Separated at birth? The functional and molecular divergence of olig1 and olig2

Separated at birth? The functional and molecular divergence of olig1 and olig2

Play all audios:

Loading...

KEY POINTS * The basic helix–loop–helix transcription factors oligodendrocyte transcription factor 1 (OLIG1) and OLIG2 are structurally related within their DNA targeting domains and, to a


first approximation, are coordinately expressed during development. * Notwithstanding similarities in their protein structure and expression pattern, OLIG1 and OLIG2 have non-overlapping


functions during development and in the postnatal brain. * _Olig2_-null mice have a striking developmental phenotype involving total loss of motor neurons and near-complete loss of


oligodendrocyte progenitors. * The developmental phenotype of _Olig1_-null mice is more nuanced and largely confined to the oligodendrocyte lineage. However, OLIG1 cooperates with OLIG2 in


spinal cord patterning. * A broadening body of literature links OLIG2 to human gliomas, and pathobiological functions of OLIG1 are suggested in the repair of demyelinating injuries. * The


divergent biological and pathobiological functions of OLIG1 and OLIG2 reflect the non-overlapping genetic targets, co-regulator proteins and post-translational modification of these


proteins. ABSTRACT The basic helix–loop–helix transcription factors oligodendrocyte transcription factor 1 (OLIG1) and OLIG2 are structurally similar and, to a first approximation,


coordinately expressed in the developing CNS and postnatal brain. Despite these similarities, it was apparent from early on after their discovery that OLIG1 and OLIG2 have non-overlapping


developmental functions in patterning, neuron subtype specification and the formation of oligodendrocytes. Here, we summarize more recent insights into the separate roles of these


transcription factors in the postnatal brain during repair processes and in neurological disease states, including multiple sclerosis and malignant glioma. We discuss how the unique


functions of OLIG1 and OLIG2 may reflect their distinct genetic targets, co-regulator proteins and/or post-translational modifications. Access through your institution Buy or subscribe This


is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $189.00


per year only $15.75 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS SINGLE-CELL


TRANSCRIPTOMIC REVEALS MOLECULAR DIVERSITY AND DEVELOPMENTAL HETEROGENEITY OF HUMAN STEM CELL-DERIVED OLIGODENDROCYTE LINEAGE CELLS Article Open access 28 January 2021 SIRT2 PROMOTES WHITE


MATTER OLIGODENDROGENESIS DURING DEVELOPMENT AND IN MODELS OF NEONATAL HYPOXIA Article Open access 15 August 2022 DISTINCT OLIGODENDROCYTE POPULATIONS HAVE SPATIAL PREFERENCE AND DIFFERENT


RESPONSES TO SPINAL CORD INJURY Article Open access 17 November 2020 REFERENCES * Charcot, J. M. Histologie de la sclérose en plaques. _Gazette des hopitaux_ 41, 554–555 (1868) (in French).


Google Scholar  * Marburg, O. Die sogenannte akute multiple Sklerose. _Jahrb. Psychiatrie_ 27, 211–312 (1906) (in German). Google Scholar  * Prineas, J. W. & Connell, F. Remyelination in


multiple sclerosis. _Ann. Neurol._ 5, 22–31 (1979). Article  CAS  PubMed  Google Scholar  * Lucchinetti, C. et al. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions.


A study of 113 cases. _Brain_ 122, 2279–2295 (1999). Article  PubMed  Google Scholar  * Warf, B. C., Fok-Seang, J. & Miller, R. H. Evidence for the ventral origin of oligodendrocyte


precursors in the rat spinal cord. _J. Neurosci._ 11, 2477–2488 (1991). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pringle, N. P. & Richardson, W. D. A singularity of PDGF


alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. _Development_ 117, 525–533 (1993). CAS  PubMed  Google Scholar  *


Yu, W. P., Collarini, E. J., Pringle, N. P. & Richardson, W. D. Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of


the neural tube. _Neuron_ 12, 1353–1362 (1994). Article  CAS  PubMed  Google Scholar  * Timsit, S. et al. Oligodendrocytes originate in a restricted zone of the embryonic ventral neural


tube defined by DM-20 mRNA expression. _J. Neurosci._ 15, 1012–1024 (1995). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cameron-Curry, P. & Le Douarin, N. M. Oligodendrocyte


precursors originate from both the dorsal and the ventral parts of the spinal cord. _Neuron_ 15, 1299–1310 (1995). Article  CAS  PubMed  Google Scholar  * Raff, M. C., Miller, R. H. &


Noble, M. A glial progenitor cell that develops _in vitro_ into an astrocyte or an oligodendrocyte depending on culture medium. _Nature_ 303, 390–396 (1983). Article  CAS  PubMed  Google


Scholar  * Rao, M. S., Noble, M. & Mayer-Proschel, M. A tripotential glial precursor cell is present in the developing spinal cord. _Proc. Natl Acad. Sci. USA_ 95, 3996–4001 (1998).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, J. C., Mayer-Proschel, M. & Rao, M. S. Gliogenesis in the central nervous system. _Glia_ 30, 105–121 (2000). Article  CAS 


PubMed  Google Scholar  * Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. _Nature Rev. Genet._ 1, 20–29 (2000). Article  CAS  PubMed 


Google Scholar  * Lu, Q. R. et al. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. _Neuron_ 25, 317–329 (2000). Article


  CAS  PubMed  Google Scholar  * Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors.


_Neuron_ 25, 331–343 (2000). Article  CAS  PubMed  Google Scholar  * Takebayashi, H. et al. Dynamic expression of basic helix–loop–helix Olig family members: implication of Olig2 in neuron


and oligodendrocyte differentiation and identification of a new member, Olig3. _Mech. Dev._ 99, 143–148 (2000). Article  CAS  PubMed  Google Scholar  * Lu, Q. R. et al. Common developmental


requirement for Olig function indicates a motor neuron/oligodendrocyte connection. _Cell_ 109, 75–86 (2002). Article  CAS  PubMed  Google Scholar  * Zhou, Q. & Anderson, D. J. The bHLH


transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. _Cell_ 109, 61–73 (2002). REFERENCES 16–18 COLLECTIVELY SHOW THAT OLIG1 AND OLIG2 REGULATE THE


FORMATION OF OLIGODENDROCYTES AND CERTAIN NEURONS (NOTABLY MOTOR NEURONS) AND HAVE NO APPARENT ROLE IN THE SPECIFICATION OF ASTROCYTES. Article  CAS  PubMed  Google Scholar  * Cai, J. et al.


Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. _Neuron_ 45, 41–53 (2005). Article  CAS  PubMed  Google Scholar


  * Vallstedt, A., Klos, J. M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. _Neuron_ 45, 55–67 (2005). Article  CAS  PubMed


  Google Scholar  * Fogarty, M., Richardson, W. D. & Kessaris, N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. _Development_ 132, 1951–1959 (2005).


REFERENCES 19–21 COLLECTIVELY IDENTIFY MULTIPLE ORIGINS OF OLIGODENDROCYTE FORMATION IN THE DEVELOPING CNS. Article  CAS  PubMed  Google Scholar  * Menn, B. et al. Origin of oligodendrocytes


in the subventricular zone of the adult brain. _J. Neurosci._ 26, 7907–7918 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fancy, S. P., Zhao, C. & Franklin, R. J.


Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. _Mol. Cell Neurosci._ 27, 247–254 (2004). Article


  CAS  PubMed  Google Scholar  * Buffo, A. et al. Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. _Proc. Natl Acad. Sci.


USA_ 102, 18183–18188 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Arnett, H. A. et al. bHLH transcription factor Olig1 is required to repair demyelinated lesions in the


CNS. _Science_ 306, 2111–2115 (2004). THIS STUDY DEFINES MYELIN REPAIR FUNCTIONS OF OLIG1 IN MOUSE MODELS OF MS. Article  CAS  PubMed  Google Scholar  * Georgieva, L. et al. Convergent


evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. _Proc. Natl Acad. Sci. USA_ 103, 12469–12474 (2006).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Sims, R. et al. Evidence that variation in the oligodendrocyte lineage transcription factor 2 (_OLIG2_) gene is associated with


psychosis in Alzheimer's disease. _Neurosci. Lett._ 461, 54–59 (2009). Article  CAS  PubMed  Google Scholar  * Huang, K. et al. Positive association between OLIG2 and schizophrenia in


the Chinese Han population. _Hum. Genet._ 122, 659–660 (2008). Article  CAS  PubMed  Google Scholar  * Chakrabarti, L. et al. _Olig1_ and _Olig2_ triplication causes developmental brain


defects in Down syndrome. _Nature Neurosci._ 13, 927–934 (2010). THIS STUDY SHOWS THAT OLIG1 AND OLIG2 ARE LINKED TO THE BRAIN-SPECIFIC ASPECTS OF DOWN SYNDROME. Article  CAS  PubMed  Google


Scholar  * Bouvier, C. et al. Shared oligodendrocyte lineage gene expression in gliomas and oligodendrocyte progenitor cells. _J. Neurosurg._ 99, 344–350 (2003). Article  CAS  PubMed 


Google Scholar  * Ligon, K. L. et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. _J. Neuropathol. Exp. Neurol._ 63, 499–509 (2004). Article  CAS 


PubMed  Google Scholar  * Lu, Q. R. et al. Oligodendrocyte lineage genes (_OLIG_) as molecular markers for human glial brain tumors. _Proc. Natl Acad. Sci. USA_ 98, 10851–10856 (2001).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Marie, Y. et al. OLIG2 as a specific marker of oligodendroglial tumour cells. _Lancet_ 358, 298–300 (2001). Article  CAS  PubMed 


Google Scholar  * Ohnishi, A. et al. Expression of the oligodendroglial lineage-associated markers Olig1 and Olig2 in different types of human gliomas. _J. Neuropathol. Exp. Neurol._ 62,


1052–1059 (2003). REFERENCES 31–34 SHOW THAT EXPRESSION OF GENES FROM THE OLIG FAMILY IS A COMMON FEATURE OF HUMAN GLIOMAS. Article  CAS  PubMed  Google Scholar  * Ledent, V., Paquet, O.


& Vervoort, M. Phylogenetic analysis of the human basic helix–loop–helix proteins. _Genome Biol._ 3, research0030–research0030.18 (2002). Article  PubMed  PubMed Central  Google Scholar


  * Gray, P. A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. _Science_ 306, 2255–2257 (2004). Article  CAS  PubMed  Google Scholar  *


Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. _Neuron_ 37, 751–764 (2003). Article  CAS  PubMed  Google Scholar  * Tsai, H. H. et al. Regional


astrocyte allocation regulates CNS synaptogenesis and repair. _Science_ 337, 358–362 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ligon, K. L. et al. Olig2-regulated


lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. _Neuron_ 53, 503–517 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Chen, J. A. et al. Mir-17-3p controls spinal neural progenitor patterning by regulating Olig2/Irx3 cross-repressive loop. _Neuron_ 69, 721–735 (2011). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Takebayashi, H. et al. Non-overlapping expression of Olig3 and Olig2 in the embryonic neural tube. _Mech. Dev._ 113, 169–174 (2002). Article  CAS  PubMed  Google Scholar  *


Liu, Z. et al. Control of precerebellar neuron development by Olig3 bHLH transcription factor. _J. Neurosci._ 28, 10124–10133 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Lee, S. K., Lee, B., Ruiz, E. C. & Pfaff, S. L. Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. _Genes Dev._ 19, 282–294 (2005).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, H., de Faria, J. P., Andrew, P., Nitarska, J. & Richardson, W. D. Phosphorylation regulates OLIG2 cofactor choice and the


motor neuron-oligodendrocyte fate switch. _Neuron_ 69, 918–929 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Furusho, M. et al. Involvement of the Olig2 transcription


factor in cholinergic neuron development of the basal forebrain. _Dev. Biol._ 293, 348–357 (2006). Article  CAS  PubMed  Google Scholar  * Xin, M. et al. Myelinogenesis and axonal


recognition by oligodendrocytes in brain are uncoupled in _Olig1_-null mice. _J. Neurosci._ 25, 1354–1365 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Marshall, C. A.,


Novitch, B. G. & Goldman, J. E. Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. _J. Neurosci._ 25, 7289–7298 (2005). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function.


_J. Neurosci._ 28, 264–278 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Chen, Y. et al. The basic helix–loop–helix transcription factor Olig2 is critical for reactive astrocyte


proliferation after cortical injury. _J. Neurosci._ 28, 10983–10989 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kageyama, R. & Nakanishi, S. Helix–loop–helix factors


in growth and differentiation of the vertebrate nervous system. _Curr. Opin. Genet. Dev._ 7, 659–665 (1997). Article  CAS  PubMed  Google Scholar  * Lee, J. E. Basic helix–loop–helix genes


in neural development. _Curr. Opin. Neurobiol._ 7, 13–20 (1997). Article  PubMed  Google Scholar  * Parras, C. M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain.


_EMBO J._ 23, 4495–4505 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Singh, S. K. et al. Identification of human brain tumour initiating cells. _Nature_ 432, 396–401


(2004). Article  CAS  PubMed  Google Scholar  * Bao, S. et al. Targeting cancer stem cells through L1CAM suppresses glioma growth. _Cancer Res._ 68, 6043–6048 (2008). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Barrett, L. E. et al. Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. _Cancer Cell_ 21, 11–24 (2012). Article 


CAS  PubMed  Google Scholar  * Appolloni, I. et al. Antagonistic modulation of gliomagenesis by Pax6 and Olig2 in PDGF-induced oligodendroglioma. _Int. J. Cancer_ 131, e1078–e1087 (2012).


Article  CAS  PubMed  Google Scholar  * Mehta, S. et al. The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and


malignant glioma. _Cancer Cell_ 19, 359–371 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kitada, M. & Rowitch, D. H. Transcription factor co-expression patterns


indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord. _Glia_ 54, 35–46 (2006). Article  PubMed  Google Scholar  * Chang, A., Tourtellotte, W. W., Rudick, R. &


Trapp, B. D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. _N. Engl. J. Med._ 346, 165–173 (2002). Article  PubMed  Google Scholar  * Kuhlmann, T. et al.


Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. _Brain_ 131, 1749–1758 (2008). Article  CAS  PubMed  Google


Scholar  * Billiards, S. S. et al. Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. _Brain Pathol._ 18, 153–163 (2008). Article  PubMed  PubMed Central 


Google Scholar  * Verney, C. et al. Microglial reaction in axonal crossroads is a hallmark of noncystic periventricular white matter injury in very preterm infants. _J. Neuropathol. Exp.


Neurol._ 71, 251–264 (2012). Article  CAS  PubMed  Google Scholar  * Fancy, S. P. et al. Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. _Nature


Neurosci._ 14, 1009–1016 (2011). REFERENCES 59–63 AND 127 COLLECTIVELY SUGGEST THAT DEFECTS IN MYELIN REPAIR IN MS AND PERIVENTRICULAR LEUKOMALACIA REFLECT A FAILURE OF OLIGODENDROCYTE


MATURATION RATHER THAN A LACK OF OLIGODENDROCYTE PROGENITORS. Article  CAS  PubMed  Google Scholar  * Pekny, M. & Nilsson, M. Astrocyte activation and reactive gliosis. _Glia_ 50,


427–434 (2005). Article  PubMed  Google Scholar  * Gabay, L., Lowell, S., Rubin, L. L. & Anderson, D. J. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation


capacity on CNS stem cells _in vitro_. _Neuron_ 40, 485–499 (2003). Article  CAS  PubMed  Google Scholar  * Setoguchi, T. & Kondo, T. Nuclear export of OLIG2 in neural stem cells is


essential for ciliary neurotrophic factor-induced astrocyte differentiation. _J. Cell Biol._ 166, 963–968 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Muroyama, Y.,


Fujiwara, Y., Orkin, S. H. & Rowitch, D. H. Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. _Nature_ 438, 360–363 (2005). Article  CAS  PubMed


  Google Scholar  * Dimou, L., Simon, C., Kirchhoff, F., Takebayashi, H. & Gotz, M. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral


cortex. _J. Neurosci._ 28, 10434–10442 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Komitova, M., Serwanski, D. R., Lu, Q. R. & Nishiyama, A. NG2 cells are not a major


source of reactive astrocytes after neocortical stab wound injury. _Glia_ 59, 800–809 (2011). Article  PubMed  PubMed Central  Google Scholar  * Zawadzka, M. et al. CNS-resident glial


progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. _Cell Stem Cell_ 6, 578–590 (2010). Article  CAS  PubMed  Google Scholar  *


Tripathi, R. B., Rivers, L. E., Young, K. M., Jamen, F. & Richardson, W. D. NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune


encephalomyelitis model of demyelinating disease. _J. Neurosci._ 30, 16383–16390 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Buffo, A. et al. Origin and progeny of


reactive gliosis: a source of multipotent cells in the injured brain. _Proc. Natl Acad. Sci. USA_ 105, 3581–3586 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Magnus, T. et


al. Evidence that nucleocytoplasmic Olig2 translocation mediates brain-injury-induced differentiation of glial precursors to astrocytes. _J. Neurosci. Res._ 85, 2126–2137 (2007). Article 


CAS  PubMed  Google Scholar  * Zhao, J. W., Raha-Chowdhury, R., Fawcett, J. W. & Watts, C. Astrocytes and oligodendrocytes can be generated from NG2+ progenitors after acute brain


injury: intracellular localization of oligodendrocyte transcription factor 2 is associated with their fate choice. _Eur. J. Neurosci._ 29, 1853–1869 (2009). Article  PubMed  Google Scholar 


* Cassiani-Ingoni, R. et al. Cytoplasmic translocation of Olig2 in adult glial progenitors marks the generation of reactive astrocytes following autoimmune inflammation. _Exp. Neurol._ 201,


349–358 (2006). Article  CAS  PubMed  Google Scholar  * Fernandez, F. & Garner, C. C. Over-inhibition: a model for developmental intellectual disability. _Trends Neurosci._ 30, 497–503


(2007). Article  CAS  PubMed  Google Scholar  * Belichenko, P. V. et al. Synaptic structural abnormalities in the Ts65Dn mouse model of Down syndrome. _J. Comp. Neurol._ 480, 281–298 (2004).


Article  PubMed  Google Scholar  * Haydar, T. F. & Reeves, R. H. Trisomy 21 and early brain development. _Trends Neurosciences_ 35, 81–91 (2012). Article  CAS  Google Scholar  * Lu, J.


et al. OLIG2 over-expression impairs proliferation of human Down syndrome neural progenitors. _Hum. Mol. Genet._ 21, 2330–2340 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Wang, S. Z. et al. An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. _Development_ 133, 3389–3398 (2006).


Article  CAS  PubMed  Google Scholar  * Massari, M. E. & Murre, C. Helix–loop–helix proteins: regulators of transcription in eucaryotic organisms. _Mol. Cell. Biol._ 20, 429–440 (2000).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhou, Q., Choi, G. & Anderson, D. J. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration


with Nkx2.2. _Neuron_ 31, 791–807 (2001). Article  CAS  PubMed  Google Scholar  * Novitch, B. G., Chen, A. I. & Jessell, T. M. Coordinate regulation of motor neuron subtype identity and


pan-neuronal properties by the bHLH repressor Olig2. _Neuron_ 31, 773–789 (2001). Article  CAS  PubMed  Google Scholar  * Mizuguchi, R. et al. Combinatorial roles of olig2 and neurogenin2


in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. _Neuron_ 31, 757–771 (2001). Article  CAS  PubMed  Google Scholar  * Kuspert, M., Hammer, A.,


Bosl, M. R. & Wegner, M. Olig2 regulates _Sox10_ expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer. _Nucleic Acids Res._ 39, 1280–1293 (2011).


Article  PubMed  CAS  Google Scholar  * Mazzoni, E. O. et al. Embryonic stem cell-based mapping of developmental transcriptional programs. _Nature Methods_ 8, 1056–1058 (2011). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Weng, Q. et al. Dual-mode modulation of smad signaling by smad-interacting protein sip1 is required for myelination in the central nervous system.


_Neuron_ 73, 713–728 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guo, X. et al. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice. _PLoS


ONE_ 5, e13083 (2010). Article  PubMed  PubMed Central  CAS  Google Scholar  * Chen, Y. et al. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of


myelination. _Nature Neurosci._ 12, 1398–1406 (2009). Article  CAS  PubMed  Google Scholar  * Li, H., Lu, Y., Smith, H. K. & Richardson, W. D. Olig1 and Sox10 interact synergistically to


drive myelin basic protein transcription in oligodendrocytes. _J. Neurosci._ 27, 14375–14382 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Beckett, D. Regulated assembly


of transcription factors and control of transcription initiation. _J. Mol. Biol._ 314, 335–352 (2001). Article  CAS  PubMed  Google Scholar  * Featherstone, M. Coactivators in transcription


initiation: here are your orders. _Curr. Opin. Genet. Dev._ 12, 149–155 (2002). Article  CAS  PubMed  Google Scholar  * Torchia, J., Glass, C. & Rosenfeld, M. G. Co-activators and


co-repressors in the integration of transcriptional responses. _Curr. Opin. Cell Biol._ 10, 373–383 (1998). Article  CAS  PubMed  Google Scholar  * Ravasi, T. et al. An atlas of


combinatorial transcriptional regulation in mouse and man. _Cell_ 140, 744–752 (2010). Article  CAS  PubMed  Google Scholar  * Samanta, J. & Kessler, J. A. Interactions between ID and


OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. _Development_ 131, 4131–4142 (2004). Article  CAS  PubMed  Google Scholar  * Benezra, R., Davis, R.


L., Lockshon, D., Turner, D. L. & Weintraub, H. The protein Id: a negative regulator of helix–loop–helix DNA binding proteins. _Cell_ 61, 49–59 (1990). Article  CAS  PubMed  Google


Scholar  * Poulin, G., Lebel, M., Chamberland, M., Paradis, F. W. & Drouin, J. Specific protein–protein interaction between basic helix–loop–helix transcription factors and homeoproteins


of the Pitx family. _Mol. Cell. Biol._ 20, 4826–4837 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Babu, D. A., Chakrabarti, S. K., Garmey, J. C. & Mirmira, R. G. Pdx1


and BETA2/NeuroD1 participate in a transcriptional complex that mediates short-range DNA looping at the insulin gene. _J. Biol. Chem._ 283, 8164–8172 (2008). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Makarenkova, H. P., Gonzalez, K. N., Kiosses, W. B. & Meech, R. Barx2 controls myoblast fusion and promotes MyoD-mediated activation of the smooth muscle


α-actin gene. _J. Biol. Chem._ 284, 14866–14874 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sun, T. et al. Olig bHLH proteins interact with homeodomain proteins to


regulate cell fate acquisition in progenitors of the ventral neural tube. _Curr. Biol._ 11, 1413–1420 (2001). Article  CAS  PubMed  Google Scholar  * Fukuda, S., Kondo, T., Takebayashi, H.


& Taga, T. Negative regulatory effect of an oligodendrocytic bHLH factor OLIG2 on the astrocytic differentiation pathway. _Cell Death Differ._ 11, 196–202 (2004). Article  CAS  PubMed 


Google Scholar  * Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. _Cell_ 87,


953–959 (1996). Article  CAS  PubMed  Google Scholar  * Ikushima, H. et al. An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-β signalling. _EMBO J._ 27,


2955–2965 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Huillard, E. et al. Disruption of CK2β in embryonic neural stem cells compromises proliferation and


oligodendrogenesis in the mouse telencephalon. _Mol. Cell. Biol._ 30, 2737–2749 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sun, Y. et al. Phosphorylation state of Olig2


regulates proliferation of neural progenitors. _Neuron_ 69, 906–917 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sun, T. et al. Cross-repressive interaction of the Olig2


and Nkx2.2 transcription factors in developing neural tube associated with formation of a specific physical complex. _J. Neurosci._ 23, 9547–9556 (2003). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Niu, J. et al. Phosphorylated olig1 localizes to the cytosol of oligodendrocytes and promotes membrane expansion and maturation. _Glia_ 60, 1427–1436 (2012). Article 


PubMed  PubMed Central  Google Scholar  * Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? _Genes Dev._ 18, 2046–2059 (2004). Article  CAS  PubMed  Google


Scholar  * Hay, R. T. SUMO: a history of modification. _Mol. Cell_ 18, 1–12 (2005). Article  CAS  PubMed  Google Scholar  * Johnson, E. S. Protein modification by SUMO. _Annu. Rev.


Biochem._ 73, 355–382 (2004). Article  CAS  PubMed  Google Scholar  * Verger, A., Perdomo, J. & Crossley, M. Modification with SUMO. A role in transcriptional regulation. _EMBO Rep._ 4,


137–142 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1


and ubiquitin mediates NF- κB activation by genotoxic stress. _Cell_ 115, 565–576 (2003). Article  CAS  PubMed  Google Scholar  * Hay, R. T. Modifying NEMO. _Nature Cell Biol._ 6, 89–91


(2004). Article  CAS  PubMed  Google Scholar  * Imoto, S. et al. Sumoylation of Smad3 stimulates its nuclear export during PIASy-mediated suppression of TGF-β signaling. _Biochem. Biophys.


Res. Commun._ 370, 359–365 (2008). Article  CAS  PubMed  Google Scholar  * Martin, S., Wilkinson, K. A., Nishimune, A. & Henley, J. M. Emerging extranuclear roles of protein SUMOylation


in neuronal function and dysfunction. _Nature Rev. Neurosci._ 8, 948–959 (2007). Article  CAS  Google Scholar  * Zhou, F., Xue, Y., Lu, H., Chen, G. & Yao, X. A genome-wide analysis of


sumoylation-related biological processes and functions in human nucleus. _FEBS Lett._ 579, 3369–3375 (2005). Article  CAS  PubMed  Google Scholar  * Frazer, K. A. et al. Evolutionarily


conserved sequences on human chromosome 21. _Genome Res._ 11, 1651–1659 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Muskal, S. M., Holbrook, S. R. & Kim, S. H.


Prediction of the disulfide-bonding state of cysteine in proteins. _Protein Eng._ 3, 667–672 (1990). Article  CAS  PubMed  Google Scholar  * Smith, E. & Shilatifard, A. The chromatin


signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. _Mol. Cell_ 40, 689–701 (2010). Article  CAS  PubMed  PubMed Central  Google


Scholar  * el-Husseini Ael, D. & Bredt, D. S. Protein palmitoylation: a regulator of neuronal development and function. _Nature Rev. Neurosci._ 3, 791–802 (2002). Article  CAS  Google


Scholar  * Rowitch, D. H., Lu, Q. R., Kessaris, N. & Richardson, W. D. An. 'oligarchy' rules neural development. _Trends Neurosci._ 25, 417–422 (2002). Article  CAS  PubMed 


Google Scholar  * Muller, T. et al. The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. _Genes Dev._ 19, 733–743 (2005). Article  PubMed  PubMed Central


  CAS  Google Scholar  * Ligon, K. L. et al. Development of NG2 neural progenitor cells requires Olig gene function. _Proc. Natl Acad. Sci. USA_ 103, 7853–7858 (2006). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Miyoshi, G., Butt, S. J., Takebayashi, H. & Fishell, G. Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic


Olig2-expressing precursors. _J. Neurosci._ 27, 7786–7798 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Plenge, R. M. et al. Two independent alleles at 6q23 associated with


risk of rheumatoid arthritis. _Nature Genet._ 39, 1477–1482 (2007). Article  CAS  PubMed  Google Scholar  * Thomson, W. et al. Rheumatoid arthritis association at 6q23. _Nature Genet._ 39,


1431–1433 (2007). Article  CAS  PubMed  Google Scholar  * Buser, J. R. et al. Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. _Ann. Neurol._


71, 93–109 (2012). Article  PubMed  PubMed Central  Google Scholar  * Hack, M. A. et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. _Nature Neurosci._ 8, 865–872


(2005). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS The authors gratefully acknowledge helpful conversations with W. Richardson (University College London,


UK), R. Miller (Case Western Reserve University, USA) and Y. Sun (Dana–Farber Cancer Institute, USA). Work from the authors' laboratories that is cited here was supported by grants from


the National Institutes of Health (NS047572 and NS057727 to C.D.S. and NS040511 to D.H.R.) and from the Pediatric Low-Grade Astrocytoma Foundation (grant awarded to C.D.S.). D.H.R. is


supported by the Howard Hughes Medical Institute. AUTHOR INFORMATION Author notes * Christopher M. Taylor Present address: Present address., AUTHORS AND AFFILIATIONS * Departments of


Neurobiology, Harvard Medical School and Cancer Biology, Dana–Farber Cancer Institute, 450 Brookline Avenue, Boston, 02215, Massachusetts, USA Dimphna H. Meijer, Michael F. Kane, Shwetal


Mehta, Christopher M. Taylor & Charles D. Stiles * Informatics Program, Children's Hospital Boston, 300 Longwood Avenue, Boston, 02115, Massachusetts, USA Hongye Liu * Departments


of Pediatrics and Neurological Surgery, Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, 94143, California, USA Emily Harrington


 & David H. Rowitch * EMD Serono Research Institute, 45A Middlesex Turnpike, Billerica, 01821, Massachusetts, USA Christopher M. Taylor Authors * Dimphna H. Meijer View author


publications You can also search for this author inPubMed Google Scholar * Michael F. Kane View author publications You can also search for this author inPubMed Google Scholar * Shwetal


Mehta View author publications You can also search for this author inPubMed Google Scholar * Hongye Liu View author publications You can also search for this author inPubMed Google Scholar *


Emily Harrington View author publications You can also search for this author inPubMed Google Scholar * Christopher M. Taylor View author publications You can also search for this author


inPubMed Google Scholar * Charles D. Stiles View author publications You can also search for this author inPubMed Google Scholar * David H. Rowitch View author publications You can also


search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Charles D. Stiles or David H. Rowitch. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no


competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION S1 (TABLE) (PDF 161 kb) SUPPLEMENTARY INFORMATION S2 (BOX) (PDF 159 kb) RELATED LINKS RELATED LINKS


DATABASES NCBI Gene expression omnibus database GLOSSARY * Cre-_lox_ fate-mapping This recombination procedure installs a stable marker protein (usually colorimetric, such as LacZ) into a


genetically defined cell type and all of its daughter cells. * Tumour-initiating cells In tumours with a heterogeneous cell population (such as glioblastoma), these undifferentiated


stem-like cells are thought to be responsible for propagating the tumours in serial animal transplantation protocols. * Severe combined immunodeficiency (SCID). SCID mice are used as a host


animal for transplantation experiments with human tumours. * Transit-amplifying cells Also known as type C cells, these are rapidly dividing neural progenitor cells in the subventricular


zone of postnatal brain. They are also the immediate progeny of the more slowly replicating multipotent adult neural stem cells. * Single nucleotide polymorphisms (SNPs). SNPs are DNA


sequence variations that differ among individual members of a biological species or between paired chromosomes in a single individual. * Expression profiling This procedure identifies the


gene types that are expressed in a particular cell type by processing mRNA into cDNA and then annealing the cDNA to gene sequences arrayed onto a solid surface. * SUMOylation This


post-translational modification event involves the covalent ligation of small ubiquitin-like modifier (SUMO) proteins to regulate various cellular processes. RIGHTS AND PERMISSIONS Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Meijer, D., Kane, M., Mehta, S. _et al._ Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2. _Nat Rev


Neurosci_ 13, 819–831 (2012). https://doi.org/10.1038/nrn3386 Download citation * Published: 20 November 2012 * Issue Date: December 2012 * DOI: https://doi.org/10.1038/nrn3386 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative