Immune modulation by butyrophilins

Immune modulation by butyrophilins

Play all audios:

Loading...

KEY POINTS * Butyrophilins have recently materialized as a new family of immunoregulators that are similar to the co-stimulatory and co-inhibitory family of B7 molecules. * For a subset of butyrophilins, recombinant proteins and antibodies have been shown to modulate a variety of T cell functions, including the enhancement or attenuation of T cell activation, regulatory T cell differentiation from naive T cells, thymic cell selection and T cell localization. * There is much still to be learned about the function of butyrophilins. The mode of interaction between butyrophilins and other cell-surface molecules is generally poorly understood, and several butyrophilin family members have yet to be ascribed any biological function. * Human genetic data indicates that butyrophilins can be modifiers of disease susceptibility. * Although evolving data highlight the potential role of butyrophilins in the modulation of human disease, much more needs to be understood before contemplating their use as targets for therapeutic intervention. ABSTRACT The B7 family of co-stimulatory molecules has an important role in driving the activation and inhibition of immune cells. Evolving data have shown that a related family of molecules — the butyrophilins — have similar immunomodulatory functions to B7 family members and may represent a novel subset of co-stimulatory molecules. These studies have taken the field by surprise, as the butyrophilins were previously thought to only be important in lactation and milk production. In this Review, we describe the expression patterns of the various members of the butyrophilin family and explore their immunomodulatory functions. In particular, we emphasize the contribution of butyrophilins to immune homeostasis and discuss the potential of targeting these molecules for therapeutic purposes. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS HOMEOSTATIC SERUM IGE IS SECRETED BY PLASMA CELLS IN THE THYMUS AND ENHANCES MAST CELL SURVIVAL Article Open access 17 March 2022 INTRICACIES OF TGF-Β SIGNALING IN TREG AND TH17 CELL BIOLOGY Article Open access 23 May 2023 IL-10 PROMOTES TH17 CELL DIFFERENTIATION BY ENHANCING STAT1-DEPENDENT IL-6 PRODUCTION VIA IGE-STIMULATED MAST CELLS Article Open access 04 November 2024 REFERENCES * Heid, H. W., Winter, S., Bruder, G., Keenan, T. W. & Jarasch, E. D. Butyrophilin, an apical plasma membrane-associated glycoprotein characteristic of lactating mammary glands of diverse species. _Biochim. Biophys. Acta_ 728, 228–238 (1983). CAS  PubMed  Google Scholar  * Franke, W. W. et al. Antibodies to the major insoluble milk fat globule membrane-associated protein: specific location in apical regions of lactating epithelial cells. _J. Cell Biol._ 89, 485–494 (1981). CAS  PubMed  Google Scholar  * Abeler-Dorner, L., Swamy, M., Williams, G., Hayday, A. C. & Bas, A. Butyrophilins: an emerging family of immune regulators. _Trends Immunol._ 33, 34–41 (2012). THIS REVIEW PROVIDES A GOOD SUMMARY OF BUTYROPHILIN EXPRESSION PATTERNS. PubMed  Google Scholar  * Afrache, H., Gouret, P., Ainouche, S., Pontarotti, P. & Olive, D. The butyrophilin (BTN) gene family: from milk fat to the regulation of the immune response. _Immunogenetics_ 64, 781–794 (2012). THIS PAPER PROVIDES A COMPREHENSIVE PHYLOGENETIC ANALYSIS OF THE RELATIONSHIPS BETWEEN MAMMALIAN BUTYROPHILIN FAMILY MEMBERS AND A PROPOSAL FOR A NEW NAMING CONVENTION. CAS  PubMed  Google Scholar  * Arnett, H. A., Escobar, S. S. & Viney, J. L. Regulation of costimulation in the era of butyrophilins. _Cytokine_ 46, 370–375 (2009). CAS  PubMed  Google Scholar  * Tazi-Ahnini, R. et al. Cloning, localization, and structure of new members of the butyrophilin gene family in the juxta-telomeric region of the major histocompatibility complex. _Immunogenetics_ 47, 55–63 (1997). CAS  PubMed  Google Scholar  * Rhodes, D. A., Stammers, M., Malcherek, G., Beck, S. & Trowsdale, J. The cluster of _BTN_ genes in the extended major histocompatibility complex. _Genomics_ 71, 351–362 (2001). CAS  PubMed  Google Scholar  * Ikemizu, S. et al. Structure and dimerization of a soluble form of B7-1. _Immunity_ 12, 51–60 (2000). CAS  PubMed  Google Scholar  * Malcherek, G. et al. The B7 homolog butyrophilin BTN2A1 is a novel ligand for DC-SIGN. _J. Immunol._ 179, 3804–3811 (2007). CAS  PubMed  Google Scholar  * Compte, E., Pontarotti, P., Collette, Y., Lopez, M. & Olive, D. Frontline: characterization of BT3 molecules belonging to the B7 family expressed on immune cells. _Eur. J. Immunol._ 34, 2089–2099 (2004). CAS  PubMed  Google Scholar  * Chapoval, A. I. et al. BTNL8, a butyrophilin-like molecule that costimulates the primary immune response. _Mol. Immunol._ 56, 819–828 (2013). THIS IS ONE OF THE FEW PAPERS DEMONSTRATING THAT RECOMBINANT BUTYROPHILINS CAN ACTIVATE AND ENHANCE T CELL RESPONSES. CAS  PubMed  Google Scholar  * Arnett, H. A. et al. BTNL2, a butyrophilin/B7-like molecule, is a negative costimulatory molecule modulated in intestinal inflammation. _J. Immunol._ 178, 1523–1533 (2007). CAS  PubMed  Google Scholar  * Jeong, J. et al. The PRY/SPRY/B30.2 domain of butyrophilin 1A1 (BTN1A1) binds to xanthine oxidoreductase: implications for the function of BTN1A1 in the mammary gland and other tissues. _J. Biol. Chem._ 284, 22444–22456 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Vorbach, C., Scriven, A. & Capecchi, M. R. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. _Genes Dev._ 16, 3223–3235 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Sandstrom, A. et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. _Immunity_ 40, 490–500 (2014). THIS PAPER DEMONSTRATES THAT THE INTRACELLULAR B30.2 DOMAIN OF BUTYROPHILINS CAN MEDIATE A BIOLOGICAL EFFECT THAT RESULTS IN THE ACTIVATION OF ΓΔ T CELLS. CAS  PubMed  PubMed Central  Google Scholar  * Smith, I. A. et al. BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. _J. Immunol._ 184, 3514–3525 (2010). CAS  PubMed  Google Scholar  * Nguyen, T., Liu, X. K., Zhang, Y. & Dong, C. BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. _J. Immunol._ 176, 7354–7360 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Yamazaki, T. et al. A butyrophilin family member critically inhibits T cell activation. _J. Immunol._ 185, 5907–5914 (2010). CAS  PubMed  Google Scholar  * Yang, Y. et al. Characterization of B7S3 as a novel negative regulator of T cells. _J. Immunol._ 178, 3661–3667 (2007). CAS  PubMed  Google Scholar  * Mana, P. et al. Tolerance induction by molecular mimicry: prevention and suppression of experimental autoimmune encephalomyelitis with the milk protein butyrophilin. _Int. Immunol._ 16, 489–499 (2004). CAS  PubMed  Google Scholar  * Stefferl, A. et al. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. _J. Immunol._ 165, 2859–2865 (2000). CAS  PubMed  Google Scholar  * Messal, N. et al. Differential role for CD277 as a co-regulator of the immune signal in T and NK cells. _Eur. J. Immunol._ 41, 3443–3454 (2011). CAS  PubMed  Google Scholar  * Yamashiro, H., Yoshizaki, S., Tadaki, T., Egawa, K. & Seo, N. Stimulation of human butyrophilin 3 molecules results in negative regulation of cellular immunity. _J. Leukoc. Biol._ 88, 757–767 (2010). CAS  PubMed  Google Scholar  * Palakodeti, A. et al. The molecular basis for modulation of human Vγ9Vδ2 T cell responses by CD277/butyrophilin-3 (BTN3A)-specific antibodies. _J. Biol. Chem._ 287, 32780–32790 (2012). THIS PAPER PROVIDES AN INSIGHT INTO THE MOLECULAR BASIS OF HOW DIFFERENT BTN3A-SPECIFIC MONOCLONAL ANTIBODIES CAN DRIVE DISPARATE, AND EVEN OPPOSING, BIOLOGICAL FUNCTIONS. CAS  PubMed  PubMed Central  Google Scholar  * Ammann, J. U., Cooke, A. & Trowsdale, J. Butyrophilin Btn2a2 inhibits TCR activation and phosphatidylinositol 3-kinase/Akt pathway signaling and induces Foxp3 expression in T lymphocytes. _J. Immunol._ 190, 5030–5036 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Swanson, R. M. et al. Butyrophilin-like 2 modulates B7 costimulation to induce Foxp3 expression and regulatory T cell development in mature T cells. _J. Immunol._ 190, 2027–2035 (2013). THIS IS ONE OF THE FIRST PAPERS DEMONSTRATING THAT BUTYROPHILINS SUPPORT THE DIFFERENTIATION OF NAIVE T CELLS INTO T REG CELLS. CAS  PubMed  Google Scholar  * Boyden, L. M. et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. _Nature Genet._ 40, 656–662 (2008). THIS STUDY SUGGESTS THAT BUTYROPHILINS MAY HAVE A ROLE IN THYMIC SELECTION OF T CELLS. CAS  PubMed  Google Scholar  * Turchinovich, G. & Hayday, A. C. Skint-1 identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γδ T cells. _Immunity_ 35, 59–68 (2011). CAS  PubMed  Google Scholar  * Bas, A. et al. Butyrophilin-like 1 encodes an enterocyte protein that selectively regulates functional interactions with T lymphocytes. _Proc. Natl Acad. Sci. USA_ 108, 4376–4381 (2011). CAS  PubMed  Google Scholar  * Barbee, S. D. et al. Skint-1 is a highly specific, unique selecting component for epidermal T cells. _Proc. Natl Acad. Sci. USA_ 108, 3330–3335 (2011). CAS  PubMed  Google Scholar  * Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. _Blood_ 120, 2269–2279 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Wang, H. et al. Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells. _J. Immunol._ 191, 1029–1042 (2013). THIS IS ONE OF THE FIRST PAPERS TO SUGGEST THAT BTN3A1 IS A KEY MOLECULAR PLAYER IN FACILITATING THE ACTIVATION OF ΓΔ T CELLS IN RESPONSE TO PRENYL PYROPHOSPHATE ANTIGENS DURING CELLULAR STRESS. CAS  PubMed  Google Scholar  * Decaup, E. et al. Phosphoantigens and butyrophilin 3A1 induce similar intracellular activation signaling in human TCRVγ9 γδ T lymphocytes. _Immunol. Lett._ 161, 133–137 (2014). CAS  PubMed  Google Scholar  * Esser, C. A fat story–antigen presentation by butyrophilin 3A1 to γδ T cells. _Cell. Mol. Immunol._ 11, 5–7 (2014). PubMed  Google Scholar  * Kabelitz, D. Critical role of butyrophilin 3A1 in presenting prenyl pyrophosphate antigens to human γδ T cells. _Cell. Mol. Immunol._ 11, 117–119 (2014). CAS  PubMed  Google Scholar  * Vavassori, S. et al. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells. _Nature Immunol._ 14, 908–916 (2013). CAS  Google Scholar  * Simone, R. et al. Ligation of the BT3 molecules, members of the B7 family, enhance the proinflammatory responses of human monocytes and monocyte-derived dendritic cells. _Mol. Immunol._ 48, 109–118 (2010). CAS  PubMed  Google Scholar  * Viken, M. K. et al. Reproducible association with type 1 diabetes in the extended class I region of the major histocompatibility complex. _Genes Immun._ 10, 323–333 (2009). CAS  PubMed  Google Scholar  * Fujimaki, T. et al. Association of a polymorphism of _BTN2A1_ with dyslipidemia in East Asian populations. _Exp. Ther. Med._ 2, 745–749 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Hiramatsu, M. et al. Synergistic effects of genetic variants of _APOA5_ and _BTN2A1_ on dyslipidemia or metabolic syndrome. _Int. J. Mol. Med._ 30, 185–192 (2012). CAS  PubMed  Google Scholar  * Horibe, H. et al. Association of a polymorphism of _BTN2A1_ with dyslipidemia in community-dwelling individuals. _Mol. Med. Rep._ 9, 808–812 (2014). CAS  PubMed  Google Scholar  * Yamada, Y. et al. Association of a polymorphism of _BTN2A1_ with myocardial infarction in East Asian populations. _Atherosclerosis_ 215, 145–152 (2011). CAS  PubMed  Google Scholar  * Yoshida, T. et al. Association of polymorphisms of _BTN2A1_ and _ILF3_ with myocardial infarction in Japanese individuals with different lipid profiles. _Mol. Med. Rep._ 4, 511–518 (2011). CAS  PubMed  Google Scholar  * Cubillos-Ruiz, J. R. et al. CD277 is a negative co-stimulatory molecule universally expressed by ovarian cancer microenvironmental cells. _Oncotarget_ 1, 329–338 (2010). PubMed  PubMed Central  Google Scholar  * Peedicayil, A. et al. Risk of ovarian cancer and inherited variants in relapse-associated genes. _PLoS ONE_ 5, e8884 (2010). PubMed  PubMed Central  Google Scholar  * Fitzgerald, L. M. et al. Germline missense variants in the _BTNL2_ gene are associated with prostate cancer susceptibility. _Cancer Epidemiol. Biomarkers Prev._ 22, 1520–1528 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Jacques, P. & Van den Bosch, F. Emerging therapies for rheumatoid arthritis. _Expert Opin. Emerg. Drugs_ 18, 231–244 (2013). CAS  PubMed  Google Scholar  * Yao, S., Zhu, Y. & Chen, L. Advances in targeting cell surface signalling molecules for immune modulation. _Nature Rev. Drug Discov._ 12, 130–146 (2013). CAS  Google Scholar  * Cubillos-Ruiz, J. R. & Conejo-Garcia, J. R. It never rains but it pours: potential role of butyrophilins in inhibiting anti-tumor immune responses. _Cell Cycle_ 10, 368–369 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Bonneville, M. & Scotet, E. Human Vγ9Vδ2 T cells: promising new leads for immunotherapy of infections and tumors. _Curr. Opin. Immunol._ 18, 539–546 (2006). CAS  PubMed  Google Scholar  * Chiplunkar, S., Dhar, S., Wesch, D. & Kabelitz, D. γδ T cells in cancer immunotherapy: current status and future prospects. _Immunotherapy_ 1, 663–678 (2009). CAS  PubMed  Google Scholar  * Cavaletto, M. et al. A proteomic approach to evaluate the butyrophilin gene family expression in human milk fat globule membrane. _Proteomics_ 2, 850–856 (2002). CAS  PubMed  Google Scholar  * Giuffrida, M. G. et al. Proteolysis of milk fat globule membrane proteins in preterm milk: a transient phenomenon with a possible biological role? _Int. J. Immunopathol. Pharmacol._ 21, 959–967 (2008). CAS  PubMed  Google Scholar  * Cavaletto, M., Giuffrida, M. G. & Conti, A. Milk fat globule membrane components—a proteomic approach. _Adv. Exp. Med. Biol._ 606, 129–141 (2008). CAS  PubMed  Google Scholar  * Lonnerdal, B., Woodhouse, L. R. & Glazier, C. Compartmentalization and quantitation of protein in human milk. _J. Nutr._ 117, 1385–1395 (1987). CAS  PubMed  Google Scholar  * Peterson, J. A., Scallan, C. D., Ceriani, R. L. & Hamosh, M. Structural and functional aspects of three major glycoproteins of the human milk fat globule membrane. _Adv. Exp. Med. Biol._ 501, 179–187 (2001). CAS  PubMed  Google Scholar  * Ogg, S. L., Weldon, A. K., Dobbie, L., Smith, A. J. & Mather, I. H. Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. _Proc. Natl Acad. Sci. USA_ 101, 10084–10089 (2004). CAS  PubMed  Google Scholar  * Robenek, H. et al. Butyrophilin controls milk fat globule secretion. _Proc. Natl Acad. Sci. USA_ 103, 10385–10390 (2006). CAS  PubMed  Google Scholar  * Hiramatsu, M. et al. Association of a polymorphism of _BTN2A1_ with type 2 diabetes mellitus in Japanese individuals. _Diabet Med._ 28, 1381–1387 (2011). CAS  PubMed  Google Scholar  * Horibe, H. et al. Association of a polymorphism of _BTN2A1_ with hypertension in Japanese individuals. _Am. J. Hypertens._ 24, 924–929 (2011). CAS  PubMed  Google Scholar  * Oguri, M. et al. Association of a genetic variant of _BTN2A1_ with metabolic syndrome in East Asian populations. _J. Med. Genet._ 48, 787–792 (2011). CAS  PubMed  Google Scholar  * Yoshida, T. et al. Association of a genetic variant of _BTN2A1_ with chronic kidney disease in Japanese individuals. _Nephrol._ 16, 642–648 (2011). CAS  Google Scholar  * Konno, S. et al. Genetic impact of a butyrophilin-like 2 (_BTNL2_) gene variation on specific IgE responsiveness to Dermatophagoides farinae (Der f) in Japanese. _Allergol Int._ 58, 29–35 (2009). CAS  PubMed  Google Scholar  * Li, Y., Pabst, S., Lokhande, S., Grohe, C. & Wollnik, B. Extended genetic analysis of _BTNL2_ in sarcoidosis. _Tissue Antigens_ 73, 59–61 (2009). CAS  PubMed  Google Scholar  * Li, Y. et al. _BTNL2_ gene variant and sarcoidosis. _Thorax_ 61, 273–274 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Mitsunaga, S. et al. Exome sequencing identifies novel rheumatoid arthritis-susceptible variants in the _BTNL2_. _J. Hum. Genet._ 58, 210–215 (2013). CAS  PubMed  Google Scholar  * Morais, A. et al. _BTNL2_ gene polymorphism associations with susceptibility and phenotype expression in sarcoidosis. _Respir. Med._ 106, 1771–1777 (2012). PubMed  Google Scholar  * Orozco, G. et al. Analysis of a functional _BTNL2_ polymorphism in type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. _Hum. Immunol._ 66, 1235–1241 (2005). CAS  PubMed  Google Scholar  * Pathan, S. et al. Confirmation of the novel association at the _BTNL2_ locus with ulcerative colitis. _Tissue Antigens_ 74, 322–329 (2009). CAS  PubMed  Google Scholar  * Rybicki, B. A. et al. The _BTNL2_ gene and sarcoidosis susceptibility in African Americans and Whites. _Am. J. Hum. Genet._ 77, 491–499 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Simmonds, M. J., Heward, J. M., Barrett, J. C., Franklyn, J. A. & Gough, S. C. Association of the _BTNL2_ rs2076530 single nucleotide polymorphism with Graves' disease appears to be secondary to _DRB1_ exon 2 position β74. _Clin. Endocrinol._ 65, 429–432 (2006). CAS  Google Scholar  * Spagnolo, P. et al. Analysis of _BTNL2_ genetic polymorphisms in British and Dutch patients with sarcoidosis. _Tissue Antigens_ 70, 219–227 (2007). CAS  PubMed  Google Scholar  * Valentonyte, R. et al. Sarcoidosis is associated with a truncating splice site mutation in _BTNL2_. _Nature Genet._ 37, 357–364 (2005). THIS IS AN ELEGANT STUDY THAT PRESENTS A MOLECULAR MODEL OF BTNL2 AND ITS GENETIC VARIANTS. CAS  PubMed  Google Scholar  * Aigner, J. et al. A common 56-kilobase deletion in a primate-specific segmental duplication creates a novel butyrophilin-like protein. _BMC Genet._ 14, 61 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Lian, Y., Yue, J., Han, M., Liu, J. & Liu, L. Analysis of the association between _BTNL2_ polymorphism and tuberculosis in Chinese Han population. _Infect. Genet. Evol._ 10, 517–521 (2010). CAS  PubMed  Google Scholar  * Price, P. et al. Two major histocompatibility complex haplotypes influence susceptibility to sporadic inclusion body myositis: critical evaluation of an association with _HLA-DR3_. _Tissue Antigens_ 64, 575–580 (2004). CAS  PubMed  Google Scholar  * Wijnen, P. A. et al. Butyrophilin-like 2 in pulmonary sarcoidosis: a factor for susceptibility and progression? _Hum. Immunol._ 72, 342–347 (2011). CAS  PubMed  Google Scholar  * Hsueh, K. C., Lin, Y. J., Chang, J. S., Wan, L. & Tsai, F. J. _BTNL2_ gene polymorphisms may be associated with susceptibility to Kawasaki disease and formation of coronary artery lesions in Taiwanese children. _Eur. J. Pediatr._ 169, 713–719 (2010). PubMed  Google Scholar  * Johnson, C. M. et al. Analysis of the BTNL2 truncating splice site mutation in tuberculosis, leprosy and Crohn's disease. _Tissue Antigens_ 69, 236–241 (2007). CAS  PubMed  Google Scholar  * Mochida, A. et al. Butyrophilin-like 2 gene is associated with ulcerative colitis in the Japanese under strong linkage disequilibrium with _HLA-DRB1_*_1502_. _Tissue Antigens_ 70, 128–135 (2007). CAS  PubMed  Google Scholar  * Scott, A. P. et al. Recombination mapping of the susceptibility region for sporadic inclusion body myositis within the major histocompatibility complex. _J. Neuroimmunol._ 235, 77–83 (2011). CAS  PubMed  Google Scholar  * Henry, J. et al. Cloning, structural analysis, and mapping of the B30 and B7 multigenic families to the major histocompatibility complex (MHC) and other chromosomal regions. _Immunogenetics_ 46, 383–395 (1997). CAS  PubMed  Google Scholar  * Rhodes, D. A., de Bono, B. & Trowsdale, J. Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune defence? _Immunology_ 116, 411–417 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Perfetto, L. et al. Exploring the diversity of SPRY/B30.2-mediated interactions. _Trends Biochem. Sci._ 38, 38–46 (2013). CAS  PubMed  Google Scholar  * D'Cruz, A. A., Babon, J. J., Norton, R. S., Nicola, N. A. & Nicholson, S. E. Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. _Protein Sci._ 22, 1–10 (2013). CAS  PubMed  Google Scholar  * Chae, J. J. et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. _Proc. Natl Acad. Sci. USA_ 103, 9982–9987 (2006). CAS  PubMed  Google Scholar  * Chae, J. J. et al. The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-κB through its N-terminal fragment. _Blood_ 112, 1794–1803 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Le Page, C. et al. BTN3A2 expression in epithelial ovarian cancer is associated with higher tumor infiltrating T cells and a better prognosis. _PLoS ONE_ 7, e38541 (2012). CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS The authors would like to thank A. Gardet for critical reading of the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Inflammation, Amgen, Seattle, Washington, USA Heather A. Arnett * Department of Immunology, Biogen Idec, Cambridge, Massachusetts, USA Joanne L. Viney Authors * Heather A. Arnett View author publications You can also search for this author inPubMed Google Scholar * Joanne L. Viney View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Joanne L. Viney. ETHICS DECLARATIONS COMPETING INTERESTS H.A.A. is currently employed by Amgen. J.L.V. is currently employed by Biogen Idec. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR TABLE 1 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Arnett, H., Viney, J. Immune modulation by butyrophilins. _Nat Rev Immunol_ 14, 559–569 (2014). https://doi.org/10.1038/nri3715 Download citation * Published: 25 July 2014 * Issue Date: August 2014 * DOI: https://doi.org/10.1038/nri3715 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative

KEY POINTS * Butyrophilins have recently materialized as a new family of immunoregulators that are similar to the co-stimulatory and co-inhibitory family of B7 molecules. * For a subset of


butyrophilins, recombinant proteins and antibodies have been shown to modulate a variety of T cell functions, including the enhancement or attenuation of T cell activation, regulatory T cell


differentiation from naive T cells, thymic cell selection and T cell localization. * There is much still to be learned about the function of butyrophilins. The mode of interaction between


butyrophilins and other cell-surface molecules is generally poorly understood, and several butyrophilin family members have yet to be ascribed any biological function. * Human genetic data


indicates that butyrophilins can be modifiers of disease susceptibility. * Although evolving data highlight the potential role of butyrophilins in the modulation of human disease, much more


needs to be understood before contemplating their use as targets for therapeutic intervention. ABSTRACT The B7 family of co-stimulatory molecules has an important role in driving the


activation and inhibition of immune cells. Evolving data have shown that a related family of molecules — the butyrophilins — have similar immunomodulatory functions to B7 family members and


may represent a novel subset of co-stimulatory molecules. These studies have taken the field by surprise, as the butyrophilins were previously thought to only be important in lactation and


milk production. In this Review, we describe the expression patterns of the various members of the butyrophilin family and explore their immunomodulatory functions. In particular, we


emphasize the contribution of butyrophilins to immune homeostasis and discuss the potential of targeting these molecules for therapeutic purposes. Access through your institution Buy or


subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online


access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS


HOMEOSTATIC SERUM IGE IS SECRETED BY PLASMA CELLS IN THE THYMUS AND ENHANCES MAST CELL SURVIVAL Article Open access 17 March 2022 INTRICACIES OF TGF-Β SIGNALING IN TREG AND TH17 CELL


BIOLOGY Article Open access 23 May 2023 IL-10 PROMOTES TH17 CELL DIFFERENTIATION BY ENHANCING STAT1-DEPENDENT IL-6 PRODUCTION VIA IGE-STIMULATED MAST CELLS Article Open access 04 November


2024 REFERENCES * Heid, H. W., Winter, S., Bruder, G., Keenan, T. W. & Jarasch, E. D. Butyrophilin, an apical plasma membrane-associated glycoprotein characteristic of lactating mammary


glands of diverse species. _Biochim. Biophys. Acta_ 728, 228–238 (1983). CAS  PubMed  Google Scholar  * Franke, W. W. et al. Antibodies to the major insoluble milk fat globule


membrane-associated protein: specific location in apical regions of lactating epithelial cells. _J. Cell Biol._ 89, 485–494 (1981). CAS  PubMed  Google Scholar  * Abeler-Dorner, L., Swamy,


M., Williams, G., Hayday, A. C. & Bas, A. Butyrophilins: an emerging family of immune regulators. _Trends Immunol._ 33, 34–41 (2012). THIS REVIEW PROVIDES A GOOD SUMMARY OF BUTYROPHILIN


EXPRESSION PATTERNS. PubMed  Google Scholar  * Afrache, H., Gouret, P., Ainouche, S., Pontarotti, P. & Olive, D. The butyrophilin (BTN) gene family: from milk fat to the regulation of


the immune response. _Immunogenetics_ 64, 781–794 (2012). THIS PAPER PROVIDES A COMPREHENSIVE PHYLOGENETIC ANALYSIS OF THE RELATIONSHIPS BETWEEN MAMMALIAN BUTYROPHILIN FAMILY MEMBERS AND A


PROPOSAL FOR A NEW NAMING CONVENTION. CAS  PubMed  Google Scholar  * Arnett, H. A., Escobar, S. S. & Viney, J. L. Regulation of costimulation in the era of butyrophilins. _Cytokine_ 46,


370–375 (2009). CAS  PubMed  Google Scholar  * Tazi-Ahnini, R. et al. Cloning, localization, and structure of new members of the butyrophilin gene family in the juxta-telomeric region of the


major histocompatibility complex. _Immunogenetics_ 47, 55–63 (1997). CAS  PubMed  Google Scholar  * Rhodes, D. A., Stammers, M., Malcherek, G., Beck, S. & Trowsdale, J. The cluster of


_BTN_ genes in the extended major histocompatibility complex. _Genomics_ 71, 351–362 (2001). CAS  PubMed  Google Scholar  * Ikemizu, S. et al. Structure and dimerization of a soluble form of


B7-1. _Immunity_ 12, 51–60 (2000). CAS  PubMed  Google Scholar  * Malcherek, G. et al. The B7 homolog butyrophilin BTN2A1 is a novel ligand for DC-SIGN. _J. Immunol._ 179, 3804–3811 (2007).


CAS  PubMed  Google Scholar  * Compte, E., Pontarotti, P., Collette, Y., Lopez, M. & Olive, D. Frontline: characterization of BT3 molecules belonging to the B7 family expressed on


immune cells. _Eur. J. Immunol._ 34, 2089–2099 (2004). CAS  PubMed  Google Scholar  * Chapoval, A. I. et al. BTNL8, a butyrophilin-like molecule that costimulates the primary immune


response. _Mol. Immunol._ 56, 819–828 (2013). THIS IS ONE OF THE FEW PAPERS DEMONSTRATING THAT RECOMBINANT BUTYROPHILINS CAN ACTIVATE AND ENHANCE T CELL RESPONSES. CAS  PubMed  Google


Scholar  * Arnett, H. A. et al. BTNL2, a butyrophilin/B7-like molecule, is a negative costimulatory molecule modulated in intestinal inflammation. _J. Immunol._ 178, 1523–1533 (2007). CAS 


PubMed  Google Scholar  * Jeong, J. et al. The PRY/SPRY/B30.2 domain of butyrophilin 1A1 (BTN1A1) binds to xanthine oxidoreductase: implications for the function of BTN1A1 in the mammary


gland and other tissues. _J. Biol. Chem._ 284, 22444–22456 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Vorbach, C., Scriven, A. & Capecchi, M. R. The housekeeping gene


xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. _Genes Dev._ 16, 3223–3235 (2002). CAS  PubMed  PubMed


Central  Google Scholar  * Sandstrom, A. et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. _Immunity_ 40, 490–500


(2014). THIS PAPER DEMONSTRATES THAT THE INTRACELLULAR B30.2 DOMAIN OF BUTYROPHILINS CAN MEDIATE A BIOLOGICAL EFFECT THAT RESULTS IN THE ACTIVATION OF ΓΔ T CELLS. CAS  PubMed  PubMed


Central  Google Scholar  * Smith, I. A. et al. BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. _J. Immunol._ 184, 3514–3525 (2010). CAS  PubMed 


Google Scholar  * Nguyen, T., Liu, X. K., Zhang, Y. & Dong, C. BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. _J. Immunol._ 176, 7354–7360 (2006). CAS 


PubMed  PubMed Central  Google Scholar  * Yamazaki, T. et al. A butyrophilin family member critically inhibits T cell activation. _J. Immunol._ 185, 5907–5914 (2010). CAS  PubMed  Google


Scholar  * Yang, Y. et al. Characterization of B7S3 as a novel negative regulator of T cells. _J. Immunol._ 178, 3661–3667 (2007). CAS  PubMed  Google Scholar  * Mana, P. et al. Tolerance


induction by molecular mimicry: prevention and suppression of experimental autoimmune encephalomyelitis with the milk protein butyrophilin. _Int. Immunol._ 16, 489–499 (2004). CAS  PubMed 


Google Scholar  * Stefferl, A. et al. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune


encephalomyelitis. _J. Immunol._ 165, 2859–2865 (2000). CAS  PubMed  Google Scholar  * Messal, N. et al. Differential role for CD277 as a co-regulator of the immune signal in T and NK cells.


_Eur. J. Immunol._ 41, 3443–3454 (2011). CAS  PubMed  Google Scholar  * Yamashiro, H., Yoshizaki, S., Tadaki, T., Egawa, K. & Seo, N. Stimulation of human butyrophilin 3 molecules


results in negative regulation of cellular immunity. _J. Leukoc. Biol._ 88, 757–767 (2010). CAS  PubMed  Google Scholar  * Palakodeti, A. et al. The molecular basis for modulation of human


Vγ9Vδ2 T cell responses by CD277/butyrophilin-3 (BTN3A)-specific antibodies. _J. Biol. Chem._ 287, 32780–32790 (2012). THIS PAPER PROVIDES AN INSIGHT INTO THE MOLECULAR BASIS OF HOW


DIFFERENT BTN3A-SPECIFIC MONOCLONAL ANTIBODIES CAN DRIVE DISPARATE, AND EVEN OPPOSING, BIOLOGICAL FUNCTIONS. CAS  PubMed  PubMed Central  Google Scholar  * Ammann, J. U., Cooke, A. &


Trowsdale, J. Butyrophilin Btn2a2 inhibits TCR activation and phosphatidylinositol 3-kinase/Akt pathway signaling and induces Foxp3 expression in T lymphocytes. _J. Immunol._ 190, 5030–5036


(2013). CAS  PubMed  PubMed Central  Google Scholar  * Swanson, R. M. et al. Butyrophilin-like 2 modulates B7 costimulation to induce Foxp3 expression and regulatory T cell development in


mature T cells. _J. Immunol._ 190, 2027–2035 (2013). THIS IS ONE OF THE FIRST PAPERS DEMONSTRATING THAT BUTYROPHILINS SUPPORT THE DIFFERENTIATION OF NAIVE T CELLS INTO T REG CELLS. CAS 


PubMed  Google Scholar  * Boyden, L. M. et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. _Nature Genet._


40, 656–662 (2008). THIS STUDY SUGGESTS THAT BUTYROPHILINS MAY HAVE A ROLE IN THYMIC SELECTION OF T CELLS. CAS  PubMed  Google Scholar  * Turchinovich, G. & Hayday, A. C. Skint-1


identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γδ T cells. _Immunity_ 35, 59–68 (2011). CAS  PubMed  Google Scholar  *


Bas, A. et al. Butyrophilin-like 1 encodes an enterocyte protein that selectively regulates functional interactions with T lymphocytes. _Proc. Natl Acad. Sci. USA_ 108, 4376–4381 (2011). CAS


  PubMed  Google Scholar  * Barbee, S. D. et al. Skint-1 is a highly specific, unique selecting component for epidermal T cells. _Proc. Natl Acad. Sci. USA_ 108, 3330–3335 (2011). CAS 


PubMed  Google Scholar  * Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. _Blood_ 120, 2269–2279 (2012). CAS 


PubMed  PubMed Central  Google Scholar  * Wang, H. et al. Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells. _J. Immunol._ 191, 1029–1042


(2013). THIS IS ONE OF THE FIRST PAPERS TO SUGGEST THAT BTN3A1 IS A KEY MOLECULAR PLAYER IN FACILITATING THE ACTIVATION OF ΓΔ T CELLS IN RESPONSE TO PRENYL PYROPHOSPHATE ANTIGENS DURING


CELLULAR STRESS. CAS  PubMed  Google Scholar  * Decaup, E. et al. Phosphoantigens and butyrophilin 3A1 induce similar intracellular activation signaling in human TCRVγ9 γδ T lymphocytes.


_Immunol. Lett._ 161, 133–137 (2014). CAS  PubMed  Google Scholar  * Esser, C. A fat story–antigen presentation by butyrophilin 3A1 to γδ T cells. _Cell. Mol. Immunol._ 11, 5–7 (2014).


PubMed  Google Scholar  * Kabelitz, D. Critical role of butyrophilin 3A1 in presenting prenyl pyrophosphate antigens to human γδ T cells. _Cell. Mol. Immunol._ 11, 117–119 (2014). CAS 


PubMed  Google Scholar  * Vavassori, S. et al. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells. _Nature Immunol._ 14, 908–916 (2013). CAS  Google Scholar  *


Simone, R. et al. Ligation of the BT3 molecules, members of the B7 family, enhance the proinflammatory responses of human monocytes and monocyte-derived dendritic cells. _Mol. Immunol._ 48,


109–118 (2010). CAS  PubMed  Google Scholar  * Viken, M. K. et al. Reproducible association with type 1 diabetes in the extended class I region of the major histocompatibility complex.


_Genes Immun._ 10, 323–333 (2009). CAS  PubMed  Google Scholar  * Fujimaki, T. et al. Association of a polymorphism of _BTN2A1_ with dyslipidemia in East Asian populations. _Exp. Ther. Med._


2, 745–749 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Hiramatsu, M. et al. Synergistic effects of genetic variants of _APOA5_ and _BTN2A1_ on dyslipidemia or metabolic syndrome.


_Int. J. Mol. Med._ 30, 185–192 (2012). CAS  PubMed  Google Scholar  * Horibe, H. et al. Association of a polymorphism of _BTN2A1_ with dyslipidemia in community-dwelling individuals. _Mol.


Med. Rep._ 9, 808–812 (2014). CAS  PubMed  Google Scholar  * Yamada, Y. et al. Association of a polymorphism of _BTN2A1_ with myocardial infarction in East Asian populations.


_Atherosclerosis_ 215, 145–152 (2011). CAS  PubMed  Google Scholar  * Yoshida, T. et al. Association of polymorphisms of _BTN2A1_ and _ILF3_ with myocardial infarction in Japanese


individuals with different lipid profiles. _Mol. Med. Rep._ 4, 511–518 (2011). CAS  PubMed  Google Scholar  * Cubillos-Ruiz, J. R. et al. CD277 is a negative co-stimulatory molecule


universally expressed by ovarian cancer microenvironmental cells. _Oncotarget_ 1, 329–338 (2010). PubMed  PubMed Central  Google Scholar  * Peedicayil, A. et al. Risk of ovarian cancer and


inherited variants in relapse-associated genes. _PLoS ONE_ 5, e8884 (2010). PubMed  PubMed Central  Google Scholar  * Fitzgerald, L. M. et al. Germline missense variants in the _BTNL2_ gene


are associated with prostate cancer susceptibility. _Cancer Epidemiol. Biomarkers Prev._ 22, 1520–1528 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Jacques, P. & Van den Bosch,


F. Emerging therapies for rheumatoid arthritis. _Expert Opin. Emerg. Drugs_ 18, 231–244 (2013). CAS  PubMed  Google Scholar  * Yao, S., Zhu, Y. & Chen, L. Advances in targeting cell


surface signalling molecules for immune modulation. _Nature Rev. Drug Discov._ 12, 130–146 (2013). CAS  Google Scholar  * Cubillos-Ruiz, J. R. & Conejo-Garcia, J. R. It never rains but


it pours: potential role of butyrophilins in inhibiting anti-tumor immune responses. _Cell Cycle_ 10, 368–369 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Bonneville, M. &


Scotet, E. Human Vγ9Vδ2 T cells: promising new leads for immunotherapy of infections and tumors. _Curr. Opin. Immunol._ 18, 539–546 (2006). CAS  PubMed  Google Scholar  * Chiplunkar, S.,


Dhar, S., Wesch, D. & Kabelitz, D. γδ T cells in cancer immunotherapy: current status and future prospects. _Immunotherapy_ 1, 663–678 (2009). CAS  PubMed  Google Scholar  * Cavaletto,


M. et al. A proteomic approach to evaluate the butyrophilin gene family expression in human milk fat globule membrane. _Proteomics_ 2, 850–856 (2002). CAS  PubMed  Google Scholar  *


Giuffrida, M. G. et al. Proteolysis of milk fat globule membrane proteins in preterm milk: a transient phenomenon with a possible biological role? _Int. J. Immunopathol. Pharmacol._ 21,


959–967 (2008). CAS  PubMed  Google Scholar  * Cavaletto, M., Giuffrida, M. G. & Conti, A. Milk fat globule membrane components—a proteomic approach. _Adv. Exp. Med. Biol._ 606, 129–141


(2008). CAS  PubMed  Google Scholar  * Lonnerdal, B., Woodhouse, L. R. & Glazier, C. Compartmentalization and quantitation of protein in human milk. _J. Nutr._ 117, 1385–1395 (1987). CAS


  PubMed  Google Scholar  * Peterson, J. A., Scallan, C. D., Ceriani, R. L. & Hamosh, M. Structural and functional aspects of three major glycoproteins of the human milk fat globule


membrane. _Adv. Exp. Med. Biol._ 501, 179–187 (2001). CAS  PubMed  Google Scholar  * Ogg, S. L., Weldon, A. K., Dobbie, L., Smith, A. J. & Mather, I. H. Expression of butyrophilin


(Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. _Proc. Natl Acad. Sci. USA_ 101, 10084–10089 (2004). CAS  PubMed  Google Scholar  *


Robenek, H. et al. Butyrophilin controls milk fat globule secretion. _Proc. Natl Acad. Sci. USA_ 103, 10385–10390 (2006). CAS  PubMed  Google Scholar  * Hiramatsu, M. et al. Association of a


polymorphism of _BTN2A1_ with type 2 diabetes mellitus in Japanese individuals. _Diabet Med._ 28, 1381–1387 (2011). CAS  PubMed  Google Scholar  * Horibe, H. et al. Association of a


polymorphism of _BTN2A1_ with hypertension in Japanese individuals. _Am. J. Hypertens._ 24, 924–929 (2011). CAS  PubMed  Google Scholar  * Oguri, M. et al. Association of a genetic variant


of _BTN2A1_ with metabolic syndrome in East Asian populations. _J. Med. Genet._ 48, 787–792 (2011). CAS  PubMed  Google Scholar  * Yoshida, T. et al. Association of a genetic variant of


_BTN2A1_ with chronic kidney disease in Japanese individuals. _Nephrol._ 16, 642–648 (2011). CAS  Google Scholar  * Konno, S. et al. Genetic impact of a butyrophilin-like 2 (_BTNL2_) gene


variation on specific IgE responsiveness to Dermatophagoides farinae (Der f) in Japanese. _Allergol Int._ 58, 29–35 (2009). CAS  PubMed  Google Scholar  * Li, Y., Pabst, S., Lokhande, S.,


Grohe, C. & Wollnik, B. Extended genetic analysis of _BTNL2_ in sarcoidosis. _Tissue Antigens_ 73, 59–61 (2009). CAS  PubMed  Google Scholar  * Li, Y. et al. _BTNL2_ gene variant and


sarcoidosis. _Thorax_ 61, 273–274 (2006). CAS  PubMed  PubMed Central  Google Scholar  * Mitsunaga, S. et al. Exome sequencing identifies novel rheumatoid arthritis-susceptible variants in


the _BTNL2_. _J. Hum. Genet._ 58, 210–215 (2013). CAS  PubMed  Google Scholar  * Morais, A. et al. _BTNL2_ gene polymorphism associations with susceptibility and phenotype expression in


sarcoidosis. _Respir. Med._ 106, 1771–1777 (2012). PubMed  Google Scholar  * Orozco, G. et al. Analysis of a functional _BTNL2_ polymorphism in type 1 diabetes, rheumatoid arthritis, and


systemic lupus erythematosus. _Hum. Immunol._ 66, 1235–1241 (2005). CAS  PubMed  Google Scholar  * Pathan, S. et al. Confirmation of the novel association at the _BTNL2_ locus with


ulcerative colitis. _Tissue Antigens_ 74, 322–329 (2009). CAS  PubMed  Google Scholar  * Rybicki, B. A. et al. The _BTNL2_ gene and sarcoidosis susceptibility in African Americans and


Whites. _Am. J. Hum. Genet._ 77, 491–499 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Simmonds, M. J., Heward, J. M., Barrett, J. C., Franklyn, J. A. & Gough, S. C. Association


of the _BTNL2_ rs2076530 single nucleotide polymorphism with Graves' disease appears to be secondary to _DRB1_ exon 2 position β74. _Clin. Endocrinol._ 65, 429–432 (2006). CAS  Google


Scholar  * Spagnolo, P. et al. Analysis of _BTNL2_ genetic polymorphisms in British and Dutch patients with sarcoidosis. _Tissue Antigens_ 70, 219–227 (2007). CAS  PubMed  Google Scholar  *


Valentonyte, R. et al. Sarcoidosis is associated with a truncating splice site mutation in _BTNL2_. _Nature Genet._ 37, 357–364 (2005). THIS IS AN ELEGANT STUDY THAT PRESENTS A MOLECULAR


MODEL OF BTNL2 AND ITS GENETIC VARIANTS. CAS  PubMed  Google Scholar  * Aigner, J. et al. A common 56-kilobase deletion in a primate-specific segmental duplication creates a novel


butyrophilin-like protein. _BMC Genet._ 14, 61 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Lian, Y., Yue, J., Han, M., Liu, J. & Liu, L. Analysis of the association between


_BTNL2_ polymorphism and tuberculosis in Chinese Han population. _Infect. Genet. Evol._ 10, 517–521 (2010). CAS  PubMed  Google Scholar  * Price, P. et al. Two major histocompatibility


complex haplotypes influence susceptibility to sporadic inclusion body myositis: critical evaluation of an association with _HLA-DR3_. _Tissue Antigens_ 64, 575–580 (2004). CAS  PubMed 


Google Scholar  * Wijnen, P. A. et al. Butyrophilin-like 2 in pulmonary sarcoidosis: a factor for susceptibility and progression? _Hum. Immunol._ 72, 342–347 (2011). CAS  PubMed  Google


Scholar  * Hsueh, K. C., Lin, Y. J., Chang, J. S., Wan, L. & Tsai, F. J. _BTNL2_ gene polymorphisms may be associated with susceptibility to Kawasaki disease and formation of coronary


artery lesions in Taiwanese children. _Eur. J. Pediatr._ 169, 713–719 (2010). PubMed  Google Scholar  * Johnson, C. M. et al. Analysis of the BTNL2 truncating splice site mutation in


tuberculosis, leprosy and Crohn's disease. _Tissue Antigens_ 69, 236–241 (2007). CAS  PubMed  Google Scholar  * Mochida, A. et al. Butyrophilin-like 2 gene is associated with ulcerative


colitis in the Japanese under strong linkage disequilibrium with _HLA-DRB1_*_1502_. _Tissue Antigens_ 70, 128–135 (2007). CAS  PubMed  Google Scholar  * Scott, A. P. et al. Recombination


mapping of the susceptibility region for sporadic inclusion body myositis within the major histocompatibility complex. _J. Neuroimmunol._ 235, 77–83 (2011). CAS  PubMed  Google Scholar  *


Henry, J. et al. Cloning, structural analysis, and mapping of the B30 and B7 multigenic families to the major histocompatibility complex (MHC) and other chromosomal regions. _Immunogenetics_


46, 383–395 (1997). CAS  PubMed  Google Scholar  * Rhodes, D. A., de Bono, B. & Trowsdale, J. Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune


defence? _Immunology_ 116, 411–417 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Perfetto, L. et al. Exploring the diversity of SPRY/B30.2-mediated interactions. _Trends Biochem.


Sci._ 38, 38–46 (2013). CAS  PubMed  Google Scholar  * D'Cruz, A. A., Babon, J. J., Norton, R. S., Nicola, N. A. & Nicholson, S. E. Structure and function of the SPRY/B30.2 domain


proteins involved in innate immunity. _Protein Sci._ 22, 1–10 (2013). CAS  PubMed  Google Scholar  * Chae, J. J. et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein,


interacts directly with caspase-1 to modulate IL-1β production. _Proc. Natl Acad. Sci. USA_ 103, 9982–9987 (2006). CAS  PubMed  Google Scholar  * Chae, J. J. et al. The familial


Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-κB through its N-terminal fragment. _Blood_ 112, 1794–1803 (2008). CAS  PubMed  PubMed Central  Google Scholar  *


Le Page, C. et al. BTN3A2 expression in epithelial ovarian cancer is associated with higher tumor infiltrating T cells and a better prognosis. _PLoS ONE_ 7, e38541 (2012). CAS  PubMed 


PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS The authors would like to thank A. Gardet for critical reading of the manuscript. AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Department of Inflammation, Amgen, Seattle, Washington, USA Heather A. Arnett * Department of Immunology, Biogen Idec, Cambridge, Massachusetts, USA Joanne L. Viney Authors *


Heather A. Arnett View author publications You can also search for this author inPubMed Google Scholar * Joanne L. Viney View author publications You can also search for this author inPubMed


 Google Scholar CORRESPONDING AUTHOR Correspondence to Joanne L. Viney. ETHICS DECLARATIONS COMPETING INTERESTS H.A.A. is currently employed by Amgen. J.L.V. is currently employed by Biogen


Idec. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR TABLE 1 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT


THIS ARTICLE CITE THIS ARTICLE Arnett, H., Viney, J. Immune modulation by butyrophilins. _Nat Rev Immunol_ 14, 559–569 (2014). https://doi.org/10.1038/nri3715 Download citation * Published:


25 July 2014 * Issue Date: August 2014 * DOI: https://doi.org/10.1038/nri3715 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable


link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative