Coding and use of tactile signals from the fingertips in object manipulation tasks

Coding and use of tactile signals from the fingertips in object manipulation tasks

Play all audios:

Loading...

KEY POINTS * Object manipulation tasks comprise sequentially organized action phases that are generally delineated by distinct mechanical contact events representing task subgoals. To


achieve these subgoals, the brain selects and implements action-phase controllers that use sensory predictions and afferent signals to tailor motor output in anticipation of requirements


imposed by objects' physical properties. * Crucial control operations are centred on events that mark transitions between action phases. At these events, the CNS both receives and makes


predictions about sensory information from multiple sources. Mismatches between predicted and actual sensory outcomes can be used to quickly and flexibly launch corrective actions as


required. * Signals from tactile afferents provide rich information about both the timing and the physical nature of contact events. In addition, they encode information related to object


properties, including the shape and texture of contacted surfaces and the frictional conditions between these surfaces and the skin. * A central question is how tactile afferent information


is encoded and processed by the brain for the rapid detection and analysis of contact events. Recent evidence suggests that the relative timing of spikes in ensembles of tactile afferents


provides such information fast enough to account for the speed with which tactile signals are used in object manipulation tasks. * Contact events in manipulation can also be represented in


the visual and auditory modalities and this enables the brain to simultaneously evaluate sensory predictions in different modalities. Multimodal representations of subgoal events also


provide an opportunity for the brain to learn and uphold sensorimotor correlations that can be exploited by action-phase controllers. * A current challenge is to learn how the brain


implements the control operations that support object manipulations, such as processes involved in detecting sensory mismatches, triggering corrective actions, and creating, recruiting and


linking different action-phase controllers during task progression. The signal processing in somatosensory pathways for dynamic context-specific decoding of tactile afferent messages needs


to be better understood, as does the role of the descending control of these pathways. ABSTRACT During object manipulation tasks, the brain selects and implements action-phase controllers


that use sensory predictions and afferent signals to tailor motor output to the physical properties of the objects involved. Analysis of signals in tactile afferent neurons and central


processes in humans reveals how contact events are encoded and used to monitor and update task performance. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $189.00 per year only $15.75 per


issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS EFFICIENT TACTILE ENCODING OF OBJECT


SLIPPAGE Article Open access 01 August 2022 SENSORIMOTOR MEMORIES INFLUENCE MOVEMENT KINEMATICS BUT NOT ASSOCIATED TACTILE PROCESSING Article Open access 20 October 2023 NORMAL AND


TANGENTIAL FORCES COMBINE TO CONVEY CONTACT PRESSURE DURING DYNAMIC TACTILE STIMULATION Article Open access 17 May 2022 REFERENCES * Macefield, V. G. & Johansson, R. S. Control of grip


force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits. _Exp. Brain Res._ 108, 172–184 (1996). CAS  PubMed  Google Scholar


  * Macefield, V. G., Häger-Ross, C. & Johansson, R. S. Control of grip force during restraint of an object held between finger and thumb: responses of cutaneous afferents from the


digits. _Exp. Brain Res._ 108, 155–171 (1996). CAS  PubMed  Google Scholar  * Häger-Ross, C. & Johansson, R. S. Non-digital afferent input in reactive control of fingertip forces during


precision grip. _Exp. Brain Res._ 110, 131–141 (1996). PubMed  Google Scholar  * Dimitriou, M. & Edin, B. B. Discharges in human muscle receptor afferents during block grasping. _J.


Neurosci._ 28, 12632–12642 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Johansson, R. S. & Flanagan, J. R. in _The Senses: a Comprehensive Reference, Volume 6, Somatosensation_


(eds Gardner, E. & Kaas, J. H.) 67–86 (Academic, San Diego, 2008). Google Scholar  * Vallbo, A. B. & Johansson, R. S. Properties of cutaneous mechanoreceptors in the human hand


related to touch sensation. _Hum. Neurobiol._ 3, 3–14 (1984). CAS  PubMed  Google Scholar  * Johansson, R. S., Landström, U. & Lundström, R. Responses of mechanoreceptive afferent units


in the glabrous skin of the human hand to sinusoidal skin displacements. _Brain Res._ 244, 17–25 (1982). CAS  PubMed  Google Scholar  * Löfvenberg, J. & Johansson, R. S. Regional


differences and interindividual variability in sensitivity to vibration in the glabrous skin of the human hand. _Brain Res._ 301, 65–72 (1984). PubMed  Google Scholar  * Brisben, A. J.,


Hsiao, S. S. & Johnson, K. O. Detection of vibration transmitted through an object grasped in the hand. _J. Neurophysiol._ 81, 1548–1558 (1999). CAS  PubMed  Google Scholar  *


Loewenstein, W. R. & Skalak, R. Mechanical transmission in a Pacinian corpuscle. An analysis and a theory. _J. Physiol._ 182, 346–378 (1966). CAS  PubMed  PubMed Central  Google Scholar


  * Westling, G. & Johansson, R. S. Responses in glabrous skin mechanoreceptors during precision grip in humans. _Exp. Brain Res._ 66, 128–140 (1987). IMPULSES IN SINGLE TACTILE


AFFERENTS INNERVATING THE HUMAN FINGERTIPS WERE RECORDED FROM THE MEDIAN NERVE WHILE SMALL TEST OBJECTS WERE LIFTED, HELD IN THE AIR AND THEN REPLACED. DISTINCT DISCHARGES WERE OBSERVED AT


VARIOUS CONTACT EVENTS CORRESPONDING TO THE COMPLETION OF TASK SUBGOALS. CAS  PubMed  Google Scholar  * Knibestöl, M. Stimulus-response functions of slowly adapting mechanoreceptors in the


human glabrous skin area. _J. Physiol._ 245, 63–80 (1975). PubMed  PubMed Central  Google Scholar  * Johansson, R. S. Tactile sensibility in the human hand: receptive field characteristics


of mechanoreceptive units in the glabrous skin area. _J. Physiol._ 281, 101–125 (1978). CAS  PubMed  PubMed Central  Google Scholar  * Darian-Smith, I. in _Handbook of Physiology_ (eds,


Brookhart, J. M., Mountcastle, V. B., Darian-Smith, I. & Geiger, S. R.) 739–788 (American Physiological Society, Bethesda, Maryland, 1984). Google Scholar  * Johnson, K. O., Yoshioka, T.


& Vega-Bermudez, F. Tactile functions of mechanoreceptive afferents innervating the hand. _J. Clin. Neurophysiol._ 17, 539–558 (2000). CAS  PubMed  Google Scholar  * Goodwin, A. W.


& Wheat, H. E. Sensory signals in neural populations underlying tactile perception and manipulation. _Annu. Rev. Neurosci._ 27, 53–77 (2004). CAS  PubMed  Google Scholar  * Johnson, K.


O. & Hsiao, S. S. Neural mechanisms of tactual form and texture perception. _Annu. Rev. Neurosci._ 15, 227–250 (1992). CAS  PubMed  Google Scholar  * Craig, J. C. & Rollman, G. B.


Somesthesis. _Annu. Rev. Psychol._ 50, 305–331 (1999). CAS  PubMed  Google Scholar  * Sathian, K., Goodwin, A. W., John, K. T. & Darian-Smith, I. Perceived roughness of a grating:


correlation with responses of mechanoreceptive afferents innervating the monkey's fingerpad. _J. Neurosci._ 9, 1273–1279 (1989). CAS  PubMed  PubMed Central  Google Scholar  *


Johansson, R. S. & Vallbo, Å. B. Tactile sensory coding in the glabrous skin of the human hand. _Trends Neurosci._ 6, 27–31 (1983). Google Scholar  * Bisley, J. W., Goodwin, A. W. &


Wheat, H. E. Slowly adapting type I afferents from the sides and end of the finger respond to stimuli on the center of the fingerpad. _J. Neurophysiol._ 84, 57–64 (2000). CAS  PubMed  Google


Scholar  * Birznieks, I., Jenmalm, P., Goodwin, A. W. & Johansson, R. S. Encoding of direction of fingertip forces by human tactile afferents. _J. Neurosci._ 21, 8222–8237 (2001). CAS 


PubMed  PubMed Central  Google Scholar  * Jenmalm, P., Birznieks, I., Goodwin, A. W. & Johansson, R. S. Influences of object shape on responses in human tactile afferents under


conditions characteristic for manipulation. _Eur. J. Neurosci._ 18, 164–176 (2003). PubMed  Google Scholar  * Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. in _Parallel Distributed


processing_ VOL. 1 (eds Rumelhart, D. E. & McClelland, J. L.) 77–109 (MIT Press, Cambridge, Massachusetts, 1986). Google Scholar  * Eurich, C. W. & Schwegler, H. Coarse coding:


calculation of the resolution achieved by a population of large receptive field neurons. _Biol. Cybern._ 76, 357–363 (1997). CAS  PubMed  Google Scholar  * Maeno, T. & Kobayashi, K. FE


analysis of the dynamic characteristics of the human finger pad in contact with objects with/without surface roughness. _Proc. 1998 Am. Soc. Mech. Eng. Int. Mech. Eng. Congress Exposition_


64, 279–286 (1998). Google Scholar  * Maeno, T., Kobayashi, K. & Yamazaki, N. Relationship between the structure of human finger tissue and the location of tactile receptors. _JSME Int.


J._ 41, 94–100 (1998). Google Scholar  * Serina, E. R., Mockensturm, E., Mote, C. D. Jr & Rempel, D. A structural model of the forced compression of the fingertip pulp. _J. Biomech._ 31,


639–646 (1998). CAS  PubMed  Google Scholar  * Srinivasan, M. A. & Dandekar, K. An investigation of the mechanics of tactile sense using two-dimensional models of the primate fingertip.


_J. Biomech. Eng._ 118, 48–55 (1996). CAS  PubMed  Google Scholar  * Nakazawa, N., Ikeura, R. & Inooka, H. Characteristics of human fingertips in the shearing direction. _Biol. Cybern._


82, 207–214 (2000). CAS  PubMed  Google Scholar  * Dandekar, K., Raju, B. I. & Srinivasan, M. A. 3-D finite-element models of human and monkey fingertips to investigate the mechanics of


tactile sense. _J. Biomech. Eng._ 125, 682–691 (2003). PubMed  Google Scholar  * Wu, J. Z., Dong, R. G., Smutz, W. P. & Schopper, A. W. Modeling of time-dependent force response of


fingertip to dynamic loading. _J. Biomech._ 36, 383–392 (2003). CAS  PubMed  Google Scholar  * Wu, J. Z., Welcome, D. E. & Dong, R. G. Three-dimensional finite element simulations of the


mechanical response of the fingertip to static and dynamic compressions. _Comput. Methods Biomech. Biomed. Eng._ 9, 55–63 (2006). CAS  Google Scholar  * Maeno, T., Kawamura, T. & Cheng,


S. C. Friction estimation by pressing an elastic finger-shaped sensor against a surface. _IEEE Trans. Rob. Autom._ 20, 222–2228 (2004). Google Scholar  * Flanagan, J. R., Bowman, M. C.


& Johansson, R. S. Control strategies in object manipulation tasks. _Curr. Opin. Neurobiol._ 16, 650–659 (2006). CAS  PubMed  Google Scholar  * Prochazka, A. The fuzzy logic of


visuomotor control. _Can. J. Physiol. Pharmacol._ 74, 456–462 (1996). CAS  PubMed  Google Scholar  * Misiaszek, J. E. Neural control of walking balance: if falling then react else continue.


_Exerc. Sport Sci. Rev._ 34, 128–134 (2006). PubMed  Google Scholar  * Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S. & Westling, G. Development of human precision grip.


I: Basic coordination of force. _Exp. Brain Res._ 85, 451–457 (1991). CAS  PubMed  Google Scholar  * Forssberg, H. et al. Development of human precision grip. II. Anticipatory control of


isometric forces targeted for object's weight. _Exp. Brain Res._ 90, 393–398 (1992). CAS  PubMed  Google Scholar  * Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C. &


Westling, G. Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces. _Exp. Brain Res._ 90, 399–403 (1992). CAS  PubMed  Google


Scholar  * Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G. & Johansson, R. S. Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the


frictional condition. _Exp. Brain Res._ 104, 323–330 (1995). CAS  PubMed  Google Scholar  * Eliasson, A. C. et al. Development of human precision grip. V. Anticipatory and triggered grip


actions during sudden loading. _Exp. Brain Res._ 106, 425–433 (1995). CAS  PubMed  Google Scholar  * Paré, M. & Dugas, C. Developmental changes in prehension during childhood. _Exp.


Brain Res._ 125, 239–247 (1999). PubMed  Google Scholar  * Goodale, M. A. et al. Separate neural pathways for the visual analysis of object shape in perception and prehension. _Curr. Biol._


4, 604–610 (1994). CAS  PubMed  Google Scholar  * Santello, M. & Soechting, J. F. Gradual molding of the hand to object contours. _J. Neurophysiol._ 79, 1307–1320 (1998). CAS  PubMed 


Google Scholar  * Cohen, R. G. & Rosenbaum, D. A. Where grasps are made reveals how grasps are planned: generation and recall of motor plans. _Exp. Brain Res._ 157, 486–495 (2004).


PubMed  Google Scholar  * Cuijpers, R. H., Smeets, J. B. & Brenner, E. On the relation between object shape and grasping kinematics. _J. Neurophysiol._ 91, 2598–2606 (2004). PubMed 


Google Scholar  * Lukos, J., Ansuini, C. & Santello, M. Choice of contact points during multidigit grasping: effect of predictability of object center of mass location. _J. Neurosci._


27, 3894–3903 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Pawluk, D. T. & Howe, R. D. Dynamic lumped element response of the human fingerpad. _J. Biomech. Eng._ 121, 178–183


(1999). CAS  PubMed  Google Scholar  * Wheat, H. E., Goodwin, A. W. & Browning, A. S. Tactile resolution: peripheral neural mechanisms underlying the human capacity to determine


positions of objects contacting the fingerpad. _J. Neurosci._ 15, 5582–5595 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Knibestöl, M. Stimulus-response functions of rapidly


adapting mechanoreceptors in human glabrous skin area. _J. Physiol._ 232, 427–452 (1973). PubMed  PubMed Central  Google Scholar  * Johansson, R. S. & Vallbo, Å. B. in _Sensory Functions


of the Skin in Primates, With Special Reference to Man_ (ed. Zotterman, Y.) 171–184 (Pergamon, Oxford, 1976). Google Scholar  * Gentilucci, M., Toni, I., Daprati, E. & Gangitano, M.


Tactile input of the hand and the control of reaching to grasp movements. _Exp. Brain Res._ 114, 130–137 (1997). CAS  PubMed  Google Scholar  * Lackner, J. R. & DiZio, P. A. Aspects of


body self-calibration. _Trends Cogn. Sci._ 4, 279–288 (2000). CAS  PubMed  Google Scholar  * Rao, A. K. & Gordon, A. M. Contribution of tactile information to accuracy in pointing


movements. _Exp. Brain Res._ 138, 438–445 (2001). CAS  PubMed  Google Scholar  * Gordon, A. M. & Soechting, J. F. Use of tactile afferent information in sequential finger movements.


_Exp. Brain Res._ 107, 281–292 (1995). CAS  PubMed  Google Scholar  * Rabin, E. & Gordon, A. M. Tactile feedback contributes to consistency of finger movements during typing. _Exp. Brain


Res._ 155, 362–369 (2004). PubMed  Google Scholar  * Säfström, D. & Edin, B. B. Task requirements influence sensory integration during grasping in humans. _Learn. Mem._ 11, 356–363


(2004). PubMed  PubMed Central  Google Scholar  * Lemon, R. N., Johansson, R. S. & Westling, G. Corticospinal control during reach, grasp and precision lift in man. _J. Neurosci._ 15,


6145–6156 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Schabrun, S. M., Ridding, M. C. & Miles, T. S. Role of the primary motor and sensory cortex in precision grasping: a


transcranial magnetic stimulation study. _Eur. J. Neurosci._ 27, 750–756 (2008). CAS  PubMed  Google Scholar  * Davare, M., Andres, M., Clerget, E., Thonnard, J. L. & Olivier, E.


Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area. _J. Neurosci._ 27, 3974–3980 (2007). CAS  PubMed  PubMed Central  Google Scholar  *


Davare, M., Andres, M., Cosnard, G., Thonnard, J. L. & Olivier, E. Dissociating the role of ventral and dorsal premotor cortex in precision grasping. _J. Neurosci._ 26, 2260–2268 (2006).


PubMed  PubMed Central  Google Scholar  * Johansson, R. S. & Westling, G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting


rougher or more slippery objects. _Exp. Brain Res._ 56, 550–564 (1984). THIS STUDY DEMONSTRATED THAT SUBJECTS' GRIP FORCES CHANGE IN PARALLEL WITH LOAD FORCES TO OVERCOME FORCES


COUNTERACTING THE INTENDED MANIPULATION, AND THAT THE BALANCE BETWEEN THE GRIP AND LOAD FORCES IS ADAPTED TO THE FRICTION TO PROVIDE A SMALL SAFETY MARGIN TO PREVENT SLIPS. EXPERIMENTS WITH


LOCAL ANAESTHESIA SHOWED THAT THIS ADAPTATION DEPENDS ON CUTANEOUS AFFERENT INPUT. CAS  PubMed  Google Scholar  * Goodwin, A. W., Jenmalm, P. & Johansson, R. S. Control of grip force


when tilting objects: effect of curvature of grasped surfaces and of applied tangential torque. _J. Neurosci._ 18, 10724–10734 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Wing, A.


M. & Lederman, S. J. Anticipating load torques produced by voluntary movements. _J. Exp. Psychol. Hum. Percept. Perform._ 24, 1571–1581 (1998). CAS  PubMed  Google Scholar  * Johansson,


R. S., Backlin, J. L. & Burstedt, M. K. O. Control of grasp stability during pronation and supination movements. _Exp. Brain Res._ 128, 20–30 (1999). CAS  PubMed  Google Scholar  *


Flanagan, J. R. & Wing, A. M. The stability of precision grip forces during cyclic arm movements with a hand-held load. _Exp. Brain Res._ 105, 455–464 (1995). CAS  PubMed  Google Scholar


  * Flanagan, J. R. & Tresilian, J. R. Grip load force coupling: a general control strategy for transporting objects. _J. Exp. Psychol. Hum. Percept. Perform._ 20, 944–957 (1994). CAS 


PubMed  Google Scholar  * LaMotte, R. H. Softness discrimination with a tool. _J. Neurophysiol._ 83, 1777–1786 (2000). CAS  PubMed  Google Scholar  * Flanagan, J. R., Burstedt, M. K. O.


& Johansson, R. S. Control of fingertip forces in multi-digit manipulation. _J. Neurophysiol._ 81, 1706–1717 (1999). CAS  PubMed  Google Scholar  * Santello, M. & Soechting, J. F.


Force synergies for multifingered grasping. _Exp. Brain Res._ 133, 457–467 (2000). CAS  PubMed  Google Scholar  * Johansson, R. S. & Westling, G. Programmed and triggered actions to


rapid load changes during precision grip. _Exp. Brain Res._ 71, 72–86 (1988). CAS  PubMed  Google Scholar  * Burstedt, M. K. O., Edin, B. B. & Johansson, R. S. Coordination of fingertip


forces during human manipulation can emerge from independent neural networks controlling each engaged digit. _Exp. Brain Res._ 117, 67–79 (1997). CAS  PubMed  Google Scholar  * Bracewell, R.


M., Wing, A. M., Soper, H. M. & Clark, K. G. Predictive and reactive co-ordination of grip and load forces in bimanual lifting in man. _Eur. J. Neurosci._ 18, 2396–2402 (2003). PubMed 


Google Scholar  * Witney, A. G., Goodbody, S. J. & Wolpert, D. M. Predictive motor learning of temporal delays. _J. Neurophysiol._ 82, 2039–2048 (1999). CAS  PubMed  Google Scholar  *


Gysin, P., Kaminski, T. R. & Gordon, A. M. Coordination of fingertip forces in object transport during locomotion. _Exp. Brain Res._ 149, 371–379 (2003). PubMed  Google Scholar  *


Witney, A. G. & Wolpert, D. M. The effect of externally generated loading on predictive grip force modulation. _Neurosci. Lett._ 414, 10–15 (2007). CAS  PubMed  PubMed Central  Google


Scholar  * Danion, F. & Sarlegna, F. R. Can the human brain predict the consequences of arm movement corrections when transporting an object? Hints from grip force adjustments. _J.


Neurosci._ 27, 12839–12843 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Bursztyn, L. L. & Flanagan, J. R. Sensorimotor memory of weight asymmetry in object manipulation. _Exp.


Brain Res._ 184, 127–133 (2008). PubMed  Google Scholar  * Flanagan, J. R. & Wing, A. M. The role of internal models in motion planning and control: evidence from grip force adjustments


during movements of hand-held loads. _J. Neurosci._ 17, 1519–1528 (1997). THIS STUDY SHOWED THAT WHEN MOVING HAND-HELD OBJECTS, PEOPLE PRECISELY MODULATE THEIR GRIP FORCE IN ANTICIPATION OF


MOVEMENT-DEPENDENT LOADS. THIS RESULT PROVIDES STRONG EVIDENCE THAT THE BRAIN LEARNS AND MAKES USE OF ACCURATE INTERNAL MODELS OF OBJECT MECHANICS TO PREDICT THE CONSEQUENCES OF ACTION. CAS


  PubMed  PubMed Central  Google Scholar  * Flanagan, J. R., Vetter, P., Johansson, R. S. & Wolpert, D. M. Prediction precedes control in motor learning. _Curr. Biol._ 13, 146–150


(2003). CAS  PubMed  Google Scholar  * Westling, G. & Johansson, R. S. Factors influencing the force control during precision grip. _Exp. Brain Res._ 53, 277–284 (1984). CAS  PubMed 


Google Scholar  * Jenmalm, P. & Johansson, R. S. Visual and somatosensory information about object shape control manipulative finger tip forces. _J. Neurosci._ 17, 4486–4499 (1997). THIS


STUDY SHOWED THAT PEOPLE CAN USE VISION TO PREDICTIVELY ADAPT THEIR FINGERTIP FORCES TO THE ANGLE OF GRASPED SURFACES. THE RESULTS ALSO SHOWED THAT, IN THE ABSENCE OF VISION, TACTILE


INFORMATION OBTAINED WHEN THE FINGERTIPS CONTACT THE GRASPED SURFACES CAN BE USED TO RAPIDLY ADJUST FINGERTIP FORCES. CAS  PubMed  PubMed Central  Google Scholar  * Jenmalm, P., Dahlstedt,


S. & Johansson, R. S. Visual and tactile information about object curvature control fingertip forces and grasp kinematics in human dexterous manipulation. _J. Neurophysiol._ 84,


2984–2997 (2000). CAS  PubMed  Google Scholar  * Monzée, J., Lamarre, Y. & Smith, A. M. The effects of digital anesthesia on force control using a precision grip. _J. Neurophysiol._ 89,


672–683 (2003). PubMed  Google Scholar  * Nowak, D. A., Glasauer, S. & Hermsdorfer, J. How predictive is grip force control in the complete absence of somatosensory feedback? _Brain_


127, 182–192 (2004). PubMed  Google Scholar  * Nowak, D. A. & Hermsdörfer, J. Digit cooling influences grasp efficiency during manipulative tasks. _Eur. J. Appl. Physiol._ 89, 127–133


(2003). CAS  PubMed  Google Scholar  * Cole, K. J., Steyers, C. M. & Graybill, E. K. The effects of graded compression of the median nerve in the carpal canal on grip force. _Exp. Brain


Res._ 148, 150–157 (2003). PubMed  Google Scholar  * Schenker, M., Burstedt, M. K., Wiberg, M. & Johansson, R. S. Precision grip function after hand replantation and digital nerve


injury. _J. Plast. Reconstr. Aesthet. Surg._ 59, 706–716 (2006). CAS  PubMed  Google Scholar  * Cadoret, G. & Smith, A. M. Friction, not texture, dictates grip forces used during object


manipulation. _J. Neurophysiol._ 75, 1963–1969 (1996). CAS  PubMed  Google Scholar  * Edin, B. B., Westling, G. & Johansson, R. S. Independent control of fingertip forces at individual


digits during precision lifting in humans. _J. Physiol._ 450, 547–564 (1992). CAS  PubMed  PubMed Central  Google Scholar  * Birznieks, I., Burstedt, M. K. O., Edin, B. B. & Johansson,


R. S. Mechanisms for force adjustments to unpredictable frictional changes at individual digits during two-fingered manipulation. _J. Neurophysiol._ 80, 1989–2002 (1998). CAS  PubMed  Google


Scholar  * Burstedt, M. K. O., Flanagan, R. & Johansson, R. S. Control of grasp stability in humans under different frictional conditions during multi-digit manipulation. _J.


Neurophysiol._ 82, 2393–2405 (1999). CAS  PubMed  Google Scholar  * Quaney, B. M. & Cole, K. J. Distributing vertical forces between the digits during gripping and lifting: the effects


of rotating the hand versus rotating the object. _Exp. Brain Res._ 155, 145–155 (2004). PubMed  Google Scholar  * Niu, X., Latash, M. L. & Zatsiorsky, V. M. Prehension synergies in the


grasps with complex friction patterns: local versus synergic effects and the template control. _J. Neurophysiol._ 98, 16–28 (2007). PubMed  Google Scholar  * Johansson, R. S. & Westling,


G. Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. _Exp. Brain Res._ 66, 141–154 (1987). CAS  PubMed  Google Scholar  * Sathian, K.


Tactile sensing of surface features. _Trends Neurosci._ 12, 513–519 (1989). CAS  PubMed  Google Scholar  * Johansson, R. S., Landström, U. & Lundström, R. Sensitivity to edges of


mechanoreceptive afferent units innervating the glabrous skin of the human head. _Brain Res._ 244, 27–35 (1982). CAS  PubMed  Google Scholar  * Phillips, J. R., Johansson, R. S. &


Johnson, K. O. Representation of braille characters in human nerve fibres. _Exp. Brain Res._ 81, 589–592 (1990). CAS  PubMed  Google Scholar  * Phillips, J. R., Johansson, R. S. &


Johnson, K. O. Responses of human mechanoreceptive afferents to embossed dot arrays scanned across fingerpad skin. _J. Neurosci._ 12, 827–839 (1992). CAS  PubMed  PubMed Central  Google


Scholar  * Goodwin, A. W., Macefield, V. G. & Bisley, J. W. Encoding of object curvature by tactile afferents from human fingers. _J. Neurophysiol._ 78, 2881–2888 (1997). CAS  PubMed 


Google Scholar  * Khalsa, P. S., Friedman, R. M., Srinivasan, M. A. & Lamotte, R. H. Encoding of shape and orientation of objects indented into the monkey fingerpad by populations of


slowly and rapidly adapting mechanoreceptors. _J. Neurophysiol._ 79, 3238–3251 (1998). CAS  PubMed  Google Scholar  * Johansson, R. S. & Vallbo, A. B. Tactile sensibility in the human


hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. _J. Physiol._ 286, 283–300 (1979). CAS  PubMed  PubMed Central  Google Scholar  * Ehrsson, H.


E., Fagergren, A., Johansson, R. S. & Forssberg, H. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation.


_J. Neurophysiol._ 90, 3295–3303 (2003). Google Scholar  * Kawato, M. et al. Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. _Prog. Brain Res._


142, 171–188 (2003). PubMed  Google Scholar  * Boecker, H. et al. Force level independent representations of predictive grip force-load force coupling: a PET activation study. _Neuroimage_


25, 243–252 (2005). CAS  PubMed  Google Scholar  * Wolpert, D. M., Miall, C. R. & Kawato, M. Internal models in the cerebellum. _Trends Cogn. Sci._ 2, 338–347 (1998). CAS  PubMed  Google


Scholar  * Rost, K., Nowak, D. A., Timmann, D. & Hermsdörfer, J. Preserved and impaired aspects of predictive grip force control in cerebellar patients. _Clin. Neurophysiol._ 116,


1405–1414 (2005). PubMed  Google Scholar  * Nowak, D. A., Hermsdörfer, J., Marquardt, C. & Fuchs, H. H. Grip and load force coupling during discrete vertical arm movements with a grasped


object in cerebellar atrophy. _Exp. Brain Res._ 145, 28–39 (2002). PubMed  Google Scholar  * Müller, F. & Dichgans, J. Dyscoordination of pinch and lift forces during grasp in patients


with cerebellar lesions. _Exp. Brain Res._ 101, 485–492 (1994). PubMed  Google Scholar  * Babin-Ratté, S., Sirigu, A., Gilles, M. & Wing, A. Impaired anticipatory finger grip-force


adjustments in a case of cerebellar degeneration. _Exp. Brain Res._ 128, 81–85 (1999). PubMed  Google Scholar  * Serrien, D. J. & Wiesendanger, M. Role of the cerebellum in tuning


anticipatory and reactive grip force responses. _J. Cogn. Neurosci._ 11, 672–681 (1999). CAS  PubMed  Google Scholar  * Fellows, S. J., Ernst, J., Schwarz, M., Töpper, R. & Noth, J.


Precision grip deficits in cerebellar disorders in man. _Neurophysiol. Clin._ 112, 1793–1802 (2001). CAS  Google Scholar  * Hermsdörfer, J., Hagl, E., Nowak, D. A. & Marquardt, C. Grip


force control during object manipulation in cerebral stroke. _Clin. Neurophysiol._ 114, 915–929 (2003). PubMed  Google Scholar  * Nowak, D. A., Hermsdörfer, J. & Topka, H. Deficits of


predictive grip force control during object manipulation in acute stroke. _J. Neurol._ 250, 850–860 (2003). PubMed  Google Scholar  * Müller, F. & Abbs, J. H. in _Advances in Neurology_


VOL. 53 (eds Streifler, M. B., Korezyn, A. D., Melamed, E. & Youdim, M. B. H.) 191–195 (Raven, New York, 1990). Google Scholar  * Harrison, L. M., Mayston, M. J. & Johansson, R. S.


Reactive control of precision grip does not depend on fast transcortical reflex pathways in X-linked Kallmann subjects. _J. Physiol._ 527, 641–652 (2000). CAS  PubMed  PubMed Central  Google


Scholar  * Nowak, D. A., Voss, M., Huang, Y. Z., Wolpert, D. M. & Rothwell, J. C. High-frequency repetitive transcranial magnetic stimulation over the hand area of the primary motor


cortex disturbs predictive grip force scaling. _Eur. J. Neurosci._ 22, 2392–2396 (2005). PubMed  Google Scholar  * Berner, J., Schönfeldt-Lecuona, C. & Nowak, D. A. Sensorimotor memory


for fingertip forces during object lifting: the role of the primary motor cortex. _Neuropsychologia_ 45, 1931–1938 (2007). PubMed  Google Scholar  * Nowak, D. A., Hermsdörfer, J. &


Topka, H. When motor execution is selectively impaired: control of manipulative finger forces in amyotrophic lateral sclerosis. _Motor Control_ 7, 304–320 (2003). PubMed  Google Scholar  *


Gordon, A. M., Quinn, L., Reilmann, R. & Marder, K. Coordination of prehensile forces during precision grip in Huntington's disease. _Exp. Neurol._ 163, 136–148 (2000). CAS  PubMed


  Google Scholar  * Serrien, D. J., Burgunder, J. M. & Wiesendanger, M. Grip force scaling and sequencing of events during a manipulative task in Huntington's disease.


_Neuropsychologia_ 39, 734–741 (2001). CAS  PubMed  Google Scholar  * Fellows, S. J., Noth, J. & Schwarz, M. Precision grip and Parkinson's disease. _Brain_ 121, 1771–1784 (1998).


PubMed  Google Scholar  * Serrien, D. J., Burgunder, J. M. & Wiesendanger, M. Disturbed sensorimotor processing during control of precision grip in patients with writer's cramp.


_Mov. Disord._ 15, 965–972 (2000). CAS  PubMed  Google Scholar  * Schenk, T. & Mai, N. Is writer's cramp caused by a deficit of sensorimotor integration? _Exp. Brain Res._ 136,


321–330 (2001). CAS  PubMed  Google Scholar  * Wiesendanger, M. & Serrien, D. J. Neurological problems affecting hand dexterity. _Brain Res. Brain Res. Rev._ 36, 161–168 (2001). CAS 


PubMed  Google Scholar  * Johansson, R. S. & Westling, G. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision


grip. _Exp. Brain Res._ 71, 59–71 (1988). CAS  PubMed  Google Scholar  * Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. Integration of sensory information during the


programming of precision grip: comments on the contributions of size cues. _Exp. Brain Res._ 85, 226–229 (1991). CAS  PubMed  Google Scholar  * Gordon, A. M., Westling, G., Cole, K. J. &


Johansson, R. S. Memory representations underlying motor commands used during manipulation of common and novel objects. _J. Neurophysiol._ 69, 1789–1796 (1993). THE AUTHORS SHOWED THAT


HUMANS USE ANTICIPATORY CONTROL TO SCALE MOTOR COMMANDS TO THE WEIGHT OF FAMILIAR OBJECTS. THE MEMORY INFORMATION IS ROBUST AND CAN BE RETRIEVED THROUGH VISUAL IDENTIFICATION OF THE TARGET


OBJECT. IN ADDITION, ACCURATE MEMORY REPRESENTATIONS RELATED TO THE WEIGHTS OF NOVEL OBJECTS DEVELOP QUICKLY. CAS  PubMed  Google Scholar  * Flanagan, J. R. & Beltzner, M. A.


Independence of perceptual and sensorimotor predictions in the size–weight illusion. _Nature Neurosci._ 3, 737–741 (2000). CAS  PubMed  Google Scholar  * Flanagan, J. R., Bittner, J. P.


& Johansson, R. S. Experience can change distinct size-weight priors engaged in lifting objects and judging their weights. _Curr. Biol._ 18, 1742–1747 (2008). THIS PAPER SHOWED THAT THE


MOTOR AND PERCEPTUAL SYSTEMS RELY ON DISTINCT LEARNED SIZE–WEIGHT MAPS WHEN LIFTING OBJECTS AND JUDGING THEIR WEIGHTS, RESPECTIVELY, AND THAT THESE MAPS CAN BE CHANGED BY EXPERIENCE. CAS 


PubMed  Google Scholar  * Cole, K. J. Lifting a familiar object: visual size analysis, not memory for object weight, scales lift force. _Exp. Brain Res._ 188, 551–557 (2008). PubMed  Google


Scholar  * Cole, K. J. & Rotella, D. L. Old age impairs the use of arbitrary visual cues for predictive control of fingertip forces during grasp. _Exp. Brain Res._ 143, 35–41 (2002).


PubMed  Google Scholar  * Ameli, M., Dafotakis, M., Fink, G. R. & Nowak, D. A. Predictive force programming in the grip-lift task: the role of memory links between arbitrary cues and


object weight. _Neuropsychologia_ 46, 2383–2388 (2008). PubMed  Google Scholar  * Salimi, I., Hollender, I., Frazier, W. & Gordon, A. M. Specificity of internal representations


underlying grasping. _J. Neurophysiol._ 84, 2390–2397 (2000). CAS  PubMed  Google Scholar  * Salimi, I., Frazier, W., Reilmann, R. & Gordon, A. M. Selective use of visual information


signaling objects' center of mass for anticipatory control of manipulative fingertip forces. _Exp. Brain Res._ 150, 9–18 (2003). PubMed  Google Scholar  * Jenmalm, P., Schmitz, C.,


Forssberg, H. & Ehrsson, H. H. Lighter or heavier than predicted: neural correlates of corrective mechanisms during erroneously programmed lifts. _J. Neurosci._ 26, 9015–9021 (2006).


THIS STUDY EXAMINED CENTRAL CONTRIBUTIONS TO PRECISION LIFTING USING FMRI. THE RESULTS SUGGESTED A ROLE FOR THE RIGHT INFERIOR PARIETAL CORTEX IN DETECTING MISMATCHES BETWEEN PREDICTED AND


ACTUAL WEIGHT AND INDICATED THAT THE PRIMARY SENSORIMOTOR CORTEX AND THE CEREBELLUM ARE ENGAGED IN IMPLEMENTING CORRECTIVE ACTION PROGRAMMES. CAS  PubMed  PubMed Central  Google Scholar  *


Desmurget, M. et al. Role of the posterior parietal cortex in updating reaching movements to a visual target. _Nature Neurosci._ 2, 563–567 (1999). CAS  PubMed  Google Scholar  * Tunik, E.,


Frey, S. H. & Grafton, S. T. Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. _Nature Neurosci._ 8, 505–511 (2005). CAS  PubMed 


Google Scholar  * Bursztyn, L. L., Ganesh, G., Imamizu, H., Kawato, M. & Flanagan, J. R. Neural correlates of internal-model loading. _Curr. Biol._ 16, 2440–2445 (2006). CAS  PubMed 


Google Scholar  * Hua, S. E. & Houk, J. C. Cerebellar guidance of premotor network development and sensorimotor learning. _Learn. Mem._ 4, 63–76 (1997). CAS  PubMed  Google Scholar  *


Chouinard, P. A., Leonard, G. & Paus, T. Role of the primary motor and dorsal premotor cortices in the anticipation of forces during object lifting. _J. Neurosci._ 25, 2277–2284 (2005).


THIS PAPER SHOWED THAT REPETITIVE TMS APPLIED TO THE DORSAL PREMOTOR CORTEX DISRUPTS ASSOCIATIVE MEMORY FOR WEIGHT WHEREAS REPETITIVE TMS APPLIED TO THE PRIMARY MOTOR CORTEX DISRUPTS


SENSORIMOTOR MEMORY FOR WEIGHT. CAS  PubMed  PubMed Central  Google Scholar  * Li, Y., Randerath, J., Goldenberg, G. & Hermsdörfer, J. Grip forces isolated from knowledge about object


properties following a left parietal lesion. _Neurosci. Lett._ 426, 187–191 (2007). CAS  PubMed  Google Scholar  * Adrian, E. D. _The Basis of Sensation_ (Norton, New York, 1928). Google


Scholar  * Torebjörk, H. E., Vallbo, A. B. & Ochoa, J. L. Intraneural microstimulation in man. Its relation to specificity of tactile sensations. _Brain_ 110, 1509–1529 (1987). PubMed 


Google Scholar  * Johansson, R. S. & Birznieks, I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. _Nature Neurosci._ 7, 170–177 (2004). THIS


STUDY DEMONSTRATED THAT THE RELATIVE TIMING OF FIRST IMPULSES ELICITED IN ENSEMBLES OF TACTILE AFFERENTS WHEN FINGERTIPS CONTACT OBJECTS CONVEYS INFORMATION ABOUT THE DIRECTION OF FINGERTIP


FORCES AND SURFACE SHAPE FASTER THAN THE FASTEST POSSIBLE RATE CODE AND FAST ENOUGH TO ACCOUNT FOR THE USE OF THIS INFORMATION IN NATURAL MANIPULATIONS. CAS  PubMed  Google Scholar  *


Johansson, R. S. & Vallbo, A. B. Spatial properties of the population of mechanoreceptive units in the glabrous skin of the human hand. _Brain Res._ 184, 353–366 (1980). CAS  PubMed 


Google Scholar  * Heil, P. First-spike latency of auditory neurons revisited. _Curr. Opin. Neurobiol._ 14, 461–467 (2004). CAS  PubMed  Google Scholar  * VanRullen, R., Guyonneau, R. &


Thorpe, S. J. Spike times make sense. _Trends Neurosci._ 28, 1–4 (2005). CAS  PubMed  Google Scholar  * Furukawa, S., Xu, L. & Middlebrooks, J. C. Coding of sound-source location by


ensembles of cortical neurons. _J. Neurosci._ 20, 1216–1228 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Nelken, I., Chechik, G., Mrsic-Flogel, T. D., King, A. J. & Schnupp, J.


W. Encoding stimulus information by spike numbers and mean response time in primary auditory cortex. _J. Comput. Neurosci._ 19, 199–221 (2005). PubMed  Google Scholar  * Reich, D. S.,


Mechler, F. & Victor, J. D. Temporal coding of contrast in primary visual cortex: when, what, and why. _J. Neurophysiol._ 85, 1039–1050 (2001). CAS  PubMed  Google Scholar  * Gawne, T.


J., Kjaer, T. W. & Richmond, B. J. Latency: another potential code for feature binding in striate cortex. _J. Neurophysiol._ 76, 1356–1360 (1996). CAS  PubMed  Google Scholar  *


Gollisch, T. & Meister, M. Rapid neural coding in the retina with relative spike latencies. _Science_ 319, 1108–1111 (2008). THE AUTHORS REPORTED THAT RETINAL GANGLION CELLS CAN ENCODE


THE SPATIAL STRUCTURE OF A BRIEFLY PRESENTED IMAGE IN THE RELATIVE TIMING OF THEIR FIRST SPIKES. THIS MECHANISM ALLOWS THE RETINA TO RAPIDLY AND RELIABLY TRANSMIT NEW SPATIAL INFORMATION


WITH THE VERY FIRST SPIKES EMITTED BY A NEURAL POPULATION IN A MANNER THAT IS LARGELY UNAFFECTED BY STIMULUS CONTRAST. CAS  PubMed  Google Scholar  * Panzeri, S., Petersen, R. S., Schultz,


S. R., Lebedev, M. & Diamond, M. E. The role of spike timing in the coding of stimulus location in rat somatosensory cortex. _Neuron_ 29, 769–777 (2001). CAS  PubMed  Google Scholar  *


Petersen, R. S., Panzeri, S. & Diamond, M. E. Population coding in somatosensory cortex. _Curr. Opin. Neurobiol._ 12, 441–447 (2002). CAS  PubMed  Google Scholar  * Mikula, S. &


Niebur, E. Rate and synchrony in feedforward networks of coincidence detectors: analytical solution. _Neural Comput._ 17, 881–902 (2005). PubMed  PubMed Central  Google Scholar  * Gerstner,


W. & Kistler, W. M. _Spiking Neuron Models_ (Cambridge Univ. Press, Cambridge, 2002). Google Scholar  * Hopfield, J. J. Pattern recognition computation using action potential timing for


stimulus representation. _Nature_ 376, 33–36 (1995). CAS  PubMed  Google Scholar  * König, P., Engel, A. K. & Singer, W. Integrator or coincidence detector? The role of the cortical


neuron revisited. _Trends Neurosci._ 19, 130–137 (1996). PubMed  Google Scholar  * Masquelier, T., Guyonneau, R. & Thorpe, S. J. Spike timing dependent plasticity finds the start of


repeating patterns in continuous spike trains. _PLoS ONE_ 3, e1377 (2008). PubMed  PubMed Central  Google Scholar  * Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of


synaptic efficacy by coincidence of postsynaptic APs and EPSPs. _Science_ 275, 213–215 (1997). CAS  PubMed  Google Scholar  * Bi, G. & Poo, M. Distributed synaptic modification in neural


networks induced by patterned stimulation. _Nature_ 401, 792–796 (1999). CAS  PubMed  Google Scholar  * Song, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through


spike-timing-dependent synaptic plasticity. _Nature Neurosci._ 3, 919–926 (2000). CAS  PubMed  Google Scholar  * Fox, K. & Wong, R. O. A comparison of experience-dependent plasticity in


the visual and somatosensory systems. _Neuron_ 48, 465–477 (2005). CAS  PubMed  Google Scholar  * Guyonneau, R., VanRullen, R. & Thorpe, S. J. Neurons tune to the earliest spikes through


STDP. _Neural Comput._ 17, 859–879 (2005). PubMed  Google Scholar  * Gütig, R. & Sompolinsky, H. The tempotron: a neuron that learns spike timing-based decisions. _Nature Neurosci._ 9,


420–428 (2006). PubMed  Google Scholar  * Chase, S. M. & Young, E. D. First-spike latency information in single neurons increases when referenced to population onset. _Proc. Natl Acad.


Sci. USA_ 104, 5175–5180 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Jones, E. G. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory


cortex. _Annu. Rev. Neurosci._ 23, 1–37 (2000). CAS  PubMed  Google Scholar  * Kakuda, N. Conduction velocity of low-threshold mechanoreceptive afferent fibers in the glabrous and hairy skin


of human hands measured with microneurography and spike-triggered averaging. _Neurosci. Res._ 15, 179–188 (1992). CAS  PubMed  Google Scholar  * Darian-Smith, I. & Kenins, P.


Innervation density of mechanoreceptive fibres supplying glabrous skin of the monkey's index finger. _J. Physiol._ 309, 147–155 (1980). CAS  PubMed  PubMed Central  Google Scholar  *


Carr, C. E. Processing of temporal information in the brain. _Annu. Rev. Neurosci._ 16, 223–243 (1993). CAS  PubMed  Google Scholar  * Land, M. F. & Furneaux, S. The knowledge base of


the oculomotor system. _Philos. Trans. R. Soc. Lond. B Biol. Sci._ 352, 1231–1239 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Flanagan, J. R. & Johansson, R. S. Action plans


used in action observation. _Nature_ 424, 769–771 (2003). CAS  PubMed  Google Scholar  * Ballard, D. H., Hayhoe, M. M., Li, F. & Whitehead, S. D. Hand-eye coordination during sequential


tasks. _Philos. Trans. R. Soc. Lond. B Biol. Sci._ 337, 331–338 (1992). CAS  PubMed  Google Scholar  * Land, M., Mennie, N. & Rusted, J. The roles of vision and eye movements in the


control of activities of daily living. _Perception_ 28, 1311–1328 (1999). CAS  PubMed  Google Scholar  * Johansson, R. S., Westling, G., Bäckström, A. & Flanagan, J. R. Eye-hand


coordination in object manipulation. _J. Neurosci._ 21, 6917–6932 (2001). THIS STUDY EXAMINED THE PRECISE SPATIAL AND TEMPORAL COORDINATION OF GAZE AND FINGERTIP MOVEMENTS IN AN OBJECT


MANIPULATION TASK. THE RESULTS SHOWED THAT THE GAZE SUPPORTS HAND MOVEMENT PLANNING BY MARKING KEY POSITIONS TO WHICH THE FINGERTIPS OR THE GRASPED OBJECT ARE SUBSEQUENTLY DIRECTED. CAS 


PubMed  PubMed Central  Google Scholar  * Biguer, B., Jeannerod, M. & Prablanc, C. The coordination of eye, head, and arm movements during reaching at a single visual target. _Exp. Brain


Res._ 46, 301–304 (1982). CAS  PubMed  Google Scholar  * Sailer, U., Flanagan, J. R. & Johansson, R. S. Eye–hand coordination during learning of a novel visuomotor task. _J. Neurosci._


25, 8833–8842 (2005). THIS STUDY EXAMINED CHANGES IN GAZE BEHAVIOUR DURING A VISUOMOTOR TASK IN WHICH SUBJECTS GRADUALLY LEARNED A NOVEL MAPPING BETWEEN THEIR HAND ACTIONS AND THE MOVEMENTS


OF A CURSOR THAT THEY WERE REQUIRED TO MOVE TO TARGETS. DURING LEARNING, GAZE BEHAVIOUR SHIFTED FROM A REACTIVE MODE, IN WHICH THE GAZE CHASED THE CURSOR, TO A PREDICTIVE MODE IN WHICH THE


GAZE LED THE CURSOR TO THE TARGETS. CAS  PubMed  PubMed Central  Google Scholar  * Prablanc, C., Desmurget, M. & Gréa, H. Neural control of on-line guidance of hand reaching movements.


_Prog. Brain Res._ 142, 155–170 (2003). PubMed  Google Scholar  * Paillard, J. Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal.


_Can. J. Physiol. Pharmacol._ 74, 401–417 (1996). CAS  PubMed  Google Scholar  * Saunders, J. A. & Knill, D. C. Visual feedback control of hand movements. _J. Neurosci._ 24, 3223–3234


(2004). CAS  PubMed  PubMed Central  Google Scholar  * Sarlegna, F. et al. Online control of the direction of rapid reaching movements. _Exp. Brain Res._ 157, 468–471 (2004). PubMed  Google


Scholar  * Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A multimodal cortical network for the detection of changes in the sensory environment. _Nature Neurosci._ 3, 277–283


(2000). CAS  PubMed  Google Scholar  * Bremmer, F. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between


humans and monkeys. _Neuron_ 29, 287–296 (2001). CAS  PubMed  Google Scholar  * Beauchamp, M. S., Yasar, N. E., Frye, R. E. & Ro, T. Touch, sound and vision in human superior temporal


sulcus. _Neuroimage_ 41, 1011–1020 (2008). PubMed  Google Scholar  * Avillac, M., Ben Hamed, S. & Duhamel, J. R. Multisensory integration in the ventral intraparietal area of the macaque


monkey. _J. Neurosci._ 27, 1922–1932 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Schroeder, C. E. & Foxe, J. J. The timing and laminar profile of converging inputs to


multisensory areas of the macaque neocortex. _Brain Res. Cogn. Brain Res._ 14, 187–198 (2002). PubMed  Google Scholar  * Miall, R. C. & Wolpert, D. M. Forward models for physiological


motor control. _Neural Netw._ 9, 1265–1279 (1996). PubMed  Google Scholar  * Wolpert, D. M. & Ghahramani, Z. Computational principles of movement neuroscience. _Nature Neurosci._ 3


(Suppl.), 1212–1217 (2000). CAS  PubMed  Google Scholar  * Wolpert, D. M. & Flanagan, J. R. Motor prediction. _Curr. Biol._ 11, R729–R732 (2001). CAS  PubMed  Google Scholar  * Todorov,


E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. _Nature Neurosci._ 5, 1226–1235 (2002). CAS  PubMed  Google Scholar  * Scott, S. H. Optimal feedback


control and the neural basis of volitional motor control. _Nature Rev. Neurosci._ 5, 532–546 (2004). CAS  Google Scholar  * Liu, D. & Todorov, E. Evidence for the flexible sensorimotor


strategies predicted by optimal feedback control. _J. Neurosci._ 27, 9354–9368 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Olivier, E., Davare, M., Andres, M. & Fadiga, L.


Precision grasping in humans: from motor control to cognition. _Curr. Opin. Neurobiol._ 17, 644–648 (2007). CAS  PubMed  Google Scholar  * Mussa-Ivaldi, F. A. & Bizzi, E. Motor learning


through the combination of primitives. _Philos. Trans. R. Soc. Lond. B Biol. Sci._ 355, 1755–1769 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Graziano, M. S. & Aflalo, T. N.


Mapping behavioral repertoire onto the cortex. _Neuron_ 56, 239–251 (2007). CAS  PubMed  Google Scholar  * Flash, T. & Hochner, B. Motor primitives in vertebrates and invertebrates.


_Curr. Opin. Neurobiol._ 15, 660–666 (2005). CAS  PubMed  Google Scholar  * Stephan, K. E. et al. Nonlinear dynamic causal models for fMRI. _Neuroimage_ 42, 649–662 (2008). PubMed  Google


Scholar  * Averbeck, B. B., Chafee, M. V., Crowe, D. A. & Georgopoulos, A. P. Parallel processing of serial movements in prefrontal cortex. _Proc. Natl Acad. Sci. USA_ 99, 13172–13177


(2002). CAS  PubMed  PubMed Central  Google Scholar  * Saito, N., Mushiake, H., Sakamoto, K., Itoyama, Y. & Tanji, J. Representation of immediate and final behavioral goals in the monkey


prefrontal cortex during an instructed delay period. _Cereb. Cortex_ 15, 1535–1546 (2005). PubMed  Google Scholar  * Tanji, J. & Hoshi, E. Role of the lateral prefrontal cortex in


executive behavioral control. _Physiol. Rev._ 88, 37–57 (2008). PubMed  Google Scholar  * Obhi, S. S. Bimanual coordination: an unbalanced field of research. _Motor Control_ 8, 111–120


(2004). PubMed  Google Scholar  * Swinnen, S. P. & Wenderoth, N. Two hands, one brain: cognitive neuroscience of bimanual skill. _Trends Cogn. Sci._ 8, 18–25 (2004). PubMed  Google


Scholar  * Ivry, R. B., Diedrichsen, J., Spencer, R. C. M., Hazeltine, E. & Semjen, A. in _Neuro-behavioral Determinants of Interlimb Coordination_ (eds Swinnen, S. & Duysens, J.)


259–295 (Kluwer, Boston, 2004). Google Scholar  * Johansson, R. S. et al. How a lateralized brain supports symmetrical bimanual tasks. _PLoS Biol._ 4, 1025–1034 (2006). CAS  Google Scholar 


* Theorin, A. & Johansson, R. S. Zones of bimanual and unimanual preference within human primary sensorimotor cortex during object manipulation. _Neuroimage_ 36 (Suppl. 2), T2–T15


(2007). PubMed  Google Scholar  * Pubols, B. H. Jr. Factors affecting cutaneous mechanoreceptor response. II. Changes in mechanical properties of skin with repeated stimulation. _J.


Neurophysiol._ 47, 530–542 (1982). PubMed  Google Scholar  * Harris, F., Jabbur, S. J., Morse, R. W. & Towe, A. L. Influence of the cerebral cortex on the cuneate nucleus of the monkey.


_Nature_ 208, 1215–1216 (1965). CAS  PubMed  Google Scholar  * Adkins, R. J., Morse, R. W. & Towe, A. L. Control of somatosensory input by cerebral cortex. _Science_ 153, 1020–1022


(1966). CAS  PubMed  Google Scholar  * Ergenzinger, E. R., Glasier, M. M., Hahm, J. O. & Pons, T. P. Cortically induced thalamic plasticity in the primate somatosensory system. _Nature


Neurosci._ 1, 226–229 (1998). CAS  PubMed  Google Scholar  * Palmeri, A., Bellomo, M., Giuffrida, R. & Sapienza, S. Motor cortex modulation of exteroceptive information at bulbar and


thalamic lemniscal relays in the cat. _Neuroscience_ 88, 135–150 (1999). CAS  PubMed  Google Scholar  * Seki, K., Perlmutter, S. I. & Fetz, E. E. Sensory input to primate spinal cord is


presynaptically inhibited during voluntary movement. _Nature Neurosci._ 6, 1309–1316 (2003). THE AUTHORS REPORTED EVIDENCE FROM BEHAVING MONKEYS THAT PRESYNAPTIC INHIBITION PRODUCED BY


CENTRAL COMMANDS IN DESCENDING PATHWAYS DURING WRIST MOVEMENTS EFFECTIVELY MODULATES CUTANEOUS INPUTS TO THE SPINAL CORD IN A BEHAVIOUR-DEPENDENT MANNER BY REDUCING SYNAPTIC TRANSMISSION AT


THE INITIAL SYNAPSE. CAS  PubMed  Google Scholar  * Canedo, A. Primary motor cortex influences on the descending and ascending systems. _Prog. Neurobiol._ 51, 287–335 (1997). CAS  PubMed 


Google Scholar  * Crapse, T. B. & Sommer, M. A. Corollary discharge circuits in the primate brain. _Curr. Opin. Neurobiol._ 1 Nov 2008 (doi:10.1016/j.conb.2008.09.017). CAS  PubMed 


PubMed Central  Google Scholar  * Poulet, J. F. & Hedwig, B. New insights into corollary discharges mediated by identified neural pathways. _Trends Neurosci._ 30, 14–21 (2007). CAS 


PubMed  Google Scholar  * von Holst, E. Relations between the central nervous system and the peripheral organ. _Br. J. Anim. Behav._ 2, 89–94 (1954). Google Scholar  * Boyd, I. A. &


Roberts, T. D. Proprioceptive discharges from stretch-receptors in the knee-joint of the cat. _J. Physiol._ 122, 38–58 (1953). CAS  PubMed  PubMed Central  Google Scholar  * Gelfan, S. &


Carter, S. Muscle sense in man. _Exp. Neurol._ 18, 469–473 (1967). CAS  PubMed  Google Scholar  * Goodwin, G. M., McCloskey, D. I. & Matthews, P. B. The contribution of muscle afferents


to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. _Brain_ 95, 705–748 (1972). CAS  PubMed  Google Scholar  * Matthews, P. B.


C. Where does Sherrington's “muscular sense” originate? Muscles, joints, corollary discharges? _Annu. Rev. Neurosci._ 5, 189–218 (1982). CAS  PubMed  Google Scholar  * Johansson, R.


S., Trulsson, M., Olsson, K. A. & Abbs, J. H. Mechanoreceptive afferent activity in the infraorbital nerve in man during speech and chewing movements. _Exp. Brain Res._ 72, 209–214


(1988). CAS  PubMed  Google Scholar  * Edin, B. B. & Abbs, J. H. Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand. _J. Neurophysiol._ 65,


657–670 (1991). CAS  PubMed  Google Scholar  * Edin, B. B. Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. _J. Neurophysiol._ 67, 1105–1113


(1992). CAS  PubMed  Google Scholar  * Grill, S. E. & Hallett, M. Velocity sensitivity of human muscle spindle afferents and slowly adapting type II cutaneous mechanoreceptors. _J.


Physiol._ 489, 593–602 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Edin, B. B. Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors. _J.


Neurophysiol._ 92, 3233–3243 (2004). PubMed  Google Scholar  * Edin, B. Cutaneous afferents provide information about knee joint movements in humans. _J. Physiol._ 531, 289–297 (2001). CAS 


PubMed  PubMed Central  Google Scholar  * Aimonetti, J. M., Hospod, V., Roll, J. P. & Ribot-Ciscar, E. Cutaneous afferents provide a neuronal population vector that encodes the


orientation of human ankle movements. _J. Physiol._ 580, 649–658 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Edin, B. B. & Johansson, N. Skin strain patterns provide


kinaesthetic information to the human central nervous system. _J. Physiol._ 487, 243–251 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Collins, D. F. & Prochazka, A. Movement


illusions evoked by ensemble cutaneous input from the dorsum of the human hand. _J. Physiol._ 496, 857–871 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Collins, D. F., Refshauge,


K. M. & Gandevia, S. C. Sensory integration in the perception of movements at the human metacarpophalangeal joint. _J. Physiol._ 529, 505–515 (2000). CAS  PubMed  PubMed Central  Google


Scholar  * Collins, D. F., Refshauge, K. M., Todd, G. & Gandevia, S. C. Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. _J. Neurophysiol._ 94,


1699–1706 (2005). CAS  PubMed  Google Scholar  * Johansson, R. S. & Edin, B. B. Predictive feed-forward sensory control during grasping and manipulation in man. _Biomed. Res._ 14, 95–106


(1993). Google Scholar  * Johansson, R. S. & Cole, K. J. Sensory-motor coordination during grasping and manipulative actions. _Curr. Opin. Neurobiol._ 2, 815–823 (1992). CAS  PubMed 


Google Scholar  Download references ACKNOWLEDGEMENTS The Swedish Research Council (project 08667), the sixth Framework Program of the EU (project IST-028056), and the Canadian Institutes of


Health Research supported this work. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Integrative Medical Biology, Physiology Section, Umeå University, SE-901 87, Umeå, Sweden


Roland S. Johansson * Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, K7L 3N6, Ontario, Canada J. Randall Flanagan Authors * Roland S.


Johansson View author publications You can also search for this author inPubMed Google Scholar * J. Randall Flanagan View author publications You can also search for this author inPubMed 


Google Scholar CORRESPONDING AUTHOR Correspondence to Roland S. Johansson. GLOSSARY * Tactile afferents Fast-conducting myelinated afferent neurons that convey signals to the brain from


low-threshold mechanoreceptors in body areas that actively contact objects — that is, the inside of the hand, the sole of the foot, the lips, the tongue and the oral mucosa. * Proprioceptive


afferents Fast-conducting myelinated afferents that provide information about joint configurations and muscle states. These include mechanoreceptive afferents from the hairy skin, muscles,


joints and connective tissues. * Action-phase controller A learned sensorimotor 'control policy' that uses specific sensory information and sensory predictions to generate motor


commands to attain a sensory goal. * Sensorimotor control point A planned contact event in which predicted and actual sensory signals are compared to assess the outcome of an executed


action-phase controller. * Transcranial magnetic stimulation (TMS). A non-invasive technique that can be used to induce a transient interruption of normal activity in a restricted area of


the brain. It is based on the generation of a magnetic pulse near the area of interest that induces small eddy currents that stimulate neurons. * Grasp stability The control of grip forces


such that they are adequate to prevent accidental slips but not so large that they cause unnecessary fatigue or damage to the object or hand. * Forward internal models Neural circuits that


mimic the behaviour of the motor system and environment and capture the mapping between motor commands and expected sensory consequences. * Corollary discharge An internal signal, derived in


part from motor commands, that can be used to estimate the time-varying afferent input that corresponds to the predicted sensory consequences of the motor command. RIGHTS AND PERMISSIONS


Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Johansson, R., Flanagan, J. Coding and use of tactile signals from the fingertips in object manipulation tasks. _Nat Rev


Neurosci_ 10, 345–359 (2009). https://doi.org/10.1038/nrn2621 Download citation * Published: 08 April 2009 * Issue Date: May 2009 * DOI: https://doi.org/10.1038/nrn2621 SHARE THIS ARTICLE


Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided


by the Springer Nature SharedIt content-sharing initiative