Phosphatases in cell–matrix adhesion and migration

Phosphatases in cell–matrix adhesion and migration

Play all audios:

Loading...

KEY POINTS * Phosphatases can be classified into two families — the tyrosine phosphatases and the serine/threonine phosphatases — that differ in structure, enzymatic mechanism and


regulation. * Phosphatases dephosphorylate proteins on tyrosine, threonine and serine residues to influence protein folding, enzymatic activity and protein–protein interactions. *


Phosphatases affect all components of the migration process including: protrusion of lamellipodia that is induced by remodelling of the actin cytoskeleton and regulated by small GTPase


molecular switches; modulation of the dynamics of matrix-adhesion interaction; actin contraction; rear release; and regulation of migratory directionality. * Phosphatase activity can either


inhibit or stimulate the processes of cell adhesion and migration; phosphatases can also influence signalling-pathway selection by dephosphorylation of specific sites on signal-transduction


proteins. * Phosphatases have essential roles during embryonic development and in the adult through the regulation of cell–matrix adhesion and migration in diverse cell types. * Application


of new technologies for the examination of spatio–temporal regulation of phosphatases, as well as for substrate identification, will provide opportunities to further our understanding of the


role of phosphatases in adhesion and migration. ABSTRACT Many proteins that have been implicated in cell–matrix adhesion and cell migration are phosphorylated, which regulates their


folding, enzymatic activities and protein–protein interactions. Although modulation of cell motility by kinases is well known, increasing evidence confirms that phosphatases are essential at


each stage of the migration process. Phosphatases can control the formation and maintenance of the actin cytoskeleton, regulate small GTPase molecular switches, and modulate the dynamics of


matrix–adhesion interaction, actin contraction, rear release and migratory directionality. Access through your institution Buy or subscribe This is a preview of subscription content, access


via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy


this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *


Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS PHOSPHOINOSITIDE SIGNALLING IN CELL MOTILITY AND ADHESION


Article 01 April 2025 NON-CATALYTIC ROLE OF PHOSPHOINOSITIDE 3-KINASE IN MESENCHYMAL CELL MIGRATION THROUGH NON-CANONICAL INDUCTION OF P85Β/AP2-MEDIATED ENDOCYTOSIS Article Open access 23


March 2024 BIOCHEMICAL AND MECHANICAL REGULATION OF ACTIN DYNAMICS Article 02 August 2022 REFERENCES * Edwards, J. G., Campbell, G., Grierson, A. W. & Kinn, S. R. Vanadate inhibits both


intercellular adhesion and spreading on fibronectin of BHK21 cells and transformed derivatives. _J. Cell Sci._ 98, 363–368 (1991). ONE OF THE FIRST PAPERS TO SHOW THAT PHOSPHATASES AFFECT


ADHESION. THEY SHOWED THAT VANADATE INHIBITED BOTH ATTACHMENT AND SPREADING IN CELL CULTURE. CAS  PubMed  Google Scholar  * Wilson, A. K., Takai, A., Ruegg, J. C. & de Lanerolle, P.


Okadaic acid, a phosphatase inhibitor, decreases macrophage motility. _Am. J. Physiol._ 260, L105–L112 (1991). ONE OF THE FIRST PAPERS TO INDICATE THAT PHOSPHATASES AFFECT CELL MIGRATION.


USING THE FAIRLY SPECIFIC PP2A INHIBITOR OKADAIC ACID, THE AUTHORS SHOWED THAT MACROPHAGE MIGRATION WAS INHIBITED. SIGNIFICANTLY, THEY CORRELATED CYTOSKELETAL REORGANIZATION WITH INHIBITION


OF MOTILITY, INDICATING THAT PHOSPHATASES UNCOUPLE THESE HIGHLY COORDINATED PROCESSES. CAS  PubMed  Google Scholar  * Neel, B. G. & Tonks, N. K. Protein tyrosine phosphatases in signal


transduction. _Curr. Opin. Cell Biol._ 9, 193–204 (1997). CAS  PubMed  Google Scholar  * Angers-Loustau, A., Côté, J. F. & Tremblay, M. L. Roles of protein tyrosine phosphatases in cell


migration and adhesion. _Biochem. Cell Biol._ 77, 493–505 (1999). CAS  PubMed  Google Scholar  * Beltran, P. J. & Bixby, J. L. Receptor protein tyrosine phosphatases as mediators of


cellular adhesion. _Front. Biosci._ 8, D87–D99 (2003). CAS  PubMed  Google Scholar  * Sheetz, M. P., Felsenfeld, D. P. & Galbraith, C. G. Cell migration: regulation of force on


extracellular-matrix–integrin complexes. _Trends Cell Biol._ 8, 51–54 (1998). CAS  PubMed  Google Scholar  * Trinkaus, J. P. in _Cells Into Organs: The Forces That Shape The Embryo_, 2nd


Edn, 179–226 (Prentice–Hall Inc., Englewood Cliffs, New Jersey, 1984). Google Scholar  * Zebda, N. et al. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading


edge and subsequent lamellipod extension. _J. Cell Biol._ 151, 1119–1128 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Ichetovkin, I., Grant, W. & Condeelis, J. Cofilin


produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. _Curr. Biol._ 12, 79–84 (2002). CAS  PubMed  Google Scholar  * Dawe, H. R.,


Minamide, L. S., Bamburg, J. R. & Cramer, L. P. ADF/Cofilin controls cell polarity during fibroblast migration. _Curr. Biol._ 13, 252–257 (2003). CAS  PubMed  Google Scholar  * Niwa, R.,


Nagata-Ohashi, K., Takeichi, M., Mizuno, K. & Uemura, T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. _Cell_ 108, 233–246


(2002). CAS  PubMed  Google Scholar  * Ambach, A. et al. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. _Eur. J.


