Prediction of antibiotic resistance: time for a new preclinical paradigm?

Prediction of antibiotic resistance: time for a new preclinical paradigm?

Play all audios:

Loading...

ABSTRACT Predicting the future is difficult, especially for evolutionary processes that are influenced by numerous unknown factors. Still, this is what is required of drug developers when


they assess the risk of resistance arising against a new antibiotic candidate during preclinical development. In this Opinion article, we argue that the traditional procedures that are used


for the prediction of antibiotic resistance today could be markedly improved by including a broader analysis of bacterial fitness, infection dynamics, horizontal gene transfer and other


factors. This will lead to more informed preclinical decisions for continuing or discontinuing the development of drug candidates. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value


online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS QUANTITATIVE SYSTEMS-BASED PREDICTION OF ANTIMICROBIAL


RESISTANCE EVOLUTION Article Open access 07 September 2023 EVOLUTIONARY ACTION OF MUTATIONS REVEALS ANTIMICROBIAL RESISTANCE GENES IN ESCHERICHIA COLI Article Open access 09 June 2022


METABOLIC FITNESS LANDSCAPES PREDICT THE EVOLUTION OF ANTIBIOTIC RESISTANCE Article 04 March 2021 REFERENCES * [No authors listed.] Tackling drug-resistant infections globally: final report


and recommendations (review on antimicrobial resistance, 2016). _AMR Review_ https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf (2016). * Gilmore, M. S.,


Lebreton, F. & van Schaik, W. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. _Curr. Opin.


Microbiol._ 16, 10–16 (2013). Article  PubMed  PubMed Central  Google Scholar  * zur Wiesch, P. A., Kouyos, R., Engelstädter, J., Regoes, R. R. & Bonhoeffer, S. Population biological


principles of drug-resistance evolution in infectious diseases. _Lancet Infect. Dis._ 11, 236–247 (2011). Article  PubMed  Google Scholar  * Smith, M. R. & Wood, W. B. An experimental


analysis of the curative action of penicillin in acute bacterial infections. III. The effect of suppuration upon the antibacterial action of the drug. _J. Exp. Med._ 103, 509–522 (1956).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Palaci, M. et al. Cavitary disease and quantitative sputum bacillary load in cases of pulmonary tuberculosis. _J. Clin. Microbiol._


45, 4064–4066 (2007). Article  PubMed  PubMed Central  Google Scholar  * Feldman, W. E. Concentrations of bacteria in cerebrospinal fluid of patients with bacterial meningitis. _J. Pediatr._


88, 549–552 (1976). Article  CAS  PubMed  Google Scholar  * Canetti, G. Present aspects of bacterial resistance in tuberculosis. _Am. Rev. Respir. Dis._ 92, 687–703 (1965). CAS  PubMed 


Google Scholar  * Canetti, G. Dynamic aspects of the pathology and bacteriology of tuberculous lesions. _Am. Rev. Tuberc._ 74, 13–21 (1956). CAS  PubMed  Google Scholar  * Foster, P. L.


Methods for determining spontaneous mutation rates. _Methods Enzymol._ 409, 195–213 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Drake, J. W., Charlesworth, B.,


Charlesworth, D. & Crow, J. F. Rates of spontaneous mutation. _Genetics_ 148, 1667–1686 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Lynch, M. Evolution of the mutation rate.


_Trends Genet._ 26, 345–352 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tubulekas, I., Buckingham, R. H. & Hughes, D. Mutant ribosomes can generate dominant


kirromycin resistance. _J. Bacteriol._ 173, 3635–3643 (1991). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lofton, H., Pränting, M., Thulin, E. & Andersson, D. I. Mechanisms


and fitness costs of resistance to antimicrobial peptides LL-37, CNY100HL and wheat germ histones. _PLoS ONE_ 8, e68875 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. _PLoS Pathog._ 7, e1002158 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nilsson,


A. I., Berg, O. G., Aspevall, O., Kahlmeter, G. & Andersson, D. I. Biological costs and mechanisms of fosfomycin resistance in _Escherichia coli_. _Antimicrob. Agents Chemother._ 47,


2850–2858 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Thulin, E., Sundqvist, M. & Andersson, D. I. Amdinocillin (mecillinam) resistance mutations in clinical isolates


and laboratory-selected mutants of _Escherichia coli_. _Antimicrob. Agents Chemother._ 59, 1718–1727 (2015). Article  PubMed  PubMed Central  Google Scholar  * Drusano, G. L., Louie, A.,


MacGowan, A. & Hope, W. Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 1. _Antimicrob. Agents Chemother._ 60, 1183–1193 (2015). Article  CAS


  PubMed  Google Scholar  * Drusano, G. L., Hope, W., MacGowan, A. & Louie, A. Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 2. _Antimicrob.


Agents Chemother._ 60, 1194–1201 (2015). Article  CAS  PubMed  Google Scholar  * Chancey, S. T., Zähner, D. & Stephens, D. S. Acquired inducible antimicrobial resistance in


Gram-positive bacteria. _Future Microbiol._ 7, 959–978 (2012). Article  CAS  PubMed  Google Scholar  * Chevereau, G. et al. Quantifying the determinants of evolutionary dynamics leading to


drug resistance. _PLoS Biol._ 13, e1002299 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar  * Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it


possible to reverse resistance? _Nat. Rev. Microbiol._ 8, 260–271 (2010). Article  CAS  PubMed  Google Scholar  * Andersson, D. I. & Levin, B. R. The biological cost of antibiotic


resistance. _Curr. Opin. Microbiol._ 2, 489–493 (1999). Article  CAS  PubMed  Google Scholar  * Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of adaptation in asexual


populations. _Science_ 342, 1364–1367 (2013). Article  CAS  PubMed  Google Scholar  * Hughes, D. & Andersson, D. I. Evolutionary consequences of drug resistance: shared principles across


diverse targets and organisms. _Nat. Rev. Genet._ 16, 459–471 (2015). Article  CAS  PubMed  Google Scholar  * Brandis, G., Pietsch, F., Alemayehu, R. & Hughes, D. Comprehensive


phenotypic characterization of rifampicin resistance mutations in _Salmonella_ provides insight into the evolution of resistance in _Mycobacterium tuberculosis_. _J. Antimicrob. Chemother._


70, 680–685 (2015). Article  CAS  PubMed  Google Scholar  * O'Neill, A. J., Huovinen, T., Fishwick, C. W. G. & Chopra, I. Molecular genetic and structural modeling studies of


_Staphylococcus aureus_ RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. _Antimicrob. Agents Chemother._ 50, 298–309 (2006). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Bottger, E. C., Springer, B., Pletschette, M. & Sander, P. Fitness of antibiotic-resistant microorganisms and compensatory mutations. _Nat.


Med._ 4, 1343–1344 (1998). Article  CAS  PubMed  Google Scholar  * Sander, P. et al. Fitness cost of chromosomal drug resistance-conferring mutations. _Antimicrob. Agents Chemother._ 46,


1204–1211 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shcherbakov, D. et al. Directed mutagenesis of _Mycobacterium smegmatis_ 16S rRNA to reconstruct the _in vivo_


evolution of aminoglycoside resistance in _Mycobacterium tuberculosis_. _Mol. Microbiol._ 77, 830–840 (2010). Article  CAS  PubMed  Google Scholar  * Foucault, M.-L., Depardieu, F.,


Courvalin, P. & Grillot-Courvalin, C. Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. _Proc. Natl Acad. Sci. USA_ 107, 16964–16969 (2010).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Andersson, D. I. & Hughes, D. Microbiological effects of sublethal levels of antibiotics. _Nat. Rev. Microbiol._ 12, 465–478


(2014). Article  CAS  PubMed  Google Scholar  * Gullberg, E., Albrecht, L. M., Karlsson, C., Sandegren, L. & Andersson, D. I. Selection of a multidrug resistance plasmid by sublethal


levels of antibiotics and heavy metals. _mBio_ 5, e01918-14 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Oz, T. et al. Strength of selection pressure is an important


parameter contributing to the complexity of antibiotic resistance evolution. _Mol. Biol. Evol._ 31, 2387–2401 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * De Visser, J. A.


G. M. & Krug, J. Empirical fitness landscapes and the predictability of evolution. _Nat. Rev. Genet._ 15, 480–490 (2014). Article  CAS  PubMed  Google Scholar  * Kondrashov, D. A. &


Kondrashov, F. A. Topological features of rugged fitness landscapes in sequence space. _Trends Genet._ 31, 24–33 (2015). Article  CAS  PubMed  Google Scholar  * Brandis, G. & Hughes, D.


Genetic characterization of compensatory evolution in strains carrying _rpoB_ Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. _J. Antimicrob.


Chemother._ 68, 2493–2497 (2013). Article  CAS  PubMed  Google Scholar  * Brandis, G., Wrande, M., Liljas, L. & Hughes, D. Fitness-compensatory mutations in rifampicin-resistant RNA


polymerase. _Mol. Microbiol._ 85, 142–151 (2012). Article  CAS  PubMed  Google Scholar  * Lannergård, J. et al. Genetic complexity of fusidic acid-resistant small colony variants (SCV) in


_Staphylococcus aureus_. _PLoS ONE_ 6, e28366 (2011). Article  PubMed  PubMed Central  CAS  Google Scholar  * Marcusson, L. L., Frimodt-Møller, N. & Hughes, D. Interplay in the selection


of fluoroquinolone resistance and bacterial fitness. _PLoS Pathog._ 5, e1000541 (2009). Article  PubMed  PubMed Central  CAS  Google Scholar  * Schrag, S. J., Perrot, V. & Levin, B. R.


Adaptation to the fitness costs of antibiotic resistance in _Escherichia coli_. _Proc. Biol. Sci._ 264, 1287–1291 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Angst, D. C.


& Hall, A. R. The cost of antibiotic resistance depends on evolutionary history in _Escherichia coli_. _BMC Evol. Biol._ 13, 163 (2013). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Komp Lindgren, P., Marcusson, L. L., Sandvang, D., Frimodt-Møller, N. & Hughes, D. Biological cost of single and multiple norfloxacin resistance mutations in _Escherichia


coli_ implicated in urinary tract infections. _Antimicrob. Agents Chemother._ 49, 2343–2351 (2005). Article  CAS  PubMed  Google Scholar  * Trindade, S. et al. Positive epistasis drives the


acquisition of multidrug resistance. _PLoS Genet._ 5, e1000578 (2009). Article  PubMed  PubMed Central  CAS  Google Scholar  * Björkman, J., Samuelsson, P., Andersson, D. I. & Hughes, D.


Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of _Salmonella typhimurium_. _Mol. Microbiol._ 31, 53–58 (1999). Article  PubMed  Google


Scholar  * Hall, A. R. & MacLean, R. C. Epistasis buffers the fitness effects of rifampicin-resistance mutations in _Pseudomonas aeruginosa_. _Evolution_ 70, 1161–1161 (2016). Article 


PubMed  Google Scholar  * Rozen, D. E., McGee, L., Levin, B. R. & Klugman, K. P. Fitness costs of fluoroquinolone resistance in _Streptococcus pneumoniae_. _Antimicrob. Agents


Chemother._ 51, 412–416 (2007). Article  CAS  PubMed  Google Scholar  * Vogwill, T., Kojadinovic, M. & MacLean, R. C. Epistasis between antibiotic resistance mutations and genetic


background shape the fitness effect of resistance across species of _Pseudomonas_. _Proc. Biol. Sci._ 283, 20160151 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Vogwill,


T. & MacLean, R. C. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. _Evol. Appl._ 8, 284–295 (2015). Article  PubMed  Google Scholar  *


Johanson, U., Ævarsson, A., Liljas, A. & Hughes, D. The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. _J. Mol. Biol._ 258, 420–432 (1996). Article


  CAS  PubMed  Google Scholar  * Nagaev, I., Bjorkman, J., Andersson, D. I. & Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant _Staphylococcus aureus_.


_Mol. Microbiol._ 40, 433–439 (2001). Article  CAS  PubMed  Google Scholar  * Salverda, M. L. M. et al. Initial mutations direct alternative pathways of protein evolution. _PLoS Genet._ 7,


e1001321 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few


mutational paths to fitter proteins. _Science_ 312, 111–114 (2006). Article  CAS  PubMed  Google Scholar  * Dahlberg, C. & Chao, L. Amelioration of the cost of conjugative plasmid


carriage in _Eschericha coli_ K12. _Genetics_ 165, 1641–1649 (2003). CAS  PubMed  PubMed Central  Google Scholar  * Loftie-Eaton, W. et al. Evolutionary paths that expand plasmid host-range:


implications for spread of antibiotic resistance. _Mol. Biol. Evol._ 33, 885–897 (2016). Article  CAS  PubMed  Google Scholar  * San Millan, A., Heilbron, K. & MacLean, R. C. Positive


epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations. _ISME J._ 8, 601–612 (2014). Article  CAS  PubMed  Google Scholar  * San Millan, A. et al.


Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. _Nat. Commun._ 5, 5208–5211 (2014). Article  CAS  PubMed  Google Scholar  * Silva, R. F. et


al. Pervasive sign epistasis between conjugative plasmids and drug-resistance chromosomal mutations. _PLoS Genet._ 7, e1002181 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Porse, A., Schønning, K., Munck, C. & Sommer, M. O. A. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts. _Mol. Biol. Evol._ 33, 2860–2873


(2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Alekshun, M. N. & Levy, S. B. Molecular mechanisms of antibacterial multidrug resistance. _Cell_ 128, 1037–1050 (2007).


Article  CAS  PubMed  Google Scholar  * Palmer, A. C. & Kishony, R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. _Nat. Rev. Genet._ 14,


243–248 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Garcia, L. G. et al. Antibiotic activity against small-colony variants of _Staphylococcus aureus_: review of _in


vitro_, animal and clinical data. _J. Antimicrob. Chemother._ 68, 1455–1464 (2013). Article  CAS  PubMed  Google Scholar  * Munck, C., Gumpert, H. K., Wallin, A. I. N., Wang, H. H. &


Sommer, M. O. A. Prediction of resistance development against drug combinations by collateral responses to component drugs. _Sci. Transl Med._ 6, 262ra156 (2014). Article  PubMed  PubMed


Central  CAS  Google Scholar  * Imamovic, L. & Sommer, M. O. A. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. _Sci. Transl


Med._ 5, 204ra132 (2013). Article  CAS  PubMed  Google Scholar  * Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug


resistance. _Proc. Natl Acad. Sci. USA_ 111, 14494–14499 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lázár, V. et al. Genome-wide analysis captures the determinants of


the antibiotic cross-resistance interaction network. _Nat. Commun._ 5, 4352 (2014). Article  PubMed  CAS  Google Scholar  * Pena-Miller, R. et al. When the most potent combination of


antibiotics selects for the greatest bacterial load: the smile–frown transition. _PLoS Biol._ 11, e1001540 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Périchon, B. &


Courvalin, P. Synergism between β-lactams and glycopeptides against VanA-type methicillin-resistant _Staphylococcus aureus_ and heterologous expression of the vanA operon. _Antimicrob.


Agents Chemother._ 50, 3622–3630 (2006). Article  PubMed  PubMed Central  CAS  Google Scholar  * Brolund, A. & Sandegren, L. Characterization of ESBL disseminating plasmids. _Infect.


Dis. (Lond.)_ 48, 18–25 (2016). Article  CAS  Google Scholar  * Mathers, A. J., Peirano, G. & Pitout, J. D. D. The role of epidemic resistance plasmids and international high-risk clones


in the spread of multidrug-resistant Enterobacteriaceae. _Clin. Microbiol. Rev._ 28, 565–591 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Molton, J. S., Tambyah, P. A.,


Ang, B. S. P., Ling, M. L. & Fisher, D. A. The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. _Clin. Infect. Dis._ 56, 1310–1318 (2013).


Article  CAS  PubMed  Google Scholar  * Bean, D. C., Livermore, D. M., Papa, I. & Hall, L. M. C. Resistance among _Escherichia coli_ to sulphonamides and other antimicrobials now little


used in man. _J. Antimicrob. Chemother._ 56, 962–964 (2005). Article  CAS  PubMed  Google Scholar  * Enne, V. I., Livermore, D. M., Stephens, P. & Hall, L. M. Persistence of sulphonamide


resistance in _Escherichia coli_ in the UK despite national prescribing restriction. _Lancet_ 357, 1325–1328 (2001). Article  CAS  PubMed  Google Scholar  * Sundqvist, M. et al. Little


evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. _J. Antimicrob. Chemother._ 65, 350–360 (2010). Article  CAS  PubMed  Google Scholar  *


Locke, J. B., Hilgers, M. & Shaw, K. J. Novel ribosomal mutations in _Staphylococcus aureus_ strains identified through selection with the oxazolidinones linezolid and torezolid


(TR-700). _Antimicrob. Agents Chemother._ 53, 5265–5274 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gordon, D. M. & Riley, M. A. A theoretical and experimental


analysis of bacterial growth in the bladder. _Mol. Microbiol._ 6, 555–562 (1992). Article  CAS  PubMed  Google Scholar  * Sandegren, L., Lindqvist, A., Kahlmeter, G. & Andersson, D. I.


Nitrofurantoin resistance mechanism and fitness cost in _Escherichia coli_. _J. Antimicrob. Chemother._ 62, 495–503 (2008). Article  CAS  PubMed  Google Scholar  * Thomas, C. M. &


Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. _Nat. Rev. Microbiol._ 3, 711–721 (2005). Article  CAS  PubMed  Google Scholar  * Naseer, U. &


Sundsfjord, A. The CTX-M conundrum: dissemination of plasmids and _Escherichia coli_ clones. _Microb. Drug Resist._ 17, 83–97 (2011). Article  CAS  PubMed  Google Scholar  * Allen, H. K.,


Moe, L. A., Rodbumrer, J., Gaarder, A. & Handelsman, J. Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. _ISME J._ 3, 243–251 (2008). Article  CAS  PubMed 


Google Scholar  * D'Costa, V. M. et al. Antibiotic resistance is ancient. _Nature_ 477, 457–461 (2011). Article  CAS  PubMed  Google Scholar  * Sommer, M. O. A., Dantas, G. &


Church, G. M. Functional characterization of the antibiotic resistance reservoir in the human microflora. _Science_ 325, 1128–1131 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Munck, C. et al. Limited dissemination of the wastewater treatment plant core resistome. _Nat. Commun._ 6, 8452 (2015). Article  CAS  PubMed  Google Scholar  * Forsberg, K. J. et


al. Bacterial phylogeny structures soil resistomes across habitats. _Nature_ 509, 612–616 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kahlmeter, G. & Poulsen, H. O.


Antimicrobial susceptibility of _Escherichia coli_ from community-acquired urinary tract infections in Europe: the ECO·SENS study revisited. _Int. J. Antimicrob. Agents_ 39, 45–51 (2012).


Article  CAS  PubMed  Google Scholar  * Huseby, D. L. et al. Mutation supply and relative fitness shape the genotypes of ciprofloxacin-resistant _Escherichia coli_. _Mol. Biol. Evol._ 34,


1029–1039 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Moore, A. M., Munck, C., Sommer, M. O. A. & Dantas, G. Functional metagenomic investigations of the human intestinal


microbiota. _Front. Microbiol._ 2, 188 (2011). Article  PubMed  PubMed Central  Google Scholar  * Dantas, G. & Sommer, M. O. Context matters — the complex interplay between resistome


genotypes and resistance phenotypes. _Curr. Opin. Microbiol._ 15, 577–582 (2012). Article  PubMed  Google Scholar  * Yoon, E.-J. et al. Origin in _Acinetobacter gyllenbergii_ and


dissemination of aminoglycoside-modifying enzyme AAC(6′)-Ih. _J. Antimicrob. Chemother._ 71, 601–606 (2016). Article  CAS  PubMed  Google Scholar  * Martínez, J. L., Coque, T. M. &


Baquero, F. Prioritizing risks of antibiotic resistance genes in all metagenomes. _Nat. Rev. Microbiol._ 13, 396–396 (2015). Article  CAS  PubMed  Google Scholar  * Jaffé, A., Chabbert, Y.


A. & Derlot, E. Selection and characterization of β-lactam-resistant _Escherichia coli_ K-12 mutants. _Antimicrob. Agents Chemother._ 23, 622–625 (1983). Article  PubMed  PubMed Central


  Google Scholar  * George, A. M. & Levy, S. B. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in _Escherichia coli_: involvement of a


non-plasmid-determined efflux of tetracycline. _J. Bacteriol._ 155, 531–540 (1983). CAS  PubMed  PubMed Central  Google Scholar  * Heisig, P. & Tschorny, R. Characterization of


fluoroquinolone-resistant mutants of escherichia coli selected _in vitro_. _Antimicrob. Agents Chemother._ 38, 1284–1291 (1994). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Buckel, P., Buchberger, A., Böck, A. & Wittmann, H. G. Alteration of ribosomal protein L6 in mutants of _Escherichia coli_ resistant to gentamicin. _Mol. Gen. Genet._ 158, 47–54 (1977).


Article  CAS  PubMed  Google Scholar  * Adler, M., Anjum, M., Andersson, D. I. & Sandegren, L. Influence of acquired β-lactamases on the evolution of spontaneous carbapenem resistance in


_Escherichia coli_. _J. Antimicrob. Chemother._ 68, 51–59 (2013). Article  CAS  PubMed  Google Scholar  * Oakberg, E. F. & Luria, S. W. Mutations to sulfonamide resistance in


_Staphylococcus aureus_. _Genetics_ 32, 249–261 (1947). CAS  PubMed  PubMed Central  Google Scholar  * Zurenko, G. E. et al. _In vitro_ activities of U-100592 and U-100766, novel


oxazolidinone antibacterial agents. _Antimicrob. Agents Chemother._ 40, 839–845 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lewis, K. Platforms for antibiotic discovery.


_Nat. Rev. Drug. Discov._ 12, 371–387 (2013). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS Work in the authors' laboratories was supported by grants from


the Swedish Research Council (to D.I.A.), and the Novo Nordisk Foundation, the Lundbeck Foundation and the Danish Free Research Council (to M.O.A.S. and C.M.). AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * AntibioTx A/S, Kemitorvet, Lyngby DK-2800, Denmark; and at The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby DK-2800,


Denmark., Morten O. A. Sommer * and at The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby DK-2800, Denmark., Morten O. A. Sommer * Christian


Munck is at The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby DK-2800, Denmark., Christian Munck * AntibioTx A/S, Kemitorvet, Lyngby, DK-2800,


Denmark Rasmus Vendler Toft-Kehler * Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala, SE-751 23, Sweden Dan I. Andersson Authors * Morten O.


A. Sommer View author publications You can also search for this author inPubMed Google Scholar * Christian Munck View author publications You can also search for this author inPubMed Google


Scholar * Rasmus Vendler Toft-Kehler View author publications You can also search for this author inPubMed Google Scholar * Dan I. Andersson View author publications You can also search for


this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Dan I. Andersson. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare the following competing interests:


M.O.A.S. and R.T.K. are shareholders in AntibioTx; C.M. declares no competing interests; D.I.A. is a consultant for Prebona and Bactiguard. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1


POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Sommer, M., Munck,


C., Toft-Kehler, R. _et al._ Prediction of antibiotic resistance: time for a new preclinical paradigm?. _Nat Rev Microbiol_ 15, 689–696 (2017). https://doi.org/10.1038/nrmicro.2017.75


Download citation * Published: 31 July 2017 * Issue Date: November 2017 * DOI: https://doi.org/10.1038/nrmicro.2017.75 SHARE THIS ARTICLE Anyone you share the following link with will be


able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative