Play all audios:
KEY POINTS * Object manipulation tasks comprise sequentially organized action phases that are generally delineated by distinct mechanical contact events representing task subgoals. To
achieve these subgoals, the brain selects and implements action-phase controllers that use sensory predictions and afferent signals to tailor motor output in anticipation of requirements
imposed by objects' physical properties. * Crucial control operations are centred on events that mark transitions between action phases. At these events, the CNS both receives and makes
predictions about sensory information from multiple sources. Mismatches between predicted and actual sensory outcomes can be used to quickly and flexibly launch corrective actions as
required. * Signals from tactile afferents provide rich information about both the timing and the physical nature of contact events. In addition, they encode information related to object
properties, including the shape and texture of contacted surfaces and the frictional conditions between these surfaces and the skin. * A central question is how tactile afferent information
is encoded and processed by the brain for the rapid detection and analysis of contact events. Recent evidence suggests that the relative timing of spikes in ensembles of tactile afferents
provides such information fast enough to account for the speed with which tactile signals are used in object manipulation tasks. * Contact events in manipulation can also be represented in
the visual and auditory modalities and this enables the brain to simultaneously evaluate sensory predictions in different modalities. Multimodal representations of subgoal events also
provide an opportunity for the brain to learn and uphold sensorimotor correlations that can be exploited by action-phase controllers. * A current challenge is to learn how the brain
implements the control operations that support object manipulations, such as processes involved in detecting sensory mismatches, triggering corrective actions, and creating, recruiting and
linking different action-phase controllers during task progression. The signal processing in somatosensory pathways for dynamic context-specific decoding of tactile afferent messages needs
to be better understood, as does the role of the descending control of these pathways. ABSTRACT During object manipulation tasks, the brain selects and implements action-phase controllers
that use sensory predictions and afferent signals to tailor motor output to the physical properties of the objects involved. Analysis of signals in tactile afferent neurons and central
processes in humans reveals how contact events are encoded and used to monitor and update task performance. Access through your institution Buy or subscribe This is a preview of subscription
content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $189.00 per year only $15.75 per
issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL
ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS EFFICIENT TACTILE ENCODING OF OBJECT
SLIPPAGE Article Open access 01 August 2022 SENSORIMOTOR MEMORIES INFLUENCE MOVEMENT KINEMATICS BUT NOT ASSOCIATED TACTILE PROCESSING Article Open access 20 October 2023 NORMAL AND
TANGENTIAL FORCES COMBINE TO CONVEY CONTACT PRESSURE DURING DYNAMIC TACTILE STIMULATION Article Open access 17 May 2022 REFERENCES * Macefield, V. G. & Johansson, R. S. Control of grip
force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits. _Exp. Brain Res._ 108, 172–184 (1996). CAS PubMed Google Scholar
* Macefield, V. G., Häger-Ross, C. & Johansson, R. S. Control of grip force during restraint of an object held between finger and thumb: responses of cutaneous afferents from the
digits. _Exp. Brain Res._ 108, 155–171 (1996). CAS PubMed Google Scholar * Häger-Ross, C. & Johansson, R. S. Non-digital afferent input in reactive control of fingertip forces during
precision grip. _Exp. Brain Res._ 110, 131–141 (1996). PubMed Google Scholar * Dimitriou, M. & Edin, B. B. Discharges in human muscle receptor afferents during block grasping. _J.
Neurosci._ 28, 12632–12642 (2008). CAS PubMed PubMed Central Google Scholar * Johansson, R. S. & Flanagan, J. R. in _The Senses: a Comprehensive Reference, Volume 6, Somatosensation_
(eds Gardner, E. & Kaas, J. H.) 67–86 (Academic, San Diego, 2008). Google Scholar * Vallbo, A. B. & Johansson, R. S. Properties of cutaneous mechanoreceptors in the human hand
related to touch sensation. _Hum. Neurobiol._ 3, 3–14 (1984). CAS PubMed Google Scholar * Johansson, R. S., Landström, U. & Lundström, R. Responses of mechanoreceptive afferent units
in the glabrous skin of the human hand to sinusoidal skin displacements. _Brain Res._ 244, 17–25 (1982). CAS PubMed Google Scholar * Löfvenberg, J. & Johansson, R. S. Regional
differences and interindividual variability in sensitivity to vibration in the glabrous skin of the human hand. _Brain Res._ 301, 65–72 (1984). PubMed Google Scholar * Brisben, A. J.,
Hsiao, S. S. & Johnson, K. O. Detection of vibration transmitted through an object grasped in the hand. _J. Neurophysiol._ 81, 1548–1558 (1999). CAS PubMed Google Scholar *
Loewenstein, W. R. & Skalak, R. Mechanical transmission in a Pacinian corpuscle. An analysis and a theory. _J. Physiol._ 182, 346–378 (1966). CAS PubMed PubMed Central Google Scholar
* Westling, G. & Johansson, R. S. Responses in glabrous skin mechanoreceptors during precision grip in humans. _Exp. Brain Res._ 66, 128–140 (1987). IMPULSES IN SINGLE TACTILE
AFFERENTS INNERVATING THE HUMAN FINGERTIPS WERE RECORDED FROM THE MEDIAN NERVE WHILE SMALL TEST OBJECTS WERE LIFTED, HELD IN THE AIR AND THEN REPLACED. DISTINCT DISCHARGES WERE OBSERVED AT
VARIOUS CONTACT EVENTS CORRESPONDING TO THE COMPLETION OF TASK SUBGOALS. CAS PubMed Google Scholar * Knibestöl, M. Stimulus-response functions of slowly adapting mechanoreceptors in the
human glabrous skin area. _J. Physiol._ 245, 63–80 (1975). PubMed PubMed Central Google Scholar * Johansson, R. S. Tactile sensibility in the human hand: receptive field characteristics
of mechanoreceptive units in the glabrous skin area. _J. Physiol._ 281, 101–125 (1978). CAS PubMed PubMed Central Google Scholar * Darian-Smith, I. in _Handbook of Physiology_ (eds,
Brookhart, J. M., Mountcastle, V. B., Darian-Smith, I. & Geiger, S. R.) 739–788 (American Physiological Society, Bethesda, Maryland, 1984). Google Scholar * Johnson, K. O., Yoshioka, T.
& Vega-Bermudez, F. Tactile functions of mechanoreceptive afferents innervating the hand. _J. Clin. Neurophysiol._ 17, 539–558 (2000). CAS PubMed Google Scholar * Goodwin, A. W.
& Wheat, H. E. Sensory signals in neural populations underlying tactile perception and manipulation. _Annu. Rev. Neurosci._ 27, 53–77 (2004). CAS PubMed Google Scholar * Johnson, K.
O. & Hsiao, S. S. Neural mechanisms of tactual form and texture perception. _Annu. Rev. Neurosci._ 15, 227–250 (1992). CAS PubMed Google Scholar * Craig, J. C. & Rollman, G. B.
Somesthesis. _Annu. Rev. Psychol._ 50, 305–331 (1999). CAS PubMed Google Scholar * Sathian, K., Goodwin, A. W., John, K. T. & Darian-Smith, I. Perceived roughness of a grating:
correlation with responses of mechanoreceptive afferents innervating the monkey's fingerpad. _J. Neurosci._ 9, 1273–1279 (1989). CAS PubMed PubMed Central Google Scholar *
Johansson, R. S. & Vallbo, Å. B. Tactile sensory coding in the glabrous skin of the human hand. _Trends Neurosci._ 6, 27–31 (1983). Google Scholar * Bisley, J. W., Goodwin, A. W. &
Wheat, H. E. Slowly adapting type I afferents from the sides and end of the finger respond to stimuli on the center of the fingerpad. _J. Neurophysiol._ 84, 57–64 (2000). CAS PubMed Google
Scholar * Birznieks, I., Jenmalm, P., Goodwin, A. W. & Johansson, R. S. Encoding of direction of fingertip forces by human tactile afferents. _J. Neurosci._ 21, 8222–8237 (2001). CAS
PubMed PubMed Central Google Scholar * Jenmalm, P., Birznieks, I., Goodwin, A. W. & Johansson, R. S. Influences of object shape on responses in human tactile afferents under
conditions characteristic for manipulation. _Eur. J. Neurosci._ 18, 164–176 (2003). PubMed Google Scholar * Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. in _Parallel Distributed
processing_ VOL. 1 (eds Rumelhart, D. E. & McClelland, J. L.) 77–109 (MIT Press, Cambridge, Massachusetts, 1986). Google Scholar * Eurich, C. W. & Schwegler, H. Coarse coding:
calculation of the resolution achieved by a population of large receptive field neurons. _Biol. Cybern._ 76, 357–363 (1997). CAS PubMed Google Scholar * Maeno, T. & Kobayashi, K. FE
analysis of the dynamic characteristics of the human finger pad in contact with objects with/without surface roughness. _Proc. 1998 Am. Soc. Mech. Eng. Int. Mech. Eng. Congress Exposition_
64, 279–286 (1998). Google Scholar * Maeno, T., Kobayashi, K. & Yamazaki, N. Relationship between the structure of human finger tissue and the location of tactile receptors. _JSME Int.
J._ 41, 94–100 (1998). Google Scholar * Serina, E. R., Mockensturm, E., Mote, C. D. Jr & Rempel, D. A structural model of the forced compression of the fingertip pulp. _J. Biomech._ 31,
639–646 (1998). CAS PubMed Google Scholar * Srinivasan, M. A. & Dandekar, K. An investigation of the mechanics of tactile sense using two-dimensional models of the primate fingertip.
_J. Biomech. Eng._ 118, 48–55 (1996). CAS PubMed Google Scholar * Nakazawa, N., Ikeura, R. & Inooka, H. Characteristics of human fingertips in the shearing direction. _Biol. Cybern._
82, 207–214 (2000). CAS PubMed Google Scholar * Dandekar, K., Raju, B. I. & Srinivasan, M. A. 3-D finite-element models of human and monkey fingertips to investigate the mechanics of
tactile sense. _J. Biomech. Eng._ 125, 682–691 (2003). PubMed Google Scholar * Wu, J. Z., Dong, R. G., Smutz, W. P. & Schopper, A. W. Modeling of time-dependent force response of
fingertip to dynamic loading. _J. Biomech._ 36, 383–392 (2003). CAS PubMed Google Scholar * Wu, J. Z., Welcome, D. E. & Dong, R. G. Three-dimensional finite element simulations of the
mechanical response of the fingertip to static and dynamic compressions. _Comput. Methods Biomech. Biomed. Eng._ 9, 55–63 (2006). CAS Google Scholar * Maeno, T., Kawamura, T. & Cheng,
S. C. Friction estimation by pressing an elastic finger-shaped sensor against a surface. _IEEE Trans. Rob. Autom._ 20, 222–2228 (2004). Google Scholar * Flanagan, J. R., Bowman, M. C.
& Johansson, R. S. Control strategies in object manipulation tasks. _Curr. Opin. Neurobiol._ 16, 650–659 (2006). CAS PubMed Google Scholar * Prochazka, A. The fuzzy logic of
visuomotor control. _Can. J. Physiol. Pharmacol._ 74, 456–462 (1996). CAS PubMed Google Scholar * Misiaszek, J. E. Neural control of walking balance: if falling then react else continue.
_Exerc. Sport Sci. Rev._ 34, 128–134 (2006). PubMed Google Scholar * Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S. & Westling, G. Development of human precision grip.
I: Basic coordination of force. _Exp. Brain Res._ 85, 451–457 (1991). CAS PubMed Google Scholar * Forssberg, H. et al. Development of human precision grip. II. Anticipatory control of
isometric forces targeted for object's weight. _Exp. Brain Res._ 90, 393–398 (1992). CAS PubMed Google Scholar * Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C. &
Westling, G. Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces. _Exp. Brain Res._ 90, 399–403 (1992). CAS PubMed Google
Scholar * Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G. & Johansson, R. S. Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the
frictional condition. _Exp. Brain Res._ 104, 323–330 (1995). CAS PubMed Google Scholar * Eliasson, A. C. et al. Development of human precision grip. V. Anticipatory and triggered grip
actions during sudden loading. _Exp. Brain Res._ 106, 425–433 (1995). CAS PubMed Google Scholar * Paré, M. & Dugas, C. Developmental changes in prehension during childhood. _Exp.
Brain Res._ 125, 239–247 (1999). PubMed Google Scholar * Goodale, M. A. et al. Separate neural pathways for the visual analysis of object shape in perception and prehension. _Curr. Biol._
4, 604–610 (1994). CAS PubMed Google Scholar * Santello, M. & Soechting, J. F. Gradual molding of the hand to object contours. _J. Neurophysiol._ 79, 1307–1320 (1998). CAS PubMed
Google Scholar * Cohen, R. G. & Rosenbaum, D. A. Where grasps are made reveals how grasps are planned: generation and recall of motor plans. _Exp. Brain Res._ 157, 486–495 (2004).
PubMed Google Scholar * Cuijpers, R. H., Smeets, J. B. & Brenner, E. On the relation between object shape and grasping kinematics. _J. Neurophysiol._ 91, 2598–2606 (2004). PubMed
Google Scholar * Lukos, J., Ansuini, C. & Santello, M. Choice of contact points during multidigit grasping: effect of predictability of object center of mass location. _J. Neurosci._
27, 3894–3903 (2007). CAS PubMed PubMed Central Google Scholar * Pawluk, D. T. & Howe, R. D. Dynamic lumped element response of the human fingerpad. _J. Biomech. Eng._ 121, 178–183
(1999). CAS PubMed Google Scholar * Wheat, H. E., Goodwin, A. W. & Browning, A. S. Tactile resolution: peripheral neural mechanisms underlying the human capacity to determine
positions of objects contacting the fingerpad. _J. Neurosci._ 15, 5582–5595 (1995). CAS PubMed PubMed Central Google Scholar * Knibestöl, M. Stimulus-response functions of rapidly
adapting mechanoreceptors in human glabrous skin area. _J. Physiol._ 232, 427–452 (1973). PubMed PubMed Central Google Scholar * Johansson, R. S. & Vallbo, Å. B. in _Sensory Functions
of the Skin in Primates, With Special Reference to Man_ (ed. Zotterman, Y.) 171–184 (Pergamon, Oxford, 1976). Google Scholar * Gentilucci, M., Toni, I., Daprati, E. & Gangitano, M.
Tactile input of the hand and the control of reaching to grasp movements. _Exp. Brain Res._ 114, 130–137 (1997). CAS PubMed Google Scholar * Lackner, J. R. & DiZio, P. A. Aspects of
body self-calibration. _Trends Cogn. Sci._ 4, 279–288 (2000). CAS PubMed Google Scholar * Rao, A. K. & Gordon, A. M. Contribution of tactile information to accuracy in pointing
movements. _Exp. Brain Res._ 138, 438–445 (2001). CAS PubMed Google Scholar * Gordon, A. M. & Soechting, J. F. Use of tactile afferent information in sequential finger movements.
_Exp. Brain Res._ 107, 281–292 (1995). CAS PubMed Google Scholar * Rabin, E. & Gordon, A. M. Tactile feedback contributes to consistency of finger movements during typing. _Exp. Brain
Res._ 155, 362–369 (2004). PubMed Google Scholar * Säfström, D. & Edin, B. B. Task requirements influence sensory integration during grasping in humans. _Learn. Mem._ 11, 356–363
(2004). PubMed PubMed Central Google Scholar * Lemon, R. N., Johansson, R. S. & Westling, G. Corticospinal control during reach, grasp and precision lift in man. _J. Neurosci._ 15,
6145–6156 (1995). CAS PubMed PubMed Central Google Scholar * Schabrun, S. M., Ridding, M. C. & Miles, T. S. Role of the primary motor and sensory cortex in precision grasping: a
transcranial magnetic stimulation study. _Eur. J. Neurosci._ 27, 750–756 (2008). CAS PubMed Google Scholar * Davare, M., Andres, M., Clerget, E., Thonnard, J. L. & Olivier, E.
Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area. _J. Neurosci._ 27, 3974–3980 (2007). CAS PubMed PubMed Central Google Scholar *
Davare, M., Andres, M., Cosnard, G., Thonnard, J. L. & Olivier, E. Dissociating the role of ventral and dorsal premotor cortex in precision grasping. _J. Neurosci._ 26, 2260–2268 (2006).
PubMed PubMed Central Google Scholar * Johansson, R. S. & Westling, G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting
rougher or more slippery objects. _Exp. Brain Res._ 56, 550–564 (1984). THIS STUDY DEMONSTRATED THAT SUBJECTS' GRIP FORCES CHANGE IN PARALLEL WITH LOAD FORCES TO OVERCOME FORCES
COUNTERACTING THE INTENDED MANIPULATION, AND THAT THE BALANCE BETWEEN THE GRIP AND LOAD FORCES IS ADAPTED TO THE FRICTION TO PROVIDE A SMALL SAFETY MARGIN TO PREVENT SLIPS. EXPERIMENTS WITH
LOCAL ANAESTHESIA SHOWED THAT THIS ADAPTATION DEPENDS ON CUTANEOUS AFFERENT INPUT. CAS PubMed Google Scholar * Goodwin, A. W., Jenmalm, P. & Johansson, R. S. Control of grip force
when tilting objects: effect of curvature of grasped surfaces and of applied tangential torque. _J. Neurosci._ 18, 10724–10734 (1998). CAS PubMed PubMed Central Google Scholar * Wing, A.
M. & Lederman, S. J. Anticipating load torques produced by voluntary movements. _J. Exp. Psychol. Hum. Percept. Perform._ 24, 1571–1581 (1998). CAS PubMed Google Scholar * Johansson,
R. S., Backlin, J. L. & Burstedt, M. K. O. Control of grasp stability during pronation and supination movements. _Exp. Brain Res._ 128, 20–30 (1999). CAS PubMed Google Scholar *
Flanagan, J. R. & Wing, A. M. The stability of precision grip forces during cyclic arm movements with a hand-held load. _Exp. Brain Res._ 105, 455–464 (1995). CAS PubMed Google Scholar
* Flanagan, J. R. & Tresilian, J. R. Grip load force coupling: a general control strategy for transporting objects. _J. Exp. Psychol. Hum. Percept. Perform._ 20, 944–957 (1994). CAS
PubMed Google Scholar * LaMotte, R. H. Softness discrimination with a tool. _J. Neurophysiol._ 83, 1777–1786 (2000). CAS PubMed Google Scholar * Flanagan, J. R., Burstedt, M. K. O.
& Johansson, R. S. Control of fingertip forces in multi-digit manipulation. _J. Neurophysiol._ 81, 1706–1717 (1999). CAS PubMed Google Scholar * Santello, M. & Soechting, J. F.
Force synergies for multifingered grasping. _Exp. Brain Res._ 133, 457–467 (2000). CAS PubMed Google Scholar * Johansson, R. S. & Westling, G. Programmed and triggered actions to
rapid load changes during precision grip. _Exp. Brain Res._ 71, 72–86 (1988). CAS PubMed Google Scholar * Burstedt, M. K. O., Edin, B. B. & Johansson, R. S. Coordination of fingertip
forces during human manipulation can emerge from independent neural networks controlling each engaged digit. _Exp. Brain Res._ 117, 67–79 (1997). CAS PubMed Google Scholar * Bracewell, R.
M., Wing, A. M., Soper, H. M. & Clark, K. G. Predictive and reactive co-ordination of grip and load forces in bimanual lifting in man. _Eur. J. Neurosci._ 18, 2396–2402 (2003). PubMed
Google Scholar * Witney, A. G., Goodbody, S. J. & Wolpert, D. M. Predictive motor learning of temporal delays. _J. Neurophysiol._ 82, 2039–2048 (1999). CAS PubMed Google Scholar *
Gysin, P., Kaminski, T. R. & Gordon, A. M. Coordination of fingertip forces in object transport during locomotion. _Exp. Brain Res._ 149, 371–379 (2003). PubMed Google Scholar *
Witney, A. G. & Wolpert, D. M. The effect of externally generated loading on predictive grip force modulation. _Neurosci. Lett._ 414, 10–15 (2007). CAS PubMed PubMed Central Google
Scholar * Danion, F. & Sarlegna, F. R. Can the human brain predict the consequences of arm movement corrections when transporting an object? Hints from grip force adjustments. _J.
Neurosci._ 27, 12839–12843 (2007). CAS PubMed PubMed Central Google Scholar * Bursztyn, L. L. & Flanagan, J. R. Sensorimotor memory of weight asymmetry in object manipulation. _Exp.
Brain Res._ 184, 127–133 (2008). PubMed Google Scholar * Flanagan, J. R. & Wing, A. M. The role of internal models in motion planning and control: evidence from grip force adjustments
during movements of hand-held loads. _J. Neurosci._ 17, 1519–1528 (1997). THIS STUDY SHOWED THAT WHEN MOVING HAND-HELD OBJECTS, PEOPLE PRECISELY MODULATE THEIR GRIP FORCE IN ANTICIPATION OF
MOVEMENT-DEPENDENT LOADS. THIS RESULT PROVIDES STRONG EVIDENCE THAT THE BRAIN LEARNS AND MAKES USE OF ACCURATE INTERNAL MODELS OF OBJECT MECHANICS TO PREDICT THE CONSEQUENCES OF ACTION. CAS
PubMed PubMed Central Google Scholar * Flanagan, J. R., Vetter, P., Johansson, R. S. & Wolpert, D. M. Prediction precedes control in motor learning. _Curr. Biol._ 13, 146–150
(2003). CAS PubMed Google Scholar * Westling, G. & Johansson, R. S. Factors influencing the force control during precision grip. _Exp. Brain Res._ 53, 277–284 (1984). CAS PubMed
Google Scholar * Jenmalm, P. & Johansson, R. S. Visual and somatosensory information about object shape control manipulative finger tip forces. _J. Neurosci._ 17, 4486–4499 (1997). THIS
STUDY SHOWED THAT PEOPLE CAN USE VISION TO PREDICTIVELY ADAPT THEIR FINGERTIP FORCES TO THE ANGLE OF GRASPED SURFACES. THE RESULTS ALSO SHOWED THAT, IN THE ABSENCE OF VISION, TACTILE
INFORMATION OBTAINED WHEN THE FINGERTIPS CONTACT THE GRASPED SURFACES CAN BE USED TO RAPIDLY ADJUST FINGERTIP FORCES. CAS PubMed PubMed Central Google Scholar * Jenmalm, P., Dahlstedt,
S. & Johansson, R. S. Visual and tactile information about object curvature control fingertip forces and grasp kinematics in human dexterous manipulation. _J. Neurophysiol._ 84,
2984–2997 (2000). CAS PubMed Google Scholar * Monzée, J., Lamarre, Y. & Smith, A. M. The effects of digital anesthesia on force control using a precision grip. _J. Neurophysiol._ 89,
672–683 (2003). PubMed Google Scholar * Nowak, D. A., Glasauer, S. & Hermsdorfer, J. How predictive is grip force control in the complete absence of somatosensory feedback? _Brain_
127, 182–192 (2004). PubMed Google Scholar * Nowak, D. A. & Hermsdörfer, J. Digit cooling influences grasp efficiency during manipulative tasks. _Eur. J. Appl. Physiol._ 89, 127–133
(2003). CAS PubMed Google Scholar * Cole, K. J., Steyers, C. M. & Graybill, E. K. The effects of graded compression of the median nerve in the carpal canal on grip force. _Exp. Brain
Res._ 148, 150–157 (2003). PubMed Google Scholar * Schenker, M., Burstedt, M. K., Wiberg, M. & Johansson, R. S. Precision grip function after hand replantation and digital nerve
injury. _J. Plast. Reconstr. Aesthet. Surg._ 59, 706–716 (2006). CAS PubMed Google Scholar * Cadoret, G. & Smith, A. M. Friction, not texture, dictates grip forces used during object
manipulation. _J. Neurophysiol._ 75, 1963–1969 (1996). CAS PubMed Google Scholar * Edin, B. B., Westling, G. & Johansson, R. S. Independent control of fingertip forces at individual
digits during precision lifting in humans. _J. Physiol._ 450, 547–564 (1992). CAS PubMed PubMed Central Google Scholar * Birznieks, I., Burstedt, M. K. O., Edin, B. B. & Johansson,
R. S. Mechanisms for force adjustments to unpredictable frictional changes at individual digits during two-fingered manipulation. _J. Neurophysiol._ 80, 1989–2002 (1998). CAS PubMed Google
Scholar * Burstedt, M. K. O., Flanagan, R. & Johansson, R. S. Control of grasp stability in humans under different frictional conditions during multi-digit manipulation. _J.
Neurophysiol._ 82, 2393–2405 (1999). CAS PubMed Google Scholar * Quaney, B. M. & Cole, K. J. Distributing vertical forces between the digits during gripping and lifting: the effects
of rotating the hand versus rotating the object. _Exp. Brain Res._ 155, 145–155 (2004). PubMed Google Scholar * Niu, X., Latash, M. L. & Zatsiorsky, V. M. Prehension synergies in the
grasps with complex friction patterns: local versus synergic effects and the template control. _J. Neurophysiol._ 98, 16–28 (2007). PubMed Google Scholar * Johansson, R. S. & Westling,
G. Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. _Exp. Brain Res._ 66, 141–154 (1987). CAS PubMed Google Scholar * Sathian, K.
Tactile sensing of surface features. _Trends Neurosci._ 12, 513–519 (1989). CAS PubMed Google Scholar * Johansson, R. S., Landström, U. & Lundström, R. Sensitivity to edges of
mechanoreceptive afferent units innervating the glabrous skin of the human head. _Brain Res._ 244, 27–35 (1982). CAS PubMed Google Scholar * Phillips, J. R., Johansson, R. S. &
Johnson, K. O. Representation of braille characters in human nerve fibres. _Exp. Brain Res._ 81, 589–592 (1990). CAS PubMed Google Scholar * Phillips, J. R., Johansson, R. S. &
Johnson, K. O. Responses of human mechanoreceptive afferents to embossed dot arrays scanned across fingerpad skin. _J. Neurosci._ 12, 827–839 (1992). CAS PubMed PubMed Central Google
Scholar * Goodwin, A. W., Macefield, V. G. & Bisley, J. W. Encoding of object curvature by tactile afferents from human fingers. _J. Neurophysiol._ 78, 2881–2888 (1997). CAS PubMed
Google Scholar * Khalsa, P. S., Friedman, R. M., Srinivasan, M. A. & Lamotte, R. H. Encoding of shape and orientation of objects indented into the monkey fingerpad by populations of
slowly and rapidly adapting mechanoreceptors. _J. Neurophysiol._ 79, 3238–3251 (1998). CAS PubMed Google Scholar * Johansson, R. S. & Vallbo, A. B. Tactile sensibility in the human
hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. _J. Physiol._ 286, 283–300 (1979). CAS PubMed PubMed Central Google Scholar * Ehrsson, H.
E., Fagergren, A., Johansson, R. S. & Forssberg, H. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation.
_J. Neurophysiol._ 90, 3295–3303 (2003). Google Scholar * Kawato, M. et al. Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. _Prog. Brain Res._
142, 171–188 (2003). PubMed Google Scholar * Boecker, H. et al. Force level independent representations of predictive grip force-load force coupling: a PET activation study. _Neuroimage_
25, 243–252 (2005). CAS PubMed Google Scholar * Wolpert, D. M., Miall, C. R. & Kawato, M. Internal models in the cerebellum. _Trends Cogn. Sci._ 2, 338–347 (1998). CAS PubMed Google
Scholar * Rost, K., Nowak, D. A., Timmann, D. & Hermsdörfer, J. Preserved and impaired aspects of predictive grip force control in cerebellar patients. _Clin. Neurophysiol._ 116,
1405–1414 (2005). PubMed Google Scholar * Nowak, D. A., Hermsdörfer, J., Marquardt, C. & Fuchs, H. H. Grip and load force coupling during discrete vertical arm movements with a grasped
object in cerebellar atrophy. _Exp. Brain Res._ 145, 28–39 (2002). PubMed Google Scholar * Müller, F. & Dichgans, J. Dyscoordination of pinch and lift forces during grasp in patients
with cerebellar lesions. _Exp. Brain Res._ 101, 485–492 (1994). PubMed Google Scholar * Babin-Ratté, S., Sirigu, A., Gilles, M. & Wing, A. Impaired anticipatory finger grip-force
adjustments in a case of cerebellar degeneration. _Exp. Brain Res._ 128, 81–85 (1999). PubMed Google Scholar * Serrien, D. J. & Wiesendanger, M. Role of the cerebellum in tuning
anticipatory and reactive grip force responses. _J. Cogn. Neurosci._ 11, 672–681 (1999). CAS PubMed Google Scholar * Fellows, S. J., Ernst, J., Schwarz, M., Töpper, R. & Noth, J.
Precision grip deficits in cerebellar disorders in man. _Neurophysiol. Clin._ 112, 1793–1802 (2001). CAS Google Scholar * Hermsdörfer, J., Hagl, E., Nowak, D. A. & Marquardt, C. Grip
force control during object manipulation in cerebral stroke. _Clin. Neurophysiol._ 114, 915–929 (2003). PubMed Google Scholar * Nowak, D. A., Hermsdörfer, J. & Topka, H. Deficits of
predictive grip force control during object manipulation in acute stroke. _J. Neurol._ 250, 850–860 (2003). PubMed Google Scholar * Müller, F. & Abbs, J. H. in _Advances in Neurology_
VOL. 53 (eds Streifler, M. B., Korezyn, A. D., Melamed, E. & Youdim, M. B. H.) 191–195 (Raven, New York, 1990). Google Scholar * Harrison, L. M., Mayston, M. J. & Johansson, R. S.
Reactive control of precision grip does not depend on fast transcortical reflex pathways in X-linked Kallmann subjects. _J. Physiol._ 527, 641–652 (2000). CAS PubMed PubMed Central Google
Scholar * Nowak, D. A., Voss, M., Huang, Y. Z., Wolpert, D. M. & Rothwell, J. C. High-frequency repetitive transcranial magnetic stimulation over the hand area of the primary motor
cortex disturbs predictive grip force scaling. _Eur. J. Neurosci._ 22, 2392–2396 (2005). PubMed Google Scholar * Berner, J., Schönfeldt-Lecuona, C. & Nowak, D. A. Sensorimotor memory
for fingertip forces during object lifting: the role of the primary motor cortex. _Neuropsychologia_ 45, 1931–1938 (2007). PubMed Google Scholar * Nowak, D. A., Hermsdörfer, J. &
Topka, H. When motor execution is selectively impaired: control of manipulative finger forces in amyotrophic lateral sclerosis. _Motor Control_ 7, 304–320 (2003). PubMed Google Scholar *
Gordon, A. M., Quinn, L., Reilmann, R. & Marder, K. Coordination of prehensile forces during precision grip in Huntington's disease. _Exp. Neurol._ 163, 136–148 (2000). CAS PubMed
Google Scholar * Serrien, D. J., Burgunder, J. M. & Wiesendanger, M. Grip force scaling and sequencing of events during a manipulative task in Huntington's disease.
_Neuropsychologia_ 39, 734–741 (2001). CAS PubMed Google Scholar * Fellows, S. J., Noth, J. & Schwarz, M. Precision grip and Parkinson's disease. _Brain_ 121, 1771–1784 (1998).
PubMed Google Scholar * Serrien, D. J., Burgunder, J. M. & Wiesendanger, M. Disturbed sensorimotor processing during control of precision grip in patients with writer's cramp.
_Mov. Disord._ 15, 965–972 (2000). CAS PubMed Google Scholar * Schenk, T. & Mai, N. Is writer's cramp caused by a deficit of sensorimotor integration? _Exp. Brain Res._ 136,
321–330 (2001). CAS PubMed Google Scholar * Wiesendanger, M. & Serrien, D. J. Neurological problems affecting hand dexterity. _Brain Res. Brain Res. Rev._ 36, 161–168 (2001). CAS
PubMed Google Scholar * Johansson, R. S. & Westling, G. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision
grip. _Exp. Brain Res._ 71, 59–71 (1988). CAS PubMed Google Scholar * Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. Integration of sensory information during the
programming of precision grip: comments on the contributions of size cues. _Exp. Brain Res._ 85, 226–229 (1991). CAS PubMed Google Scholar * Gordon, A. M., Westling, G., Cole, K. J. &
Johansson, R. S. Memory representations underlying motor commands used during manipulation of common and novel objects. _J. Neurophysiol._ 69, 1789–1796 (1993). THE AUTHORS SHOWED THAT
HUMANS USE ANTICIPATORY CONTROL TO SCALE MOTOR COMMANDS TO THE WEIGHT OF FAMILIAR OBJECTS. THE MEMORY INFORMATION IS ROBUST AND CAN BE RETRIEVED THROUGH VISUAL IDENTIFICATION OF THE TARGET
OBJECT. IN ADDITION, ACCURATE MEMORY REPRESENTATIONS RELATED TO THE WEIGHTS OF NOVEL OBJECTS DEVELOP QUICKLY. CAS PubMed Google Scholar * Flanagan, J. R. & Beltzner, M. A.
Independence of perceptual and sensorimotor predictions in the size–weight illusion. _Nature Neurosci._ 3, 737–741 (2000). CAS PubMed Google Scholar * Flanagan, J. R., Bittner, J. P.
& Johansson, R. S. Experience can change distinct size-weight priors engaged in lifting objects and judging their weights. _Curr. Biol._ 18, 1742–1747 (2008). THIS PAPER SHOWED THAT THE
MOTOR AND PERCEPTUAL SYSTEMS RELY ON DISTINCT LEARNED SIZE–WEIGHT MAPS WHEN LIFTING OBJECTS AND JUDGING THEIR WEIGHTS, RESPECTIVELY, AND THAT THESE MAPS CAN BE CHANGED BY EXPERIENCE. CAS
PubMed Google Scholar * Cole, K. J. Lifting a familiar object: visual size analysis, not memory for object weight, scales lift force. _Exp. Brain Res._ 188, 551–557 (2008). PubMed Google
Scholar * Cole, K. J. & Rotella, D. L. Old age impairs the use of arbitrary visual cues for predictive control of fingertip forces during grasp. _Exp. Brain Res._ 143, 35–41 (2002).
PubMed Google Scholar * Ameli, M., Dafotakis, M., Fink, G. R. & Nowak, D. A. Predictive force programming in the grip-lift task: the role of memory links between arbitrary cues and
object weight. _Neuropsychologia_ 46, 2383–2388 (2008). PubMed Google Scholar * Salimi, I., Hollender, I., Frazier, W. & Gordon, A. M. Specificity of internal representations
underlying grasping. _J. Neurophysiol._ 84, 2390–2397 (2000). CAS PubMed Google Scholar * Salimi, I., Frazier, W., Reilmann, R. & Gordon, A. M. Selective use of visual information
signaling objects' center of mass for anticipatory control of manipulative fingertip forces. _Exp. Brain Res._ 150, 9–18 (2003). PubMed Google Scholar * Jenmalm, P., Schmitz, C.,
Forssberg, H. & Ehrsson, H. H. Lighter or heavier than predicted: neural correlates of corrective mechanisms during erroneously programmed lifts. _J. Neurosci._ 26, 9015–9021 (2006).
THIS STUDY EXAMINED CENTRAL CONTRIBUTIONS TO PRECISION LIFTING USING FMRI. THE RESULTS SUGGESTED A ROLE FOR THE RIGHT INFERIOR PARIETAL CORTEX IN DETECTING MISMATCHES BETWEEN PREDICTED AND
ACTUAL WEIGHT AND INDICATED THAT THE PRIMARY SENSORIMOTOR CORTEX AND THE CEREBELLUM ARE ENGAGED IN IMPLEMENTING CORRECTIVE ACTION PROGRAMMES. CAS PubMed PubMed Central Google Scholar *
Desmurget, M. et al. Role of the posterior parietal cortex in updating reaching movements to a visual target. _Nature Neurosci._ 2, 563–567 (1999). CAS PubMed Google Scholar * Tunik, E.,
Frey, S. H. & Grafton, S. T. Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. _Nature Neurosci._ 8, 505–511 (2005). CAS PubMed
Google Scholar * Bursztyn, L. L., Ganesh, G., Imamizu, H., Kawato, M. & Flanagan, J. R. Neural correlates of internal-model loading. _Curr. Biol._ 16, 2440–2445 (2006). CAS PubMed
Google Scholar * Hua, S. E. & Houk, J. C. Cerebellar guidance of premotor network development and sensorimotor learning. _Learn. Mem._ 4, 63–76 (1997). CAS PubMed Google Scholar *
Chouinard, P. A., Leonard, G. & Paus, T. Role of the primary motor and dorsal premotor cortices in the anticipation of forces during object lifting. _J. Neurosci._ 25, 2277–2284 (2005).
THIS PAPER SHOWED THAT REPETITIVE TMS APPLIED TO THE DORSAL PREMOTOR CORTEX DISRUPTS ASSOCIATIVE MEMORY FOR WEIGHT WHEREAS REPETITIVE TMS APPLIED TO THE PRIMARY MOTOR CORTEX DISRUPTS
SENSORIMOTOR MEMORY FOR WEIGHT. CAS PubMed PubMed Central Google Scholar * Li, Y., Randerath, J., Goldenberg, G. & Hermsdörfer, J. Grip forces isolated from knowledge about object
properties following a left parietal lesion. _Neurosci. Lett._ 426, 187–191 (2007). CAS PubMed Google Scholar * Adrian, E. D. _The Basis of Sensation_ (Norton, New York, 1928). Google
Scholar * Torebjörk, H. E., Vallbo, A. B. & Ochoa, J. L. Intraneural microstimulation in man. Its relation to specificity of tactile sensations. _Brain_ 110, 1509–1529 (1987). PubMed
Google Scholar * Johansson, R. S. & Birznieks, I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. _Nature Neurosci._ 7, 170–177 (2004). THIS
STUDY DEMONSTRATED THAT THE RELATIVE TIMING OF FIRST IMPULSES ELICITED IN ENSEMBLES OF TACTILE AFFERENTS WHEN FINGERTIPS CONTACT OBJECTS CONVEYS INFORMATION ABOUT THE DIRECTION OF FINGERTIP
FORCES AND SURFACE SHAPE FASTER THAN THE FASTEST POSSIBLE RATE CODE AND FAST ENOUGH TO ACCOUNT FOR THE USE OF THIS INFORMATION IN NATURAL MANIPULATIONS. CAS PubMed Google Scholar *
Johansson, R. S. & Vallbo, A. B. Spatial properties of the population of mechanoreceptive units in the glabrous skin of the human hand. _Brain Res._ 184, 353–366 (1980). CAS PubMed
Google Scholar * Heil, P. First-spike latency of auditory neurons revisited. _Curr. Opin. Neurobiol._ 14, 461–467 (2004). CAS PubMed Google Scholar * VanRullen, R., Guyonneau, R. &
Thorpe, S. J. Spike times make sense. _Trends Neurosci._ 28, 1–4 (2005). CAS PubMed Google Scholar * Furukawa, S., Xu, L. & Middlebrooks, J. C. Coding of sound-source location by
ensembles of cortical neurons. _J. Neurosci._ 20, 1216–1228 (2000). CAS PubMed PubMed Central Google Scholar * Nelken, I., Chechik, G., Mrsic-Flogel, T. D., King, A. J. & Schnupp, J.
W. Encoding stimulus information by spike numbers and mean response time in primary auditory cortex. _J. Comput. Neurosci._ 19, 199–221 (2005). PubMed Google Scholar * Reich, D. S.,
Mechler, F. & Victor, J. D. Temporal coding of contrast in primary visual cortex: when, what, and why. _J. Neurophysiol._ 85, 1039–1050 (2001). CAS PubMed Google Scholar * Gawne, T.
J., Kjaer, T. W. & Richmond, B. J. Latency: another potential code for feature binding in striate cortex. _J. Neurophysiol._ 76, 1356–1360 (1996). CAS PubMed Google Scholar *
Gollisch, T. & Meister, M. Rapid neural coding in the retina with relative spike latencies. _Science_ 319, 1108–1111 (2008). THE AUTHORS REPORTED THAT RETINAL GANGLION CELLS CAN ENCODE
THE SPATIAL STRUCTURE OF A BRIEFLY PRESENTED IMAGE IN THE RELATIVE TIMING OF THEIR FIRST SPIKES. THIS MECHANISM ALLOWS THE RETINA TO RAPIDLY AND RELIABLY TRANSMIT NEW SPATIAL INFORMATION
WITH THE VERY FIRST SPIKES EMITTED BY A NEURAL POPULATION IN A MANNER THAT IS LARGELY UNAFFECTED BY STIMULUS CONTRAST. CAS PubMed Google Scholar * Panzeri, S., Petersen, R. S., Schultz,
S. R., Lebedev, M. & Diamond, M. E. The role of spike timing in the coding of stimulus location in rat somatosensory cortex. _Neuron_ 29, 769–777 (2001). CAS PubMed Google Scholar *
Petersen, R. S., Panzeri, S. & Diamond, M. E. Population coding in somatosensory cortex. _Curr. Opin. Neurobiol._ 12, 441–447 (2002). CAS PubMed Google Scholar * Mikula, S. &
Niebur, E. Rate and synchrony in feedforward networks of coincidence detectors: analytical solution. _Neural Comput._ 17, 881–902 (2005). PubMed PubMed Central Google Scholar * Gerstner,
W. & Kistler, W. M. _Spiking Neuron Models_ (Cambridge Univ. Press, Cambridge, 2002). Google Scholar * Hopfield, J. J. Pattern recognition computation using action potential timing for
stimulus representation. _Nature_ 376, 33–36 (1995). CAS PubMed Google Scholar * König, P., Engel, A. K. & Singer, W. Integrator or coincidence detector? The role of the cortical
neuron revisited. _Trends Neurosci._ 19, 130–137 (1996). PubMed Google Scholar * Masquelier, T., Guyonneau, R. & Thorpe, S. J. Spike timing dependent plasticity finds the start of
repeating patterns in continuous spike trains. _PLoS ONE_ 3, e1377 (2008). PubMed PubMed Central Google Scholar * Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. _Science_ 275, 213–215 (1997). CAS PubMed Google Scholar * Bi, G. & Poo, M. Distributed synaptic modification in neural
networks induced by patterned stimulation. _Nature_ 401, 792–796 (1999). CAS PubMed Google Scholar * Song, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through
spike-timing-dependent synaptic plasticity. _Nature Neurosci._ 3, 919–926 (2000). CAS PubMed Google Scholar * Fox, K. & Wong, R. O. A comparison of experience-dependent plasticity in
the visual and somatosensory systems. _Neuron_ 48, 465–477 (2005). CAS PubMed Google Scholar * Guyonneau, R., VanRullen, R. & Thorpe, S. J. Neurons tune to the earliest spikes through
STDP. _Neural Comput._ 17, 859–879 (2005). PubMed Google Scholar * Gütig, R. & Sompolinsky, H. The tempotron: a neuron that learns spike timing-based decisions. _Nature Neurosci._ 9,
420–428 (2006). PubMed Google Scholar * Chase, S. M. & Young, E. D. First-spike latency information in single neurons increases when referenced to population onset. _Proc. Natl Acad.
Sci. USA_ 104, 5175–5180 (2007). CAS PubMed PubMed Central Google Scholar * Jones, E. G. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory
cortex. _Annu. Rev. Neurosci._ 23, 1–37 (2000). CAS PubMed Google Scholar * Kakuda, N. Conduction velocity of low-threshold mechanoreceptive afferent fibers in the glabrous and hairy skin
of human hands measured with microneurography and spike-triggered averaging. _Neurosci. Res._ 15, 179–188 (1992). CAS PubMed Google Scholar * Darian-Smith, I. & Kenins, P.
Innervation density of mechanoreceptive fibres supplying glabrous skin of the monkey's index finger. _J. Physiol._ 309, 147–155 (1980). CAS PubMed PubMed Central Google Scholar *
Carr, C. E. Processing of temporal information in the brain. _Annu. Rev. Neurosci._ 16, 223–243 (1993). CAS PubMed Google Scholar * Land, M. F. & Furneaux, S. The knowledge base of
the oculomotor system. _Philos. Trans. R. Soc. Lond. B Biol. Sci._ 352, 1231–1239 (1997). CAS PubMed PubMed Central Google Scholar * Flanagan, J. R. & Johansson, R. S. Action plans
used in action observation. _Nature_ 424, 769–771 (2003). CAS PubMed Google Scholar * Ballard, D. H., Hayhoe, M. M., Li, F. & Whitehead, S. D. Hand-eye coordination during sequential
tasks. _Philos. Trans. R. Soc. Lond. B Biol. Sci._ 337, 331–338 (1992). CAS PubMed Google Scholar * Land, M., Mennie, N. & Rusted, J. The roles of vision and eye movements in the
control of activities of daily living. _Perception_ 28, 1311–1328 (1999). CAS PubMed Google Scholar * Johansson, R. S., Westling, G., Bäckström, A. & Flanagan, J. R. Eye-hand
coordination in object manipulation. _J. Neurosci._ 21, 6917–6932 (2001). THIS STUDY EXAMINED THE PRECISE SPATIAL AND TEMPORAL COORDINATION OF GAZE AND FINGERTIP MOVEMENTS IN AN OBJECT
MANIPULATION TASK. THE RESULTS SHOWED THAT THE GAZE SUPPORTS HAND MOVEMENT PLANNING BY MARKING KEY POSITIONS TO WHICH THE FINGERTIPS OR THE GRASPED OBJECT ARE SUBSEQUENTLY DIRECTED. CAS
PubMed PubMed Central Google Scholar * Biguer, B., Jeannerod, M. & Prablanc, C. The coordination of eye, head, and arm movements during reaching at a single visual target. _Exp. Brain
Res._ 46, 301–304 (1982). CAS PubMed Google Scholar * Sailer, U., Flanagan, J. R. & Johansson, R. S. Eye–hand coordination during learning of a novel visuomotor task. _J. Neurosci._
25, 8833–8842 (2005). THIS STUDY EXAMINED CHANGES IN GAZE BEHAVIOUR DURING A VISUOMOTOR TASK IN WHICH SUBJECTS GRADUALLY LEARNED A NOVEL MAPPING BETWEEN THEIR HAND ACTIONS AND THE MOVEMENTS
OF A CURSOR THAT THEY WERE REQUIRED TO MOVE TO TARGETS. DURING LEARNING, GAZE BEHAVIOUR SHIFTED FROM A REACTIVE MODE, IN WHICH THE GAZE CHASED THE CURSOR, TO A PREDICTIVE MODE IN WHICH THE
GAZE LED THE CURSOR TO THE TARGETS. CAS PubMed PubMed Central Google Scholar * Prablanc, C., Desmurget, M. & Gréa, H. Neural control of on-line guidance of hand reaching movements.
_Prog. Brain Res._ 142, 155–170 (2003). PubMed Google Scholar * Paillard, J. Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal.
_Can. J. Physiol. Pharmacol._ 74, 401–417 (1996). CAS PubMed Google Scholar * Saunders, J. A. & Knill, D. C. Visual feedback control of hand movements. _J. Neurosci._ 24, 3223–3234
(2004). CAS PubMed PubMed Central Google Scholar * Sarlegna, F. et al. Online control of the direction of rapid reaching movements. _Exp. Brain Res._ 157, 468–471 (2004). PubMed Google
Scholar * Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. A multimodal cortical network for the detection of changes in the sensory environment. _Nature Neurosci._ 3, 277–283
(2000). CAS PubMed Google Scholar * Bremmer, F. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between
humans and monkeys. _Neuron_ 29, 287–296 (2001). CAS PubMed Google Scholar * Beauchamp, M. S., Yasar, N. E., Frye, R. E. & Ro, T. Touch, sound and vision in human superior temporal
sulcus. _Neuroimage_ 41, 1011–1020 (2008). PubMed Google Scholar * Avillac, M., Ben Hamed, S. & Duhamel, J. R. Multisensory integration in the ventral intraparietal area of the macaque
monkey. _J. Neurosci._ 27, 1922–1932 (2007). CAS PubMed PubMed Central Google Scholar * Schroeder, C. E. & Foxe, J. J. The timing and laminar profile of converging inputs to
multisensory areas of the macaque neocortex. _Brain Res. Cogn. Brain Res._ 14, 187–198 (2002). PubMed Google Scholar * Miall, R. C. & Wolpert, D. M. Forward models for physiological
motor control. _Neural Netw._ 9, 1265–1279 (1996). PubMed Google Scholar * Wolpert, D. M. & Ghahramani, Z. Computational principles of movement neuroscience. _Nature Neurosci._ 3
(Suppl.), 1212–1217 (2000). CAS PubMed Google Scholar * Wolpert, D. M. & Flanagan, J. R. Motor prediction. _Curr. Biol._ 11, R729–R732 (2001). CAS PubMed Google Scholar * Todorov,
E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. _Nature Neurosci._ 5, 1226–1235 (2002). CAS PubMed Google Scholar * Scott, S. H. Optimal feedback
control and the neural basis of volitional motor control. _Nature Rev. Neurosci._ 5, 532–546 (2004). CAS Google Scholar * Liu, D. & Todorov, E. Evidence for the flexible sensorimotor
strategies predicted by optimal feedback control. _J. Neurosci._ 27, 9354–9368 (2007). CAS PubMed PubMed Central Google Scholar * Olivier, E., Davare, M., Andres, M. & Fadiga, L.
Precision grasping in humans: from motor control to cognition. _Curr. Opin. Neurobiol._ 17, 644–648 (2007). CAS PubMed Google Scholar * Mussa-Ivaldi, F. A. & Bizzi, E. Motor learning
through the combination of primitives. _Philos. Trans. R. Soc. Lond. B Biol. Sci._ 355, 1755–1769 (2000). CAS PubMed PubMed Central Google Scholar * Graziano, M. S. & Aflalo, T. N.
Mapping behavioral repertoire onto the cortex. _Neuron_ 56, 239–251 (2007). CAS PubMed Google Scholar * Flash, T. & Hochner, B. Motor primitives in vertebrates and invertebrates.
_Curr. Opin. Neurobiol._ 15, 660–666 (2005). CAS PubMed Google Scholar * Stephan, K. E. et al. Nonlinear dynamic causal models for fMRI. _Neuroimage_ 42, 649–662 (2008). PubMed Google
Scholar * Averbeck, B. B., Chafee, M. V., Crowe, D. A. & Georgopoulos, A. P. Parallel processing of serial movements in prefrontal cortex. _Proc. Natl Acad. Sci. USA_ 99, 13172–13177
(2002). CAS PubMed PubMed Central Google Scholar * Saito, N., Mushiake, H., Sakamoto, K., Itoyama, Y. & Tanji, J. Representation of immediate and final behavioral goals in the monkey
prefrontal cortex during an instructed delay period. _Cereb. Cortex_ 15, 1535–1546 (2005). PubMed Google Scholar * Tanji, J. & Hoshi, E. Role of the lateral prefrontal cortex in
executive behavioral control. _Physiol. Rev._ 88, 37–57 (2008). PubMed Google Scholar * Obhi, S. S. Bimanual coordination: an unbalanced field of research. _Motor Control_ 8, 111–120
(2004). PubMed Google Scholar * Swinnen, S. P. & Wenderoth, N. Two hands, one brain: cognitive neuroscience of bimanual skill. _Trends Cogn. Sci._ 8, 18–25 (2004). PubMed Google
Scholar * Ivry, R. B., Diedrichsen, J., Spencer, R. C. M., Hazeltine, E. & Semjen, A. in _Neuro-behavioral Determinants of Interlimb Coordination_ (eds Swinnen, S. & Duysens, J.)
259–295 (Kluwer, Boston, 2004). Google Scholar * Johansson, R. S. et al. How a lateralized brain supports symmetrical bimanual tasks. _PLoS Biol._ 4, 1025–1034 (2006). CAS Google Scholar
* Theorin, A. & Johansson, R. S. Zones of bimanual and unimanual preference within human primary sensorimotor cortex during object manipulation. _Neuroimage_ 36 (Suppl. 2), T2–T15
(2007). PubMed Google Scholar * Pubols, B. H. Jr. Factors affecting cutaneous mechanoreceptor response. II. Changes in mechanical properties of skin with repeated stimulation. _J.
Neurophysiol._ 47, 530–542 (1982). PubMed Google Scholar * Harris, F., Jabbur, S. J., Morse, R. W. & Towe, A. L. Influence of the cerebral cortex on the cuneate nucleus of the monkey.
_Nature_ 208, 1215–1216 (1965). CAS PubMed Google Scholar * Adkins, R. J., Morse, R. W. & Towe, A. L. Control of somatosensory input by cerebral cortex. _Science_ 153, 1020–1022
(1966). CAS PubMed Google Scholar * Ergenzinger, E. R., Glasier, M. M., Hahm, J. O. & Pons, T. P. Cortically induced thalamic plasticity in the primate somatosensory system. _Nature
Neurosci._ 1, 226–229 (1998). CAS PubMed Google Scholar * Palmeri, A., Bellomo, M., Giuffrida, R. & Sapienza, S. Motor cortex modulation of exteroceptive information at bulbar and
thalamic lemniscal relays in the cat. _Neuroscience_ 88, 135–150 (1999). CAS PubMed Google Scholar * Seki, K., Perlmutter, S. I. & Fetz, E. E. Sensory input to primate spinal cord is
presynaptically inhibited during voluntary movement. _Nature Neurosci._ 6, 1309–1316 (2003). THE AUTHORS REPORTED EVIDENCE FROM BEHAVING MONKEYS THAT PRESYNAPTIC INHIBITION PRODUCED BY
CENTRAL COMMANDS IN DESCENDING PATHWAYS DURING WRIST MOVEMENTS EFFECTIVELY MODULATES CUTANEOUS INPUTS TO THE SPINAL CORD IN A BEHAVIOUR-DEPENDENT MANNER BY REDUCING SYNAPTIC TRANSMISSION AT
THE INITIAL SYNAPSE. CAS PubMed Google Scholar * Canedo, A. Primary motor cortex influences on the descending and ascending systems. _Prog. Neurobiol._ 51, 287–335 (1997). CAS PubMed
Google Scholar * Crapse, T. B. & Sommer, M. A. Corollary discharge circuits in the primate brain. _Curr. Opin. Neurobiol._ 1 Nov 2008 (doi:10.1016/j.conb.2008.09.017). CAS PubMed
PubMed Central Google Scholar * Poulet, J. F. & Hedwig, B. New insights into corollary discharges mediated by identified neural pathways. _Trends Neurosci._ 30, 14–21 (2007). CAS
PubMed Google Scholar * von Holst, E. Relations between the central nervous system and the peripheral organ. _Br. J. Anim. Behav._ 2, 89–94 (1954). Google Scholar * Boyd, I. A. &
Roberts, T. D. Proprioceptive discharges from stretch-receptors in the knee-joint of the cat. _J. Physiol._ 122, 38–58 (1953). CAS PubMed PubMed Central Google Scholar * Gelfan, S. &
Carter, S. Muscle sense in man. _Exp. Neurol._ 18, 469–473 (1967). CAS PubMed Google Scholar * Goodwin, G. M., McCloskey, D. I. & Matthews, P. B. The contribution of muscle afferents
to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. _Brain_ 95, 705–748 (1972). CAS PubMed Google Scholar * Matthews, P. B.
C. Where does Sherrington's “muscular sense” originate? Muscles, joints, corollary discharges? _Annu. Rev. Neurosci._ 5, 189–218 (1982). CAS PubMed Google Scholar * Johansson, R.
S., Trulsson, M., Olsson, K. A. & Abbs, J. H. Mechanoreceptive afferent activity in the infraorbital nerve in man during speech and chewing movements. _Exp. Brain Res._ 72, 209–214
(1988). CAS PubMed Google Scholar * Edin, B. B. & Abbs, J. H. Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand. _J. Neurophysiol._ 65,
657–670 (1991). CAS PubMed Google Scholar * Edin, B. B. Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. _J. Neurophysiol._ 67, 1105–1113
(1992). CAS PubMed Google Scholar * Grill, S. E. & Hallett, M. Velocity sensitivity of human muscle spindle afferents and slowly adapting type II cutaneous mechanoreceptors. _J.
Physiol._ 489, 593–602 (1995). CAS PubMed PubMed Central Google Scholar * Edin, B. B. Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors. _J.
Neurophysiol._ 92, 3233–3243 (2004). PubMed Google Scholar * Edin, B. Cutaneous afferents provide information about knee joint movements in humans. _J. Physiol._ 531, 289–297 (2001). CAS
PubMed PubMed Central Google Scholar * Aimonetti, J. M., Hospod, V., Roll, J. P. & Ribot-Ciscar, E. Cutaneous afferents provide a neuronal population vector that encodes the
orientation of human ankle movements. _J. Physiol._ 580, 649–658 (2007). CAS PubMed PubMed Central Google Scholar * Edin, B. B. & Johansson, N. Skin strain patterns provide
kinaesthetic information to the human central nervous system. _J. Physiol._ 487, 243–251 (1995). CAS PubMed PubMed Central Google Scholar * Collins, D. F. & Prochazka, A. Movement
illusions evoked by ensemble cutaneous input from the dorsum of the human hand. _J. Physiol._ 496, 857–871 (1996). CAS PubMed PubMed Central Google Scholar * Collins, D. F., Refshauge,
K. M. & Gandevia, S. C. Sensory integration in the perception of movements at the human metacarpophalangeal joint. _J. Physiol._ 529, 505–515 (2000). CAS PubMed PubMed Central Google
Scholar * Collins, D. F., Refshauge, K. M., Todd, G. & Gandevia, S. C. Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. _J. Neurophysiol._ 94,
1699–1706 (2005). CAS PubMed Google Scholar * Johansson, R. S. & Edin, B. B. Predictive feed-forward sensory control during grasping and manipulation in man. _Biomed. Res._ 14, 95–106
(1993). Google Scholar * Johansson, R. S. & Cole, K. J. Sensory-motor coordination during grasping and manipulative actions. _Curr. Opin. Neurobiol._ 2, 815–823 (1992). CAS PubMed
Google Scholar Download references ACKNOWLEDGEMENTS The Swedish Research Council (project 08667), the sixth Framework Program of the EU (project IST-028056), and the Canadian Institutes of
Health Research supported this work. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Integrative Medical Biology, Physiology Section, Umeå University, SE-901 87, Umeå, Sweden
Roland S. Johansson * Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, K7L 3N6, Ontario, Canada J. Randall Flanagan Authors * Roland S.
Johansson View author publications You can also search for this author inPubMed Google Scholar * J. Randall Flanagan View author publications You can also search for this author inPubMed
Google Scholar CORRESPONDING AUTHOR Correspondence to Roland S. Johansson. GLOSSARY * Tactile afferents Fast-conducting myelinated afferent neurons that convey signals to the brain from
low-threshold mechanoreceptors in body areas that actively contact objects — that is, the inside of the hand, the sole of the foot, the lips, the tongue and the oral mucosa. * Proprioceptive
afferents Fast-conducting myelinated afferents that provide information about joint configurations and muscle states. These include mechanoreceptive afferents from the hairy skin, muscles,
joints and connective tissues. * Action-phase controller A learned sensorimotor 'control policy' that uses specific sensory information and sensory predictions to generate motor
commands to attain a sensory goal. * Sensorimotor control point A planned contact event in which predicted and actual sensory signals are compared to assess the outcome of an executed
action-phase controller. * Transcranial magnetic stimulation (TMS). A non-invasive technique that can be used to induce a transient interruption of normal activity in a restricted area of
the brain. It is based on the generation of a magnetic pulse near the area of interest that induces small eddy currents that stimulate neurons. * Grasp stability The control of grip forces
such that they are adequate to prevent accidental slips but not so large that they cause unnecessary fatigue or damage to the object or hand. * Forward internal models Neural circuits that
mimic the behaviour of the motor system and environment and capture the mapping between motor commands and expected sensory consequences. * Corollary discharge An internal signal, derived in
part from motor commands, that can be used to estimate the time-varying afferent input that corresponds to the predicted sensory consequences of the motor command. RIGHTS AND PERMISSIONS
Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Johansson, R., Flanagan, J. Coding and use of tactile signals from the fingertips in object manipulation tasks. _Nat Rev
Neurosci_ 10, 345–359 (2009). https://doi.org/10.1038/nrn2621 Download citation * Published: 08 April 2009 * Issue Date: May 2009 * DOI: https://doi.org/10.1038/nrn2621 SHARE THIS ARTICLE
Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided
by the Springer Nature SharedIt content-sharing initiative