Play all audios:
ABSTRACT The circadian clock machinery is responsible for biological timekeeping on a systemic level. The central clock system controls peripheral clocks through a number of output cues that
synchronize the system as a whole. There is growing evidence that changing cellular metabolic states have important effects on circadian rhythms and can thereby influence neuronal function
and disease. Epigenetic control has also been implicated in the modulation of biological timekeeping, and cellular metabolism and epigenetic state seem to be closely linked. We discuss the
idea that cellular metabolic state and epigenetic mechanisms might work through the circadian clock to regulate neuronal function and influence disease states. Access through your
institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print
issues and online access $189.00 per year only $15.75 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to
local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT
BEING VIEWED BY OTHERS THE METABOLIC SIGNIFICANCE OF PERIPHERAL TISSUE CLOCKS Article Open access 26 March 2025 MOLECULAR REGULATIONS OF CIRCADIAN RHYTHM AND IMPLICATIONS FOR PHYSIOLOGY AND
DISEASES Article Open access 08 February 2022 CIRCADIAN RHYTHM AS A THERAPEUTIC TARGET Article 15 February 2021 REFERENCES * Reppert, S. M. & Weaver, D. R. Molecular analysis of
mammalian circadian rhythms. _Annu. Rev. Physiol._ 63, 647–676 (2001). Article CAS PubMed Google Scholar * Bass, J. & Takahashi, J. S. Circadian integration of metabolism and
energetics. _Science_ 330, 1349–1354 (2010). Article CAS PubMed PubMed Central Google Scholar * Masri, S. & Sassone-Corsi, P. Plasticity and specificity of the circadian epigenome.
_Nature Neurosci._ 13, 1324–1329 (2010). Article CAS PubMed Google Scholar * Eckel-Mahan, K. & Sassone-Corsi, P. Metabolism control by the circadian clock and vice versa. _Nature
Struct. Mol. Biol._ 16, 462–467 (2009). Article CAS Google Scholar * Green, C. B., Takahashi, J. S. & Bass, J. The meter of metabolism. _Cell_ 134, 728–742 (2008). Article CAS
PubMed PubMed Central Google Scholar * Katada, S., Imhof, A. & Sassone-Corsi, P. Connecting threads: epigenetics and metabolism. _Cell_ 148, 24–28 (2012). Article CAS PubMed Google
Scholar * Akhtar, R. A. et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. _Curr. Biol._ 12, 540–550
(2002). Article CAS PubMed Google Scholar * Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. _Cell_ 109, 307–320 (2002). Article CAS
PubMed Google Scholar * Thresher, R. J. et al. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. _Science_ 282, 1490–1494 (1998). Article CAS PubMed
Google Scholar * Welsh, D. K., Takahashi, J. S. & Kay, S. A. Suprachiasmatic nucleus: cell autonomy and network properties. _Annu. Rev. Physiol._ 72, 551–577 (2010). Article CAS
PubMed PubMed Central Google Scholar * Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. _Nature Rev. Mol. Cell Biol._ 8,
139–148 (2007). Article CAS Google Scholar * Sahar, S. & Sassone-Corsi, P. Metabolism and cancer: the circadian clock connection. _Nature Rev. Cancer_ 9, 886–896 (2009). Article CAS
Google Scholar * Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. _Cell_ 134, 329–340 (2008). Article CAS
PubMed PubMed Central Google Scholar * Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. _Cell_ 134, 317–328 (2008). Article CAS PubMed
Google Scholar * Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. _Science_ 324, 654–657 (2009).
Article CAS PubMed PubMed Central Google Scholar * Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. _Science_ 324, 651–654 (2009). Article
CAS PubMed PubMed Central Google Scholar * Gerstner, J. R. & Yin, J. C. Circadian rhythms and memory formation. _Nature Rev. Neurosci._ 11, 577–588 (2010). Article CAS Google
Scholar * Wulff, K., Gatti, S., Wettstein, J. G. & Foster, R. G. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. _Nature Rev. Neurosci._ 11, 589–599
(2010). Article CAS Google Scholar * Huang, W., Ramsey, K. M., Marcheva, B. & Bass, J. Circadian rhythms, sleep, and metabolism. _J. Clin. Invest._ 121, 2133–2141 (2011). Article CAS
PubMed PubMed Central Google Scholar * Yang, C. S. et al. Hypothalamic AMP-activated protein kinase regulates glucose production. _Diabetes_ 59, 2435–2443 (2010). Article CAS PubMed
PubMed Central Google Scholar * Oomura, Y., Ono, T., Ooyama, H. & Wayner, M. J. Glucose and osmosensitive neurones of the rat hypothalamus. _Nature_ 222, 282–284 (1969). Article CAS
PubMed Google Scholar * Watts, A. G. & Donovan, C. M. Sweet talk in the brain: glucosensing, neural networks, and hypoglycemic counterregulation. _Front. Neuroendocrinol._ 31, 32–43
(2010). Article CAS PubMed Google Scholar * Trumper, B. G., Reschke, K. & Molling, J. Circadian variation of insulin requirement in insulin dependent diabetes mellitus the
relationship between circadian change in insulin demand and diurnal patterns of growth hormone, cortisol and glucagon during euglycemia. _Horm. Metab. Res._ 27 141–147 (1995). Article CAS
PubMed Google Scholar * la Fleur, S. E., Kalsbeek, A., Wortel, J., Fekkes, M. L. & Buijs, R. M. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. _Diabetes_
50, 1237–1243 (2001). Article CAS PubMed Google Scholar * Nagai, K. et al. SCN output drives the autonomic nervous system: with special reference to the autonomic function related to the
regulation of glucose metabolism. _Prog. Brain Res._ 111, 253–272 (1996). Article CAS PubMed Google Scholar * Nagai, K., Nagai, N., Sugahara, K., Niijima, A. & Nakagawa, H.
Circadian rhythms and energy metabolism with special reference to the suprachiasmatic nucleus. _Neurosci. Biobehav. Rev._ 18, 579–584 (1994). Article CAS PubMed Google Scholar *
Kalsbeek, A. et al. Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. _PLoS ONE_ 3, e3194 (2008). Article PubMed PubMed Central CAS Google Scholar
* Hirota, T. et al. Glucose down-regulates _Per1_ and _Per2_ mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. _J. Biol. Chem._ 277, 44244–44251 (2002).
Article CAS PubMed Google Scholar * Wang, T. A. et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. _Science_ 337, 839–842 (2012). Article
CAS PubMed PubMed Central Google Scholar * Mohawk, J. A., Baer, M. L. & Menaker, M. The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes. _Proc.
Natl Acad. Sci. USA_ 106, 3519–3524 (2009). Article CAS PubMed PubMed Central Google Scholar * Pendergast, J. S., Oda, G. A., Niswender, K. D. & Yamazaki, S. Period determination in
the food-entrainable and methamphetamine-sensitive circadian oscillator(s). _Proc. Natl Acad. Sci. USA_ 109, 14218–14223 (2012). Article CAS PubMed PubMed Central Google Scholar *
Bellet, M. M., Vawter, M. P., Bunney, B. G., Bunney, W. E. & Sassone-Corsi, P. Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression. _PLoS ONE_ 6, e23982
(2011). Article CAS PubMed PubMed Central Google Scholar * Jones, C. R. et al. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. _Nature Med._
5, 1062–1065 (1999). Article CAS PubMed Google Scholar * Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. _Science_ 291, 1040–1043
(2001). Article CAS PubMed Google Scholar * Kyriacou, C. P. & Hastings, M. H. Circadian clocks: genes, sleep, and cognition. _Trends Cogn. Sci._ 14, 259–267 (2010). Article PubMed
Google Scholar * Mignot, E., Taheri, S. & Nishino, S. Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. _Nature Neurosci._ 5, 1071–1075 (2002). Article
CAS PubMed Google Scholar * Albrecht, U. Circadian rhythms and sleep the metabolic connection. _Pflugers Arch._ 463, 23–30 (2011). Article PubMed CAS Google Scholar * Womac, A. D.,
Burkeen, J. F., Neuendorff, N., Earnest, D. J. & Zoran, M. J. Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes. _Eur. J.
Neurosci._ 30, 869–876 (2009). Article PubMed PubMed Central Google Scholar * Asher, G. & Schibler, U. Crosstalk between components of circadian and metabolic cycles in mammals.
_Cell. Metab._ 13, 125–137 (2011). Article CAS PubMed Google Scholar * Kahn, B. B., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge
provides clues to modern understanding of metabolism. _Cell Metab._ 1, 15–25 (2005). Article CAS PubMed Google Scholar * Chikahisa, S., Fujiki, N., Kitaoka, K., Shimizu, N. & Sei, H.
Central AMPK contributes to sleep homeostasis in mice. _Neuropharmacology_ 57, 369–374 (2009). Article CAS PubMed Google Scholar * Lamia, K. A. et al. AMPK regulates the circadian clock
by cryptochrome phosphorylation and degradation. _Science_ 326, 437–440 (2009). Article CAS PubMed PubMed Central Google Scholar * Um, J. H. et al. Activation of 5′-AMP-activated
kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIɛ)-dependent degradation of clock protein mPer2. _J. Biol. Chem._ 282, 20794–20798 (2007). Article CAS PubMed Google
Scholar * Fulco, M. et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. _Dev. Cell_ 14, 661–673 (2008).
Article CAS PubMed PubMed Central Google Scholar * Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. _Nature_ 458, 1056–1060 (2009).
Article CAS PubMed PubMed Central Google Scholar * Dworak, M., McCarley, R. W., Kim, T., Kalinchuk, A. V. & Basheer, R. Sleep and brain energy levels: ATP changes during sleep. _J.
Neurosci._ 30, 9007–9016 (2010). Article CAS PubMed PubMed Central Google Scholar * Zawilska, J. B., Skene, D. J. & Arendt, J. Physiology and pharmacology of melatonin in relation
to biological rhythms. _Pharmacol. Rep._ 61, 383–410 (2009). Article CAS PubMed Google Scholar * Slominski, R. M., Reiter, R. J., Schlabritz-Loutsevitch, N., Ostrom, R. S. &
Slominski, A. T. Melatonin membrane receptors in peripheral tissues: distribution and functions. _Mol. Cell. Endocrinol._ 351, 152–166 (2012). Article CAS PubMed PubMed Central Google
Scholar * Arendt, J., Bojkowski, C., Franey, C., Wright, J. & Marks, V. Immunoassay of 6-hydroxymelatonin sulfate in human plasma and urine: abolition of the urinary 24-hour rhythm with
atenolol. _J. Clin. Endocrinol. Metab._ 60, 1166–1173 (1985). Article CAS PubMed Google Scholar * Steindl, P. E. et al. Disruption of the diurnal rhythm of plasma melatonin in
cirrhosis. _Ann. Intern. Med._ 123, 274–277 (1995). Article CAS PubMed Google Scholar * Steindl, P. E., Ferenci, P. & Marktl, W. Impaired hepatic catabolism of melatonin in
cirrhosis. _Ann. Intern. Med._ 127, 494 (1997). Article CAS PubMed Google Scholar * Nishikawa, Y., Shibata, S. & Watanabe, S. Circadian changes in long-term potentiation of rat
suprachiasmatic field potentials elicited by optic nerve stimulation _in vitro_. _Brain Res._ 695, 158–162 (1995). Article CAS PubMed Google Scholar * Harris, K. M. & Teyler, T. J.
Age differences in a circadian influence on hippocampal LTP. _Brain Res._ 261, 69–73 (1983). Article CAS PubMed Google Scholar * Kondratova, A. A., Dubrovsky, Y. V., Antoch, M. P. &
Kondratov, R. V. Circadian clock proteins control adaptation to novel environment and memory formation. _Aging_ 2, 285–297 (2010). Article CAS PubMed Google Scholar * Silva, A. J.,
Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. _Annu. Rev. Neurosci._ 21, 127–148 (1998). Article CAS PubMed Google Scholar * Gao, J. et al. A novel pathway regulates
memory and plasticity via SIRT1 and miR-134. _Nature_ 466, 1105–1109 (2010). Article CAS PubMed PubMed Central Google Scholar * Alvarez-Saavedra, M. et al. miRNA-132 orchestrates
chromatin remodeling and translational control of the circadian clock. _Hum. Mol. Genet._ 20, 731–751 (2011). Article CAS PubMed Google Scholar * Cheng, H. Y. et al. microRNA modulation
of circadian-clock period and entrainment. _Neuron_ 54, 813–829 (2007). Article CAS PubMed PubMed Central Google Scholar * Michan, S. et al. SIRT1 is essential for normal cognitive
function and synaptic plasticity. _J. Neurosci._ 30, 9695–9707 (2010). Article CAS PubMed PubMed Central Google Scholar * Wu, D., Qiu, Y., Gao, X., Yuan, X. B. & Zhai, Q.
Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function. _PLoS ONE_ 6, e21759 (2011). Article CAS PubMed PubMed Central Google Scholar * Levenson,
J. M. et al. Regulation of histone acetylation during memory formation in the hippocampus. _J. Biol. Chem._ 279, 40545–40559 (2004). Article CAS PubMed Google Scholar * Ding, J. M. et
al. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. _Science_ 266, 1713–1717 (1994). Article CAS PubMed Google Scholar * Doi, M., Hirayama,
J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. _Cell_ 125, 497–508 (2006). Article CAS PubMed Google Scholar * Ripperger, J. A. & Schibler, U.
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian _Dbp_ transcription and chromatin transitions. _Nature Genet._ 38, 369–374 (2006). Article CAS PubMed Google Scholar
* Crosio, C., Cermakian, N., Allis, C. D. & Sassone-Corsi, P. Light induces chromatin modification in cells of the mammalian circadian clock. _Nature Neurosci._ 3, 1241–1247 (2000).
Article CAS PubMed Google Scholar * Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. _Mol. Cell_
5, 905–915 (2000). Article CAS PubMed Google Scholar * Lo, W. S. et al. Phosphorylation of serine 10 in histone H3 is functionally linked _in vitro_ and _in vivo_ to Gcn5-mediated
acetylation at lysine 14. _Mol. Cell_ 5, 917–926 (2000). Article CAS PubMed Google Scholar * Gouin, J. P. et al. Altered expression of circadian rhythm genes among individuals with a
history of depression. _J. Affect. Disord._ 126, 161–166 (2010). Article PubMed PubMed Central Google Scholar * Mukherjee, S. et al. Knockdown of _Clock_ in the ventral tegmental area
through RNA interference results in a mixed state of mania and depression-like behavior. _Biol. Psychiatry_ 68, 503–511 (2010). Article CAS PubMed PubMed Central Google Scholar *
McClung, C. A. Circadian rhythms and mood regulation: insights from pre-clinical models. _Eur. Neuropsychopharmacol._ 21, S683–S693 (2011). Article CAS PubMed PubMed Central Google
Scholar * Doi, M. et al. Impaired light masking in dopamine D2 receptor-null mice. _Nature Neurosci._ 9, 732–734 (2006). Article CAS PubMed Google Scholar * Hood, S. et al. Endogenous
dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. _J. Neurosci._ 30, 14046–14058 (2010). Article
CAS PubMed PubMed Central Google Scholar * Yujnovsky, I., Hirayama, J., Doi, M., Borrelli, E. & Sassone-Corsi, P. Signaling mediated by the dopamine D2 receptor potentiates
circadian regulation by CLOCK:BMAL1. _Proc. Natl Acad. Sci. USA_ 103, 6386–6391 (2006). Article CAS PubMed PubMed Central Google Scholar * Monteleone, P., Martiadis, V. & Maj, M.
Circadian rhythms and treatment implications in depression. _Prog. Neuropsychopharmacol. Biol. Psychiatry_ 35, 1569–1574 (2011). Article CAS PubMed Google Scholar * Golden, R. N. et al.
The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. _Am. J. Psychiatry_ 162, 656–662 (2005). Article PubMed Google Scholar *
Ciarleglio, C. M., Axley, J. C., Strauss, B. R., Gamble, K. L. & McMahon, D. G. Perinatal photoperiod imprints the circadian clock. _Nature Neurosci._ 14, 25–27 (2011). Article CAS
PubMed Google Scholar * Roybal, K. et al. Mania-like behavior induced by disruption of _CLOCK_. _Proc. Natl Acad. Sci. USA_ 104, 6406–6411 (2007). Article CAS PubMed PubMed Central
Google Scholar * Rowe, M. K., Wiest, C. & Chuang, D. M. GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder. _Neurosci. Biobehav. Rev._ 31, 920–931
(2007). Article CAS PubMed PubMed Central Google Scholar * Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E. & Sassone-Corsi, P. Regulation of BMAL1 protein stability and circadian
function by GSK3-mediated phosphorylation. _PLoS ONE_ 5, e8561 (2010). Article PubMed PubMed Central CAS Google Scholar * Yin, L., Wang, J., Klein, P. S. & Lazar, M. A. Nuclear
receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock. _Science_ 311, 1002–1005 (2006). Article CAS PubMed Google Scholar * Beaulieu, J. M. et al. Regulation
of Akt signaling by D2 and D3 dopamine receptors _in vivo_. _J. Neurosci._ 27, 881–885 (2007). Article CAS PubMed PubMed Central Google Scholar * Kohno, T. et al. Effects of lithium on
brain glucose metabolism in healthy men. _J. Clin. Psychopharmacol._ 27, 698–702 (2007). Article CAS PubMed Google Scholar * Borrelli, E., Nestler, E. J., Allis, C. D. &
Sassone-Corsi, P. Decoding the epigenetic language of neuronal plasticity. _Neuron_ 60, 961–974 (2008). Article CAS PubMed PubMed Central Google Scholar * Eckel-Mahan, K. L. et al.
Coordination of the transcriptome and metabolome by the circadian clock. _Proc. Natl Acad. Sci. USA_ 109, 5541–5546 (2012). Article CAS PubMed PubMed Central Google Scholar * Hatori, M.
et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. _Cell Metab._ 15, 848–860 (2012). Article CAS PubMed PubMed
Central Google Scholar * Dallmann, R., Viola, A. U., Tarokh, L., Cajochen, C. & Brown, S. A. The human circadian metabolome. _Proc. Natl Acad. Sci. USA_ 109, 2625–2629 (2012). Article
CAS PubMed PubMed Central Google Scholar * Katada, S. & Sassone-Corsi, P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. _Nature Struct.
Mol. Biol._ 17, 1414–1421 (2010). Article CAS Google Scholar * Crosio, C., Heitz, E., Allis, C. D., Borrelli, E. & Sassone-Corsi, P. Chromatin remodeling and neuronal response:
multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. _J. Cell Sci._ 116, 4905–4914 (2003). Article CAS PubMed Google
Scholar * Butcher, G. Q., Lee, B., Cheng, H. Y. & Obrietan, K. Light stimulates MSK1 activation in the suprachiasmatic nucleus via a PACAP-ERK/MAP kinase-dependent mechanism. _J.
Neurosci._ 25, 5305–5313 (2005). Article CAS PubMed PubMed Central Google Scholar * Hirayama, J. et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. _Nature_ 450,
1086–1090 (2007). Article CAS PubMed Google Scholar * Etchegaray, J. P., Lee, C., Wade, P. A. & Reppert, S. M. Rhythmic histone acetylation underlies transcription in the mammalian
circadian clock. _Nature_ 421, 177–182 (2003). Article CAS PubMed Google Scholar * Curtis, A. M. et al. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock.
_J. Biol. Chem._ 279, 7091–7097 (2004). Article CAS PubMed Google Scholar * Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism.
_Science_ 331, 1315–1319 (2011). Article CAS PubMed PubMed Central Google Scholar * Alenghat, T. et al. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic
physiology. _Nature_ 456, 997–1000 (2008). Article CAS PubMed PubMed Central Google Scholar * Etchegaray, J. P. et al. The polycomb group protein EZH2 is required for mammalian
circadian clock function. _J. Biol. Chem._ 281, 21209–21215 (2006). Article CAS PubMed Google Scholar * DiTacchio, L. et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and
influences the circadian clock. _Science_ 333, 1881–1885 (2011). Article CAS PubMed PubMed Central Google Scholar Download references ACKNOWLEDGEMENTS We thank all members of the
Sassone-Corsi laboratory for helpful discussion. Funding for S.M. was provided by the US National Institutes of Health (NIH) postdoctoral fellowship GM097899. Financial support for P.S.-C
was provided bythe US NIH (grant AG041504), INSERM (grant 44790) and Sirtris Pharmaceuticals (SP-48984). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Selma Masri and Paolo Sassone-Corsi are
at the Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, California 92697, USA., Selma Masri & Paolo
Sassone-Corsi Authors * Selma Masri View author publications You can also search for this author inPubMed Google Scholar * Paolo Sassone-Corsi View author publications You can also search
for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Paolo Sassone-Corsi. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial
interests. RELATED LINKS RELATED LINKS FURTHER INFORMATION The Center for Epigenetics and Metabolism RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE
Masri, S., Sassone-Corsi, P. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. _Nat Rev Neurosci_ 14, 69–75 (2013). https://doi.org/10.1038/nrn3393
Download citation * Published: 28 November 2012 * Issue Date: January 2013 * DOI: https://doi.org/10.1038/nrn3393 SHARE THIS ARTICLE Anyone you share the following link with will be able to
read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing
initiative