Immunol._ 30, 3422–3431 (2000). CAS  PubMed  Google Scholar  * Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. _Nature_ 393, 805–809 (1998).


CAS  PubMed  Google Scholar  * Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. _Science_ 285, 895–898 (1999). CAS  PubMed  Google


Scholar  * Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. _Cell_ 70, 389–399


(1992). Article  CAS  PubMed  Google Scholar  * Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth


factor-induced membrane ruffling. _Cell_ 70, 401–410 (1992). CAS  PubMed  Google Scholar  * Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42Hs and bradykinin


promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. _Mol. Cell. Biol._ 15, 1942–1952 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Roof, R. W.


et al. Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAP–p120 RasGAP interaction: Tyr 1105 of p190, a substrate for c-Src, is the sole p-Tyr mediator of complex


formation. _Mol. Cell. Biol._ 18, 7052–7063 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Kodama, A. et al. Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth


factor/scatter factor-induced cell scattering. _Mol. Biol. Cell_ 11, 2565–2575 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Schoenwaelder, S. M. et al. The protein tyrosine


phosphatase SHP-2 regulates RhoA activity. _Curr. Biol._ 10, 1523–1526 (2000). CAS  PubMed  Google Scholar  * Inagaki, K. et al. SHPS-1 regulates integrin-mediated cytoskeletal


reorganization and cell motility. _EMBO J._ 19, 6721–6731 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Lacalle, R. A. et al. Specific SHP-2 partitioning in raft domains triggers


integrin-mediated signaling via Rho activation. _J. Cell Biol._ 157, 277–289 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Motegi, S. et al. Role of the CD47–SHPS-1 system in


regulation of cell migration. _EMBO J._ 22, 2634–2644 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Sastry, S. K., Lyons, P. D., Schaller, M. D. & Burridge, K. PTP-PEST controls


motility through regulation of Rac1. _J. Cell Sci._ 115, 4305–4316 (2002). CAS  PubMed  Google Scholar  * Gu, J. et al. Shc and FAK differentially regulate cell motility and directionality


modulated by PTEN. _J. Cell Biol._ 146, 389–403 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Li, D. M. & Sun, H. TEP1, encoded by a candidate tumor suppressor locus, is a novel


protein tyrosine phosphatase regulated by transforming growth factor β. _Cancer Res._ 57, 2124–2129 (1997). CAS  PubMed  Google Scholar  * Liliental, J. et al. Genetic deletion of the Pten


tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. _Curr. Biol._ 10, 401–404 (2000). CAS  PubMed  Google Scholar  * Shiota, M. et al. Protein tyrosine


phosphatase PTP20 induces actin cytoskeleton reorganization by dephosphorylating p190 RhoGAP in rat ovarian granulosa cells stimulated with FSH. _Mol. Endocrinol._ 4, 534–549 (2003). Google


Scholar  * Nimnual, A. S., Taylor, L. J. & Bar-Sagi, D. Redox-dependent downregulation of Rho by Rac. _Nature Cell Biol._ 5, 236–241 (2003). CAS  PubMed  Google Scholar  *


Dharmawardhane, S., Sanders, L. C., Martin, S. S., Daniels, R. H. & Bokoch, G. M. Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in


stimulated cells. _J. Cell Biol._ 138, 1265–1278 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Sells, M. A. et al. Human p21-activated kinase (PAK1) regulates actin organization in


mammalian cells. _Curr. Biol._ 7, 202–210 (1997). CAS  PubMed  Google Scholar  * Sanders, L. C., Matsumura, F., Bokoch, G. M. & de Lanerolle, P. Inhibition of myosin light chain kinase


by p21-activated kinase. _Science_ 283, 2083–2085 (1999). CAS  PubMed  Google Scholar  * Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. N. Activation of LIM-kinase by PAK1


couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. _Nature Cell Biol._ 1, 253–259 (1999). CAS  PubMed  Google Scholar  * Koh, C. G., Tan, E. J., Manser, E. & Lim, L. The


p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. _Curr. Biol._ 12, 317–321 (2002). CAS  PubMed  Google


Scholar  * Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating


fibroblasts. _J. Cell Biol._ 153, 881–888 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Galbraith, C. G. & Sheetz, M. P. A micromachined device provides a new bend on fibroblast


traction forces. _Proc. Natl. Acad. Sci. USA_ 94, 9114–9118 (1997). CAS  PubMed  PubMed Central  Google Scholar  * von Wichert, G. et al. RPTP-α acts as a transducer of mechanical force on


αv/β3-integrin–cytoskeleton linkages. _J. Cell Biol._ 161, 143–153 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Schneider, G. B., Gilmore, A. P., Lohse, D. L., Romer, L. H. &


Burridge, K. Microinjection of protein tyrosine phosphatases into fibroblasts disrupts focal adhesions and stress fibers. _Cell Adhes. Commun._ 5, 207–219 (1998). CAS  PubMed  Google Scholar


  * Angers-Loustau, A. et al. Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts. _J. Cell Biol._ 144, 1019–1031 (1999). CAS 


PubMed  PubMed Central  Google Scholar  * Garton, A. J. & Tonks, N. K. Regulation of fibroblast motility by the protein tyrosine phosphatase PTP-PEST. _J. Biol. Chem._ 274, 3811–3818


(1999). CAS  PubMed  Google Scholar  * Zamir, E. & Geiger, B. Molecular complexity and dynamics of cell-matrix adhesions. _J. Cell Sci._ 114, 3583–3590 (2001). CAS  PubMed  Google


Scholar  * Cary, L. A., Chang, J. F. & Guan, J. L. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. _J. Cell Sci._ 109,


1787–1794 (1996). CAS  PubMed  Google Scholar  * Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. _Nature_ 377, 539–544


(1995). CAS  PubMed  Google Scholar  * Yu, D. H., Qu, C. K., Henegariu, O., Lu, X. & Feng, G. S. Protein-tyrosine phosphatase SHP-2 regulates cell spreading, migration, and focal


adhesion. _J. Biol. Chem._ 273, 21125–21131 (1998). CAS  PubMed  Google Scholar  * Miao, H., Burnett, E., Kinch, M., Simon, E. & Wang, B. Activation of EphA2 kinase suppresses integrin


function and causes focal-adhesion-kinase dephosphorylation. _Nature Cell Biol._ 2, 62–69 (2000). Article  CAS  PubMed  Google Scholar  * Tamura, M. et al. PTEN interactions with focal


adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. _J. Biol. Chem._ 274, 20693–20703 (1999). CAS  PubMed  Google


Scholar  * Fresu, M., Bianchi, M., Parsons, J. T. & Villa-Moruzzi, E. Cell-cycle-dependent association of protein phosphatase 1 and focal adhesion kinase. _Biochem. J._ 358, 407–414


(2001). CAS  PubMed  PubMed Central  Google Scholar  * Brown, M. C., Perrotta, J. A. & Turner, C. E. Serine and threonine phosphorylation of the paxillin LIM domains regulates paxillin


focal adhesion localization and cell adhesion to fibronectin. _Mol. Biol. Cell_ 9, 1803–1816 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Ito, A. et al. A truncated isoform of the


PP2A B56 subunit promotes cell motility through paxillin phosphorylation. _EMBO J._ 19, 562–571 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Jackson, J. L. & Young, M. R.


Protein phosphatase-2A modulates the serine and tyrosine phosphorylation of paxillin in Lewis lung carcinoma tumor variants. _Clin. Exp. Metastasis_ 19, 409–415 (2002). CAS  PubMed  Google


Scholar  * Pixley, F. J., Lee, P. S., Condeelis, J. S. & Stanley, E. R. Protein tyrosine phosphatase φ regulates paxillin tyrosine phosphorylation and mediates colony-stimulating factor


1-induced morphological changes in macrophages. _Mol. Cell. Biol._ 21, 1795–1809 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Shen, Y. et al. The noncatalytic domain of


protein-tyrosine phosphatase-PEST targets paxillin for dephosphorylation _in vivo_. _J. Biol. Chem._ 275, 1405–1413 (2000). CAS  PubMed  Google Scholar  * Côté, J. F., Turner, C. E. &


Tremblay, M. L. Intact LIM 3 and LIM 4 domains of paxillin are required for the association to a novel polyproline region (Pro 2) of protein-tyrosine phosphatase-PEST. _J. Biol. Chem._ 274,


20550–20560 (1999). PubMed  Google Scholar  * Zeng, L. et al. PTPα regulates integrin-stimulated FAK autophosphorylation and cytoskeletal rearrangement in cell spreading and migration. _J.


Cell Biol._ 160, 137–146 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Young, M. R., Kolesiak, K. & Meisinger, J. Protein phosphatase-2A regulates endothelial cell motility and


both the phosphorylation and the stability of focal adhesion complexes. _Int. J. Cancer_ 100, 276–282 (2002). CAS  PubMed  Google Scholar  * Young, M. R., Liu, S. W. & Meisinger, J.


Protein phosphatase-2A restricts migration of Lewis lung carcinoma cells by modulating the phosphorylation of focal adhesion proteins. _Int. J. Cancer_ 103, 38–44 (2003). CAS  PubMed  Google


Scholar  * Pankov, R. et al. Specific β1 integrin site selectively regulates Akt/PKB signaling via local activation of PP2A. _J. Biol. Chem._ 278, 18671–18681 (2003). CAS  PubMed  Google


Scholar  * Bjorge, J. D., Pang, A. & Fujita, D. J. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and


activating c-Src in several human breast cancer cell lines. _J. Biol. Chem._ 275, 41439–41446 (2000). REPORTS A RELATIVELY RARE ROLE OF A PHOSPHATASE IN PROTEIN ACTIVATION. THE AUTHORS SHOW


THAT PTP1B DIRECTLY DEPHOSPHORYLATES AND ACTIVATES SRC _IN VITRO_ . THEY IDENTIFIED THIS INTERACTION BY PURIFYING PHOSPHATASE ACTIVITY FROM EXTRACTS OF A BREAST CANCER CELL LINE CONTAINING


BOTH ELEVATED SRC AND PHOSPHATASE ACTIVITY. CAS  PubMed  Google Scholar  * Liu, F., Sells, M. A. & Chernoff, J. Protein tyrosine phosphatase 1B negatively regulates integrin signaling.


_Curr. Biol._ 8, 173–176 (1998). CAS  PubMed  Google Scholar  * Klemke, R. L. et al. CAS/Crk coupling serves as a 'molecular switch' for induction of cell migration. _J. Cell


Biol._ 140, 961–972 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Kain, K. H. & Klemke, R. L. Inhibition of cell migration by Abl family tyrosine kinases through uncoupling of


Crk-CAS complexes. _J. Biol. Chem._ 276, 16185–16192 (2001). CAS  PubMed  Google Scholar  * Garton, A. J., Flint, A. J. & Tonks, N. K. Identification of p130(Cas) as a substrate for the


cytosolic protein tyrosine phosphatase PTP-PEST. _Mol. Cell. Biol._ 16, 6408–6418 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Cong, F. et al. Cytoskeletal protein PSTPIP1 directs


the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation. _Mol. Cell_ 6, 1413–1423 (2000). CAS  PubMed  Google Scholar  * Noguchi, T. et al. Inhibition


of cell growth and spreading by stomach cancer-associated protein-tyrosine phosphatase-1 (SAP-1) through dephosphorylation of p130cas. _J. Biol. Chem._ 276, 15216–15224 (2001). CAS  PubMed


  Google Scholar  * Sattler, M. et al. SHIP1, an SH2 domain containing polyinositol-5-phosphatase, regulates migration through two critical tyrosine residues and forms a novel signaling


complex with DOK1 and CRKL. _J. Biol. Chem._ 276, 2451–2458 (2001). CAS  PubMed  Google Scholar  * Tsuda, M. et al. Integrin-mediated tyrosine phosphorylation of SHPS-1 and its association


with SHP-2. Roles of Fak and Src family kinases. _J. Biol. Chem._ 273, 13223–13229 (1998). CAS  PubMed  Google Scholar  * Shen, Y. et al. Activation of the Jnk signaling pathway by a


dual-specificity phosphatase, JSP-1. _Proc. Natl Acad. Sci. USA_ 98, 13613–13618 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Shin, E. Y., Kim, S. Y. & Kim, E. G. c-Jun


N-terminal kinase is involved in motility of endothelial cell. _Exp. Mol. Med._ 33, 276–283 (2001). CAS  PubMed  Google Scholar  * Okagaki, T., Higashi-Fujime, S., Ishikawa, R.,


Takano-Ohmuro, H. & Kohama, K. _In vitro_ movement of actin filaments on gizzard smooth muscle myosin: requirement of phosphorylation of myosin light chain and effects of tropomyosin and


caldesmon. _J. Biochem._ 109, 858–866 (1991). CAS  PubMed  Google Scholar  * Alessi, D., MacDougall, L. K., Sola, M. M., Ikebe, M. & Cohen, P. The control of protein phosphatase-1 by


targetting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. _Eur. J. Biochem._ 210, 1023–1035 (1992). CAS  PubMed  Google Scholar  *


Kawano, Y. et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase _in vivo_. _J. Cell Biol._ 147, 1023–1038 (1999). CAS  PubMed  PubMed Central  Google


Scholar  * Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. _J. Cell Biol._ 154, 147–160


(2001). CAS  PubMed  PubMed Central  Google Scholar  * Yoshinaga-Ohara, N., Takahashi, A., Uchiyama, T. & Sasada, M. Spatiotemporal regulation of moesin phosphorylation and rear release


by Rho and serine/threonine phosphatase during neutrophil migration. _Exp. Cell Res._ 278, 112–122 (2002). CAS  PubMed  Google Scholar  * Iijima, M. & Devreotes, P. Tumor suppressor PTEN


mediates sensing of chemoattractant gradients. _Cell_ 109, 599–610 (2002). CAS  PubMed  Google Scholar  * Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and


temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. _Cell_ 109, 611–623 (2002). REFERENCES 74 AND 75 IDENTIFY A ROLE FOR PTEN IN DIRECTIONAL MIGRATION


THROUGH ITS LIPID PHOSPHATASE ACTIVITY. THESE STUDIES BOTH USED _DICTYOSTELIUM_ AS A MODEL SYSTEM. CAS  PubMed  Google Scholar  * Iijima, M., Huang, Y. E. & Devreotes, P. Temporal and


spatial regulation of chemotaxis. _Dev. Cell_ 3, 469–478 (2002). CAS  PubMed  Google Scholar  * Chung, C. Y., Potikyan, G. & Firtel, R. A. Control of cell polarity and chemotaxis by


Akt/PKB and PI3 kinase through the regulation of PAKa. _Mol. Cell_ 7, 937–947 (2001). CAS  PubMed  Google Scholar  * Comer, F. I. & Parent, C. A. PI 3-kinases and PTEN: how opposites


chemoattract. _Cell_ 109, 541–544 (2002). CAS  PubMed  Google Scholar  * Tamura, M. et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. _Science_


280, 1614–1617 (1998). CAS  PubMed  Google Scholar  * Tamura, M., Gu, J., Takino, T. & Yamada, K. M. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth:


differential involvement of focal adhesion kinase and p130Cas. _Cancer Res._ 59, 442–449 (1999). CAS  PubMed  Google Scholar  * Gu, J., Tamura, M. & Yamada, K. M. Tumor suppressor PTEN


inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. _J. Cell Biol._ 143, 1375–1383 (1998). CAS  PubMed  PubMed Central  Google Scholar  *


Spiegel, S., English, D. & Milstien, S. Sphingosine 1-phosphate signaling: providing cells with a sense of direction. _Trends Cell Biol._ 12, 236–242 (2002). CAS  PubMed  Google Scholar


  * Takuwa, Y. Subtype-specific differential regulation of Rho family G proteins and cell migration by the Edg family sphingosine-1-phosphate receptors. _Biochim. Biophys. Acta_ 1582,


112–120 (2002). CAS  PubMed  Google Scholar  * Desai, C. J., Gindhart, J. G. Jr, Goldstein, L. S. & Zinn, K. Receptor tyrosine phosphatases are required for motor axon guidance in the


_Drosophila_ embryo. _Cell_ 84, 599–609 (1996). CAS  PubMed  Google Scholar  * Tan, C., Stronach, B. & Perrimon, N. Roles of myosin phosphatase during _Drosophila_ development.


_Development_ 130, 671–681 (2003). CAS  PubMed  Google Scholar  * Saxton, T. M. et al. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase SHP-2. _EMBO J._


16, 2352–2364 (1997). IN THIS PAPER, CHIMERIC ANALYSIS WAS USED TO IDENTIFY A ROLE FOR SHP2 IN MAMMALIAN LIMB DEVELOPMENT, WHICH WAS NOT POSSIBLE TO DETERMINE IN KNOCKOUT EMBRYOS OWING TO


DEFECTIVE GASTRULATION. THE ROLE OF SHP2 IN LIMB DEVELOPMENT IS PRESUMED TO INVOLVE CHANGES IN CELL SHAPE, MIGRATION OR ADHESION. CAS  PubMed  PubMed Central  Google Scholar  * Furuta, Y. et


al. Mesodermal defect in late phase of gastrulation by a targeted mutation of focal adhesion kinase, FAK. _Oncogene_ 11, 1989–1995 (1995). CAS  PubMed  Google Scholar  * Saxton, T. M. &


Pawson, T. Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase SHP-2. _Proc. Natl Acad. Sci. USA_ 96, 3790–3795 (1999). CAS  PubMed  PubMed Central  Google Scholar


  * Saxton, T. M. et al. The SH2 tyrosine phosphatase SHP-2 is required for mammalian limb development. _Nature Genet._ 24, 420–423 (2000). CAS  PubMed  Google Scholar  * Gotz, J., Probst,


A., Ehler, E., Hemmings, B. & Kues, W. Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Cα. _Proc. Natl Acad. Sci. USA_ 95, 12370–12375 (1998). CAS 


PubMed  PubMed Central  Google Scholar  * Li, L., Liu, F. & Ross, A. H. PTEN regulation of neural development and CNS stem cells. _J. Cell. Biochem._ 88, 24–28 (2003). CAS  PubMed 


Google Scholar  * Schaapveld, R. Q. et al. Impaired mammary gland development and function in mice lacking LAR receptor-like tyrosine phosphatase activity. _Dev. Biol._ 188, 134–146 (1997).


CAS  PubMed  Google Scholar  * Pulido, R., Serra-Pages, C., Tang, M. & Streuli, M. The LAR/PTPδ/PTPσ subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTPδ,


and PTPσ isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP1. _Proc. Natl Acad. Sci. USA_ 92, 11686–11690 (1995). CAS  PubMed  PubMed


Central  Google Scholar  * Harrington, R. J., Gutch, M. J., Hengartner, M. O., Tonks, N. K. & Chisholm, A. D. The _C. elegans_ LAR-like receptor tyrosine phosphatase PTP-3 and the VAB-1


Eph receptor tyrosine kinase have partly redundant functions in morphogenesis. _Development_ 129, 2141–2153 (2002). CAS  PubMed  Google Scholar  * Haj, F. G., Markova, B., Klaman, L. D.,


Bohmer, F. D. & Neel, B. G. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. _J. Biol. Chem._ 278, 739–744 (2003). CAS  PubMed  Google Scholar  *


Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. _Science_ 298, 1912–1934 (2002). CAS  PubMed  Google Scholar  *


Lander, E. S. et al. Initial sequencing and analysis of the human genome. _Nature_ 409, 860–921 (2001). CAS  PubMed  Google Scholar  * Venter, J. C. et al. The sequence of the human genome.


_Science_ 291, 1304–1351 (2001). CAS  PubMed  Google Scholar  * Tonks, N. K. & Neel, B. G. Combinatorial control of the specificity of protein tyrosine phosphatases. _Curr. Opin. Cell


Biol._ 13, 182–195 (2001). CAS  PubMed  Google Scholar  * Hubbard, M. J. & Cohen, P. On target with a new mechanism for the regulation of protein phosphorylation. _Trends Biochem. Sci._


18, 172–177 (1993). CAS  PubMed  Google Scholar  * Denu, J. M. & Dixon, J. E. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. _Curr. Opin. Chem. Biol._ 2, 633–641


(1998). CAS  PubMed  Google Scholar  * Espanel, X., Huguenin-Reggiani, M. & Van Huijsduijnen, R. H. The SPOT technique as a tool for studying protein tyrosine phosphatase substrate


specificities. _Protein Sci._ 11, 2326–2334 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Xie, L., Zhang, Y. L. & Zhang, Z. Y. Design and characterization of an improved protein


tyrosine phosphatase substrate-trapping mutant. _Biochemistry_ 41, 4032–4039 (2002). CAS  PubMed  Google Scholar  * Meng, T. C., Fukada, T. & Tonks, N. K. Reversible oxidation and


inactivation of protein tyrosine phosphatases _in vivo_. _Mol. Cell_ 9, 387–399 (2002). ONE OF THE FIRST PAPERS TO IDENTIFY OXIDATION AS A REVERSIBLE POST-TRANSLATIONAL MODIFICATION OF


PHOSPHATASES. THIS DISCOVERY NOT ONLY INDICATES A POSSIBLE METHOD FOR PLACEMENT OF PHOSPHATASES WITHIN SPECIFIC SIGNALLING CASCADES, BUT ALSO THAT THIS MIGHT BE AN IMPORTANT MECHANISM FOR


THE DOWNREGULATION OF PHOSPHATASE ACTIVITY AND CONSEQUENT AMPLIFICATION OF A TYROSINE KINASE SIGNAL. CAS  PubMed  Google Scholar  * Burke, T. R. Jr & Zhang, Z. Y. Protein-tyrosine


phosphatases: structure, mechanism, and inhibitor discovery. _Biopolymers_ 47, 225–241 (1998). CAS  PubMed  Google Scholar  * Huang, P. et al. Structure-based design and discovery of novel


inhibitors of protein tyrosine phosphatases. _Bioorg. Med. Chem._ 11, 1835–1849 (2003). CAS  PubMed  Google Scholar  * Elbashir, S. M., Harborth, J., Weber, K. & Tuschl, T. Analysis of


gene function in somatic mammalian cells using small interfering RNAs. _Methods_ 26, 199–213 (2002). CAS  PubMed  Google Scholar  * Kirchner, J., Kam, Z., Tzur, G., Bershadsky, A. D. &


Geiger, B. Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. _J. Cell Sci._ 116, 975–986 (2003). CAS  PubMed  Google Scholar  * Zhang, J.,


Ma, Y., Taylor, S. S. & Tsien, R. Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. _Proc. Natl Acad. Sci. USA_ 98, 14997–15002 (2001).


THIS INNOVATIVE STUDY MAKES USE OF A REPORTER CONSTRUCT TO IMAGE THE LOCALIZATION AND DYNAMICS OF SERINE/THREONINE KINASE AND PHOSPHATASE ACTIVITY IN LIVE CELLS BY FLUORESCENCE RESONANCE


ENERGY TRANSFER (FRET). CAS  PubMed  PubMed Central  Google Scholar  * Ting, A. Y., Kain, K. H., Klemke, R. L. & Tsien, R. Y. Genetically encoded fluorescent reporters of protein


tyrosine kinase activities in living cells. _Proc. Natl Acad. Sci. USA_ 98, 15003–15008 (2001). THIS STUDY CONFIRMS THAT THE FRET TECHNIQUE FOR STUDYING THE LOCALIZATION OF


KINASE/PHOSPHATASE ACTIVITY IN LIVE CELLS DEVELOPED BY REFERENCE 109 IS APPLICABLE TO TYROSINE KINASES AND PHOSPHATASES. CAS  PubMed  PubMed Central  Google Scholar  * Simpson, L. &


Parsons, R. PTEN: life as a tumor suppressor. _Exp. Cell Res._ 264, 29–41 (2001). CAS  PubMed  Google Scholar  * van Huijsduijnen, R. H., Bombrun, A. & Swinnen, D. Selecting protein


tyrosine phosphatases as drug targets. _Drug Discov. Today_ 7, 1013–1019 (2002). Google Scholar  * Andersen, J. N. et al. Structural and evolutionary relationships among protein tyrosine


phosphatase domains. _Mol. Cell. Biol._ 21, 7117–7136 (2001). THIS REVIEW PROVIDES AN EXCELLENT OVERVIEW OF THE STRUCTURE, FUNCTION AND EVOLUTIONARY RELATIONSHIPS AMONG THE PTP FAMILY


MEMBERS (SEE ALSO PHOSPHATASES IN ONLINE LINKS). CAS  PubMed  PubMed Central  Google Scholar  * Keyse, S. M. Protein phosphatases and the regulation of mitogen-activated protein kinase


signalling. _Curr. Opin. Cell Biol._ 12, 186–192 (2000). CAS  PubMed  Google Scholar  * Mauro, L. J. & Dixon, J. E. 'Zip codes' direct intracellular protein tyrosine


phosphatases to the correct cellular 'address'. _Trends Biochem. Sci._ 19, 151–155 (1994). CAS  PubMed  Google Scholar  * Barford, D., Das, A. K. & Egloff, M. P. The structure


and mechanism of protein phosphatases: insights into catalysis and regulation. _Annu. Rev. Biophys. Biomol. Struct._ 27, 133–164 (1998). CAS  PubMed  Google Scholar  * Rohrschneider, L. R.,


Fuller, J. F., Wolf, I., Liu, Y. & Lucas, D. M. Structure, function, and biology of SHIP proteins. _Genes Dev._ 14, 505–520 (2000). CAS  PubMed  Google Scholar  * Cohen, P. The origins


of protein phosphorylation. _Nature Cell Biol._ 4, E127–E130 (2002). THIS ARTICLE GIVES AN EXCELLENT HISTORY OF THE DISCOVERY OF CELLULAR PROTEIN PHOSPHORYLATION. CAS  PubMed  Google Scholar


  * Harder, K. W., Moller, N. P., Peacock, J. W. & Jirik, F. R. Protein-tyrosine phosphatase α regulates Src family kinases and alters cell-substratum adhesion. _J. Biol. Chem._ 273,


31890–31900 (1998). CAS  PubMed  Google Scholar  * Palka, H. L., Park, M. & Tonks, N. K. Hepatocyte growth factor receptor tyrosine kinase Met is a substrate of the receptor


protein-tyrosine phosphatase DEP-1. _J. Biol. Chem._ 278, 5728–5735 (2003). CAS  PubMed  Google Scholar  * Muller, T., Choidas, A., Reichmann, E. & Ullrich, A. Phosphorylation and free


pool of β-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. _J. Biol. Chem._ 274, 10173–10183 (1999). CAS  PubMed  Google Scholar  * Hart,


M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human axin and its association with the APC tumor suppressor, β-catenin and GSK3β.


_Curr. Biol._ 8, 573–581 (1998). CAS  PubMed  Google Scholar  * Polakis, P. Wnt signaling and cancer. _Genes Dev._ 14, 1837–1851 (2000). CAS  PubMed  Google Scholar  * Muller, T., Bain, G.,


Wang, X. & Papkoff, J. Regulation of epithelial cell migration and tumor formation by β-catenin signaling. _Exp. Cell Res._ 280, 119–133 (2002). PubMed  Google Scholar  * Persad, S.,


Troussard, A. A., McPhee, T. R., Mulholland, D. J. & Dedhar, S. Tumor suppressor PTEN inhibits nuclear accumulation of β-catenin and T cell/lymphoid enhancer factor 1-mediated


transcriptional activation. _J. Cell Biol._ 153, 1161–1174 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Johnson, K. G. & Van Vactor, D. Receptor protein tyrosine phosphatases


in nervous system development. _Physiol. Rev._ 83, 1–24 (2003). CAS  PubMed  Google Scholar  * Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of


serine/threonine phosphatases implicated in cell growth and signalling. _Biochem. J._ 353, 417–439 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Yu, X. X. et al. Methylation of the


protein phosphatase 2A catalytic subunit is essential for association of B α regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. _Mol. Biol. Cell_ 12, 185–199


(2001). CAS  PubMed  PubMed Central  Google Scholar  * Wallace, M. J., Fladd, C., Batt, J. & Rotin, D. The second catalytic domain of protein tyrosine phosphatase δ (PTPδ) binds to and


inhibits the first catalytic domain of PTPσ. _Mol. Cell. Biol._ 18, 2608–2616 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Desai, D. M., Sap, J., Schlessinger, J. & Weiss, A.


Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. _Cell_ 73, 541–554 (1993). CAS  PubMed  Google Scholar  * Lechleider, R. J. et al. Activation


of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor. _J. Biol. Chem._ 268, 21478–21481


(1993). CAS  PubMed  Google Scholar  * Chen, J., Martin, B. L. & Brautigan, D. L. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. _Science_ 257,


1261–1264 (1992). CAS  PubMed  Google Scholar  * Lu, W., Gong, D., Bar-Sagi, D. & Cole, P. A. Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine


phosphorylation of SHP-2 in cell signaling. _Mol. Cell_ 8, 759–769 (2001). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We regret that we were able to review only a


portion of the extensive work in this field due to length constraints. M.L. is supported by a National Insitutes of Health grant for postdoctoral fellows. M.L.T. is a Scientist of the


Canadian Institutes of Health Research. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and


Craniofacial Research, National Institutes of Health, Building 30/Room 421, 30 Convent Drive, MSC 4370, Bethesda, 20892-4370, Maryland, USA Melinda Larsen & Kenneth M. Yamada * McGill


Cancer Centre and Department of Biochemistry, McGill University, Montreal, H3G 1Y6, Quebec, Canada Michel L. Tremblay Authors * Melinda Larsen View author publications You can also search


for this author inPubMed Google Scholar * Michel L. Tremblay View author publications You can also search for this author inPubMed Google Scholar * Kenneth M. Yamada View author publications


You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Melinda Larsen or Michel L. Tremblay. RELATED LINKS RELATED LINKS DATABASES FLYBASE


Slingshot INTERPRO ADF B′ phosphatases PP PTP SH2 LOCUSLINK LMW-PTP PTEN PTP-PEST SHP2 SWISS-PROT FAK LIMK POPX1 POPX2 PP1 PP2A PTP1B PTPα PTPδ PTPσ PTPφ SHIP SHPS1 FURTHER INFORMATION


Kinases Kinases Migration Phosphatases PPs PPs PTPs PTPs SHIPs GLOSSARY * LAMELLIPODIUM A thin, flat extension at the cell periphery that is filled with a branching meshwork of actin


filaments. * LEADING EDGE The leading, or foremost, region of a motile cell. * FILOPODIA Thin protrusions from cells that are usually supported by microfilaments. * RHO FAMILY OF SMALL


GTPASES A family of monomeric G proteins that comprises isoforms of Rho, Rac and Cdc42. These are important molecular switches and they control cytoskeletal assembly and contraction. *


EXTRACELLULAR MATRIX (ECM). The complex, multi-molecular material that surrounds cells. The ECM comprises a scaffold upon which tissues are organized, it provides cellular microenvironments


and it regulates a variety of cellular functions. * FOCAL COMPLEX A cell–substrate adhesion structure that mediates initial cell adhesion. Formation of the structure is promoted by Rac, and


it can mature to form a focal adhesion. * FOCAL ADHESION A cell-to-substrate adhesion structure that anchors the ends of actin microfilaments (stress fibres) and mediates strong attachment


to substrates. * ACTIN CYTOSKELETON A cytoplasmic structural framework within cells that is composed of F-actin and associated molecules. * INTEGRINS A group of heterodimeric, transmembrane


adhesion receptors for extracellular-matrix proteins such as fibronectin and vitronectin. * STRESS FIBRE Also termed an 'actin microfilament bundle'. A bundle of parallel filaments


that contains F-actin and other contractile molecules, which often stretches between cell attachments as if under stress. * RAFT A discrete detergent-insoluble, glycosphingolipid-,


sphingomyelin- and cholesterol-enriched domain within cellular membranes, where certain signalling lipids and transmembrane proteins that are involved in signalling are thought to be


concentrated. * REACTIVE OXYGEN SPECIES (ROS). Oxygen molecules, containing an unpaired electron in their outermost shell of electrons in an extremely unstable configuration, which quickly


react with another molecule to achieve a stable configuration. * 3D-MATRIX ADHESION A long, thin cell–extracellular-matrix adhesion structure that contains the α5β1 integrin, which is


characteristically formed at cell attachments to 3-dimensional, fibronectin-rich extracellular fibrils. * FIBRILLAR ADHESION An elongated cell–extracellular-matrix adhesion structure that


contains the α5β1 integrin, tensin and fibronectin, and that seems to generate fibronectin fibrils using directed translocation of integrins and cellular contractility. * PODOSOME A circular


cell–substrate adhesion structure that contains integrins and associated proteins such as gelsolin and cortactin, which surround a dense core of actin. * HOLOENZYME An enzyme that consists


of more than one subunit, each usually carrying out a different function and often existing as more than one isoform. * CHEMOTAXIS A type of migration that is stimulated by a gradient of a


chemical stimulant or chemoattractant. * ADHERENS JUNCTIONS Specialized cell–cell adhesions found in epithelium, which contain transmembrane E-cadherin that connects with the cytoskeleton. *


EPITHELIAL–MESENCHYMAL TRANSITION (EMT). A transition of epithelial cells to a migratory phenotype that is more typical of mesenchymal cells. EMT is characterized by loss of adherens


junctions and desmosomes with the acquisition of cell–matrix adhesions, and is necessary at many stages of embryonic development. * AXONAL PATHFINDING The process by which extending nerve


fibres find their way to destinations. * DORSAL CLOSURE A process during _Drosophila_ development in which two epithelial sheets converge, in a coordinated fashion, to close the embryo. *


PRIMITIVE STREAK The site of migration of the mesoderm and definitive endoderm cells from the exterior to the interior of the embryo during gastrulation. It defines the axes of the


developing embryo. * GASTRULATION The process during embryonic development that transforms a blastula into a gastrula and generates the embryonic cell layers: ectoderm, endoderm and


mesoderm. * APICAL ECTODERMAL RIDGE (AER). A region of ectoderm at the distal tip of a limb-bud that is induced by the underlying mesenchyme and is required for sustained outgrowth of the


limb. * SUBSTRATE-TRAPPING MUTANT A phosphatase containing a mutation that allows it to bind to and dephosphorylate a substrate, but not to release it. These are useful tools that allow the


transient association of phosphatases and their substrates to be 'frozen' and so more easily detected. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Larsen, M., Tremblay, M. & Yamada, K. Phosphatases in cell–matrix adhesion and migration. _Nat Rev Mol Cell Biol_ 4, 700–711 (2003). https://doi.org/10.1038/nrm1199 Download


citation * Issue Date: 01 September 2003 * DOI: https://doi.org/10.1038/nrm1199 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable


link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative