIITA) expression


during dendritic cell maturation. _J. Biol. Chem._ 286, 7893–7904 (2011). Article  CAS  PubMed Central  PubMed  Google Scholar  * Schroder, K. et al. PU.1 and ICSBP control constitutive and


IFN-γ-regulated _Tlr9_ gene expression in mouse macrophages. _J. Leukoc. Biol._ 81, 1577–1590 (2007). Article  CAS  PubMed  Google Scholar  * Tailor, P. et al. The feedback phase of type I


interferon induction in dendritic cells requires interferon regulatory factor 8. _Immunity_ 27, 228–239 (2007). CAS  PubMed Central  PubMed  Google Scholar  * Ghisletti, S. et al.


Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. _Immunity_ 32, 317–328 (2010). Article  CAS  PubMed  Google Scholar  *


Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime _cis_-regulatory elements required for macrophage and B cell identities. _Mol. Cell_ 38, 576–589


(2010). Article  CAS  PubMed Central  PubMed  Google Scholar  * Marquis, J. F. et al. Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during


tuberculosis. _PLoS Genet._ 7, e1002097 (2011). Article  CAS  PubMed Central  PubMed  Google Scholar  * Schotte, R. et al. The transcription factor Spi-B is expressed in plasmacytoid DC


precursors and inhibits T-, B-, and NK-cell development. _Blood_ 101, 1015–1023 (2003). Article  CAS  PubMed  Google Scholar  * Dzionek, A. et al. BDCA-2, BDCA-3, and BDCA-4: three markers


for distinct subsets of dendritic cells in human peripheral blood. _J. Immunol._ 165, 6037–6046 (2000). Article  CAS  PubMed  Google Scholar  * Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+


dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. _J. Exp. Med._ 207, 1247–1260 (2010). Article  CAS  PubMed Central  PubMed  Google


Scholar  * Poulin, L. F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. _J. Exp. Med._ 207, 1261–1271 (2010). Article  CAS


  PubMed Central  PubMed  Google Scholar  * Schiavoni, G. et al. ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells.


_Blood_ 103, 2221–2228 (2004). Article  CAS  PubMed  Google Scholar  * Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation


of the _ICSBP_ gene. _Cell_ 87, 307–317 (1996). Article  CAS  PubMed  Google Scholar  * Gascoyne, D. M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural


killer cell development. _Nature Immunol._ 10, 1118–1124 (2009). Article  CAS  Google Scholar  * Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells


_in vivo_. _J. Exp. Med._ 206, 2977–2986 (2009). Article  CAS  PubMed Central  PubMed  Google Scholar  * Kashiwada, M., Pham, N. L., Pewe, L. L., Harty, J. T. & Rothman, P. B.


NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development. _Blood_ 117, 6193–6197 (2011). Article  CAS  PubMed Central  PubMed  Google Scholar  * Echlin, D. R., Tae, H.


J., Mitin, N. & Taparowsky, E. J. B-ATF functions as a negative regulator of AP-1 mediated transcription and blocks cellular transformation by Ras and Fos. _Oncogene_ 19, 1752–1763


(2000). Article  CAS  PubMed  Google Scholar  * Dorsey, M. J. et al. B-ATF: a novel human bZIP protein that associates with members of the AP-1 transcription factor family. _Oncogene_ 11,


2255–2265 (1995). CAS  PubMed  Google Scholar  * Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. _Science_ 322, 1097–1100


(2008). THIS STUDY IDENTIFIED BATF3 AS AN ESSENTIAL REGULATOR OF CD8Α+ DC DIFFERENTIATION AND CROSS-PRESENTATION. Article  CAS  PubMed Central  PubMed  Google Scholar  * Bar-On, L. et al.


CX3CR1+ CD8α+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells. _Proc. Natl Acad. Sci. USA_ 107, 14745–14750 (2010). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Edelson, B. T. et al. _Batf3_-dependent CD11blow/− peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous


immunization. _PLoS ONE_ 6,e25660 (2011). Article  CAS  PubMed Central  PubMed  Google Scholar  * Mashayekhi, M. et al. CD8α+ dendritic cells are the critical source of interleukin-12 that


controls acute infection by _Toxoplasma gondii_ tachyzoites. _Immunity_ 35, 249–259 (2011). Article  CAS  PubMed Central  PubMed  Google Scholar  * Desch, A. N. et al. CD103+ pulmonary


dendritic cells preferentially acquire and present apoptotic cell-associated antigen. _J. Exp. Med._ 208, 1789–1797 (2011). Article  CAS  PubMed Central  PubMed  Google Scholar  * Edelson,


B. T. et al. CD8α+ dendritic cells are an obligate cellular entry point for productive infection by _Listeria monocytogenes_. _Immunity_ 35, 236–248 (2011). Article  CAS  PubMed Central 


PubMed  Google Scholar  * Dakic, A., Wu, L. & Nutt, S. L. Is PU.1 a dosage-sensitive regulator of haemopoietic lineage commitment and leukaemogenesis? _Trends Immunol._ 28, 108–114


(2007). Article  CAS  PubMed  Google Scholar  * Lin, Y. C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. _Nature Immunol._


11, 635–643 (2010). Article  CAS  Google Scholar  * Wilson, N. K. et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major


transcriptional regulators. _Cell Stem Cell_ 7, 532–544 (2010). Article  CAS  PubMed  Google Scholar  * Hida, S. et al. CD8+ T cell-mediated skin disease in mice lacking IRF-2, the


transcriptional attenuator of interferon-α/β signaling. _Immunity_ 13, 643–655 (2000). Article  CAS  PubMed  Google Scholar  * Honda, K., Mizutani, T. & Taniguchi, T. Negative regulation


of IFN-α/β signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells. _Proc. Natl Acad. Sci. USA_ 101, 2416–2421 (2004). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Ichikawa, E. et al. Defective development of splenic and epidermal CD4+ dendritic cells in mice deficient for IFN regulatory factor-2. _Proc. Natl Acad. Sci. USA_ 101,


3909–3914 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Arakura, F. et al. Genetic control directed toward spontaneous IFN-α/IFN-β responses and downstream IFN-γ expression


influences the pathogenesis of a murine psoriasis-like skin disease. _J. Immunol._ 179, 3249–3257 (2007). Article  CAS  PubMed  Google Scholar  * Wang, I. M. et al. An IFN-γ-inducible


transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. _J. Immunol._ 165, 271–279 (2000). Article  CAS  PubMed  Google Scholar


  * Shaffer, A. L., Emre, N. C., Romesser, P. B. & Staudt, L. M. IRF4: Immunity. Malignancy! Therapy? _Clin. Cancer Res._ 15, 2954–2961 (2009). Article  CAS  PubMed Central  PubMed 


Google Scholar  * Tamura, T. et al. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. _J. Immunol._ 174, 2573–2581 (2005). Article  CAS


  PubMed  Google Scholar  * Suzuki, S. et al. Critical roles of interferon regulatory factor 4 in CD11bhighCD8α− dendritic cell development. _Proc. Natl Acad. Sci. USA_ 101, 8981–8986


(2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gilliet, M. et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand


and granulocyte/macrophage colony-stimulating factor. _J. Exp. Med._ 195, 953–958 (2002). Article  CAS  PubMed Central  PubMed  Google Scholar  * Wu, L. et al. RelB is essential for the


development of myeloid-related CD8α− dendritic cells but not of lymphoid-related CD8α+ dendritic cells. _Immunity_ 9, 839–847 (1998). Article  CAS  PubMed  Google Scholar  * Burkly, L. et


al. Expression of _relB_ is required for the development of thymic medulla and dendritic cells. _Nature_ 373, 531–536 (1995). Article  CAS  PubMed  Google Scholar  * Martin, E.,


O'Sullivan, B., Low, P. & Thomas, R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. _Immunity_


18, 155–167 (2003). Article  CAS  PubMed  Google Scholar  * Le Bon, A. et al. A role for the transcription factor RelB in IFN-α production and in IFN-α-stimulated cross-priming. _Eur. J.


Immunol._ 36, 2085–2093 (2006). Article  CAS  PubMed  Google Scholar  * Castiglioni, P. et al. Cross-priming is under control of the _relB_ gene. _Scand. J. Immunol._ 56, 219–223 (2002).


Article  CAS  PubMed  Google Scholar  * Kobayashi, T. et al. TRAF6 is a critical factor for dendritic cell maturation and development. _Immunity_ 19, 353–363 (2003). Article  CAS  PubMed 


Google Scholar  * Cucak, H., Yrlid, U., Reizis, B., Kalinke, U. & Johansson-Lindbom, B. Type I interferon signaling in dendritic cells stimulates the development of lymph-node-resident T


follicular helper cells. _Immunity_ 31, 491–501 (2009). Article  CAS  PubMed  Google Scholar  * Deenick, E. K. et al. Follicular helper T cell differentiation requires continuous antigen


presentation that is independent of unique B cell signaling. _Immunity_ 33, 241–253 (2010). Article  CAS  PubMed Central  PubMed  Google Scholar  * Deenick, E. K., Ma, C. S., Brink, R. &


Tangye, S. G. Regulation of T follicular helper cell formation and function by antigen presenting cells. _Curr. Opin. Immunol._ 23, 111–118 (2011). Article  CAS  PubMed  Google Scholar  *


del Rio, M. L., Bernhardt, G., Rodriguez-Barbosa, J. I. & Forster, R. Development and functional specialization of CD103+ dendritic cells. _Immunol. Rev._ 234, 268–281 (2010). Article 


CAS  PubMed  Google Scholar  * Dolan, B. P., Gibbs, K. D. Jr & Ostrand-Rosenberg, S. Dendritic cells cross-dressed with peptide MHC class I complexes prime CD8+ T cells. _J. Immunol._


177, 6018–6024 (2006). Article  CAS  PubMed  Google Scholar  * Qu, C., Nguyen, V. A., Merad, M. & Randolph, G. J. MHC class I/peptide transfer between dendritic cells overcomes poor


cross-presentation by monocyte-derived APCs that engulf dying cells. _J. Immunol._ 182, 3650–3659 (2009). Article  CAS  PubMed  Google Scholar  * Huang, J. F. et al. TCR-mediated


internalization of peptide–MHC complexes acquired by T cells. _Science_ 286, 952–954 (1999). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS The authors thank R.


Allan, A. Kallies, M. Chopin and M. Pellegrini for helpful discussions and critical reading of the manuscript. This work is supported by the National Health and Medical Research Council


(NHMRC) of Australia and the Wellcome Trust. G.T.B. is supported by a Sylvia and Charles Viertel Foundation Fellowship and S.L.N. is supported by an Australian Research Council Future


Fellowship. This work was made possible by Victorian State Government Operational Infrastructure Support and the Australian Government NHMRC Independent Research Institute Infrastructure


Support Scheme. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, 3052,


Victoria, Australia Gabrielle T. Belz & Stephen L. Nutt Authors * Gabrielle T. Belz View author publications You can also search for this author inPubMed Google Scholar * Stephen L. Nutt


View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Gabrielle T. Belz or Stephen L. Nutt. ETHICS DECLARATIONS


COMPETING INTERESTS The authors declare no competing financial interests. RELATED LINKS RELATED LINKS FURTHER INFORMATION Gabrielle T. Belz's homepage Stephen L. Nutt's homepage


Dendritic Cell Research Knowledge Portal Immunological Genome Project International Society for Dendritic Cell and Vaccine Science GLOSSARY * E protein The E proteins (including E12, E47,


HEB and E2-2) have emerged as key regulators of the immune system. They are a family of basic helix-loop-helix factors that work together with their antagonists, the ID proteins (ID1–ID4),


to regulate lymphocyte development. * Lymphoid tissue-inducer cells (LTi cells). A cell type that is present in developing lymph nodes, Peyer's patches and nasopharynx-associated


lymphoid tissue (NALT). LTi cells are required for the development of these lymphoid organs. The inductive capacity of these cells for the generation of Peyer's patches and NALT has


been shown by adoptive transfer, and it is generally assumed that they have a similar function in the formation of lymph nodes. * Nucleosome remodelling Changes in the nucleosome structure


are mediated by dedicated nuclear enzymes (for example, ATP-dependent nucleosome-remodelling enzymes) that change the accessibility of DNA and the expression of genes. * Histone


modifications Histones are essential to maintain DNA organization and may be modified by methylation and acetylation — changes that are thought to keep genes active or silent, respectively —


thereby altering the genetic code read by transcriptional regulators. * NFAT (Nuclear factor of activated T cells). A family of transcription factors that are regulated by calcium


signalling and expressed by a variety of immune cells. * AP1 (Activator protein 1). A heterodimeric transcription factor that is composed of proteins belonging to the FOS, JUN and


JUN-dimerization protein families. AP1 controls various cellular processes, including differentiation, proliferation and apoptosis. * Cross-priming A mechanism by which immunogenic CD8+ T


cells are activated by the presentation of an antigen that was not synthesized by the antigen-presenting cell itself. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE


THIS ARTICLE Belz, G., Nutt, S. Transcriptional programming of the dendritic cell network. _Nat Rev Immunol_ 12, 101–113 (2012). https://doi.org/10.1038/nri3149 Download citation *


Published: 25 January 2012 * Issue Date: February 2012 * DOI: https://doi.org/10.1038/nri3149 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content:


Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative