Potentiating prostate cancer immunotherapy with oncolytic viruses

Potentiating prostate cancer immunotherapy with oncolytic viruses

Play all audios:

Loading...

KEY POINTS * Immunologically, prostate cancer is amenable to currently available, as well as emerging, cancer immunotherapies * Tumour-associated immunosuppressive mechanisms restrict the


development of antitumour immune responses and are the largest barrier to the effectiveness of immunotherapies for prostate cancer * Oncolytic viruses can target prostate cancer through


three mechanisms: direct killing of tumour cells through oncolysis, destruction of the tumour vasculature, and initiation of antitumour immunity * Oncolytic viruses can override


tumour-associated immunosuppressive mechanisms and create an environment conducive to the development of antigen-specific and protective antitumour immunity * Oncolytic-virus-induced


reprogramming of the tumour microenvironment can be exploited in strategic treatment combinations to achieve improved effectiveness of otherwise subpar cancer immunotherapies, including


those based on immune checkpoint inhibitors ABSTRACT The clinical effectiveness of immunotherapies for prostate cancer remains subpar compared with that for other cancers. The goal of most


immunotherapies is the activation of immune effectors, such as T cells and natural killer cells, as the presence of these activated mediators positively correlates with patient outcomes.


Clinical evidence shows that prostate cancer is immunogenic, accessible to the immune system, and can be targeted by antitumour immune responses. However, owing to the detrimental effects of


prostate-cancer-associated immunosuppression, even the newest immunotherapeutic approaches fail to initiate the clinically desired antitumour immune reaction. Oncolytic viruses, originally


used for their preferential cancer-killing activity, are now being recognized for their ability to overturn cancer-associated immune evasion and promote otherwise absent antitumour immunity.


This oncolytic-virus-induced subversion of tumour-associated immunosuppression can potentiate the effectiveness of current immunotherapeutics, including immune checkpoint inhibitors (for


example, antibodies against programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1), and cytotoxic T lymphocyte antigen 4 (CTLA4)) and chemotherapeutics that induce


immunogenic cell death (for example, doxorubicin and oxaliplatin). Importantly, oncolytic-virus-induced antitumour immunity targets existing prostate cancer cells and also establishes


long-term protection against future relapse. Hence, the strategic use of oncolytic viruses as monotherapies or in combination with current immunotherapies might result in the next


breakthrough in prostate cancer immunotherapy. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access


through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $29.99 / 30 days cancel any time Learn more Subscribe to


this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy


now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS USING ONCOLYTIC VIRUSES TO IGNITE THE TUMOUR IMMUNE MICROENVIRONMENT IN BLADDER CANCER Article 28 June 2021 VACCINES AS TREATMENTS FOR


PROSTATE CANCER Article 06 March 2023 REOVIRUS MUTANT JIN-3 EXHIBITS LYTIC AND IMMUNE-STIMULATORY EFFECTS IN PRECLINICAL HUMAN PROSTATE CANCER MODELS Article Open access 16 June 2021


REFERENCES * Attard, G. _ et al_. Prostate cancer. _Lancet_ 387, 70–82 (2016). Article  PubMed  Google Scholar  * McNeel, D. G. _ et al_. The Society for Immunotherapy of Cancer consensus


statement on immunotherapy for the treatment of prostate carcinoma. _J. Immunother. Cancer._ 4, 92 (2016). Article  PubMed  PubMed Central  Google Scholar  * Maia, M. C. & Hansen, A. R.


A comprehensive review of immunotherapies in prostate cancer. _Crit. Rev. Oncol. Hematol._ 113, 292–303 (2017). Article  PubMed  Google Scholar  * Karan, D., Holzbeierlein, J. M., Van


Veldhuizen, P. & Thrasher, J. B. Cancer immunotherapy: a paradigm shift for prostate cancer treatment. _Nat. Rev. Urol._ 9, 376–385 (2012). Article  CAS  PubMed  Google Scholar  * Yap,


T. A. _ et al_. Drug discovery in advanced prostate cancer: translating biology into therapy. _Nat. Rev. Drug Discov._ 15, 699–718 (2016). Article  CAS  PubMed  Google Scholar  * Topalian,


S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. _Cancer. Cell._ 27, 450–461 (2015). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Drake, C. G. Prostate cancer as a model for tumour immunotherapy. _Nat. Rev. Immunol._ 10, 580–593 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Kiessling, A. _ et al_. Advances in specific immunotherapy for prostate cancer. _Eur. Urol._ 53, 694–708 (2008). Article  CAS  PubMed  Google Scholar  * Silvestri, I. _ et al_. A perspective


of immunotherapy for prostate cancer. _Cancers_ 8, E64 (2016). Article  CAS  PubMed  Google Scholar  * Di Lorenzo, G., Buonerba, C. & Kantoff, P. W. Immunotherapy for the treatment of


prostate cancer. _Nat. Rev. Clin. Oncol._ 8, 551–561 (2011). Article  CAS  PubMed  Google Scholar  * Lichty, B. D., Breitbach, C. J., Stojdl, D. F. & Bell, J. C. Going viral with cancer


immunotherapy. _Nat. Rev. Cancer._ 14, 559–567 (2014). Article  CAS  PubMed  Google Scholar  * Taguchi, S., Fukuhara, H., Homma, Y. & Todo, T. Current status of clinical trials assessing


oncolytic virus therapy for urological cancers. _Int. J. Urol._ 24, 342–351 (2017). Article  PubMed  Google Scholar  * Gujar, S., Pol, J. G., Kim, Y., Lee, P. W. & Kroemer, G. Antitumor


benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. _Trends Immunol._ https://doi.org/10.1016/j.it.2017.11.006 (2017). Article  CAS  PubMed  Google


Scholar  * Delwar, Z., Zhang, K., Rennie, P. S. & Jia, W. Oncolytic virotherapy for urological cancers. _Nat. Rev. Urol._ 13, 334–352 (2016). Article  CAS  PubMed  Google Scholar  *


Gravitz, L. Cancer immunotherapy. _Nature_ 504, S1 (2013). Article  CAS  PubMed  Google Scholar  * Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward


combination strategies with curative potential. _Cell_ 161, 205–214 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Peshwa, M. V., Shi, J. D., Ruegg, C., Laus, R. & van


Schooten, W. C. Induction of prostate tumor-specific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid phosphatase peptide. _Prostate_ 36,


129–138 (1998). Article  CAS  PubMed  Google Scholar  * Machlenkin, A. _ et al_. Human CTL epitopes prostatic acid phosphatase-3 and six-transmembrane epithelial antigen of prostate-3 as


candidates for prostate cancer immunotherapy. _Cancer Res._ 65, 6435–6442 (2005). Article  CAS  PubMed  Google Scholar  * Johnson, L. E., Frye, T. P., Chinnasamy, N., Chinnasamy, D. &


McNeel, D. G. Plasmid DNA vaccine encoding prostatic acid phosphatase is effective in eliciting autologous antigen-specific CD8+ T cells. _Cancer Immunol. Immunother._ 56, 885–895 (2007).


Article  CAS  PubMed  Google Scholar  * Gujar, S. A., Pan, D. A., Marcato, P., Garant, K. A. & Lee, P. W. Oncolytic virus-initiated protective immunity against prostate cancer. _Mol.


Ther._ 19, 797–804 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pitt, J. M. _ et al_. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and


-extrinsic factors. _Immunity_ 44, 1255–1269 (2016). Article  CAS  PubMed  Google Scholar  * Barach, Y. S., Lee, J. S. & Zang, X. T cell coinhibition in prostate cancer: new immune


evasion pathways and emerging therapeutics. _Trends Mol. Med._ 17, 47–55 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vesely, M. D. & Schreiber, R. D. Cancer


immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. _Ann. NY Acad. Sci._ 1284, 1–5 (2013). Article  CAS  PubMed  Google Scholar  * Ostrand-Rosenberg, S., Sinha,


P., Beury, D. W. & Clements, V. K. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. _Semin. Cancer


Biol._ 22, 275–281 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor


microenvironment. _Nat. Immunol._ 14, 1014–1022 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * van der Burg, S. H., Arens, R., Ossendorp, F., van Hall, T. & Melief, C.


J. Vaccines for established cancer: overcoming the challenges posed by immune evasion. _Nat. Rev. Cancer._ 16, 219–233 (2016). Article  CAS  PubMed  Google Scholar  * Sharma, P. &


Allison, J. P. The future of immune checkpoint therapy. _Science_ 348, 56–61 (2015). Article  CAS  PubMed  Google Scholar  * Smyth, M. J., Ngiow, S. F., Ribas, A. & Teng, M. W.


Combination cancer immunotherapies tailored to the tumour microenvironment. _Nat. Rev. Clin. Oncol._ 13, 143–158 (2016). Article  CAS  PubMed  Google Scholar  * Modena, A. _ et al_. Immune


checkpoint inhibitors and prostate cancer: a new frontier? _Oncol. Rev._ 10, 293 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gujar, S. _ et al_. Multifaceted therapeutic


targeting of ovarian peritoneal carcinomatosis through virus-induced immunomodulation. _Mol. Ther._ 21, 338–347 (2013). Article  CAS  PubMed  Google Scholar  * Gujar, S. A., Marcato, P.,


Pan, D. & Lee, P. W. Reovirus virotherapy overrides tumor antigen presentation evasion and promotes protective antitumor immunity. _Mol. Cancer. Ther._ 9, 2924–2933 (2010). Article  CAS


  PubMed  Google Scholar  * Zhao, X., Chester, C., Rajasekaran, N., He, Z. & Kohrt, H. E. Strategic combinations: the future of oncolytic virotherapy with reovirus. _Mol. Cancer. Ther._


15, 767–773 (2016). Article  CAS  PubMed  Google Scholar  * Fend, L. _ et al_. Immune checkpoint blockade, immunogenic chemotherapy or IFN-alpha blockade boost the local and abscopal effects


of oncolytic virotherapy. _Cancer Res._ 77, 4146–4157 (2017). Article  CAS  PubMed  Google Scholar  * Tanoue, K. _ et al_. Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances


antitumor effects of chimeric antigen receptor T cells in solid tumors. _Cancer Res._ 77, 2040–2051 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Montironi, R. _ et al_.


Emerging immunotargets and immunotherapies in prostate cancer. _Curr. Drug Targets_ 17, 777–782 (2016). Article  CAS  PubMed  Google Scholar  * Lu, X. _ et al_. Effective combinatorial


immunotherapy for castration-resistant prostate cancer. _Nature_ 543, 728–732 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gao, J. _ et al_. VISTA is an inhibitory immune


checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. _Nat. Med._ 23, 551–555 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zitvogel, L.,


Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. _Nat. Rev. Immunol._ 8, 59–73 (2008). Article  CAS  PubMed  Google Scholar  * Chen, D. S. &


Mellman, I. Elements of cancer immunity and the cancer-immune set point. _Nature_ 541, 321–330 (2017). Article  CAS  PubMed  Google Scholar  * Jung, S. _ et al_. In vivo depletion of CD11c+


dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. _Immunity_ 17, 211–220 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Baas, W. _ et


al_. Immune characterization of the programmed death receptor pathway in high risk prostate cancer. _Clin. Genitourin. Cancer_ 15, 577–581 (2017). Article  PubMed  Google Scholar  * Madan,


R. A. & Gulley, J. L. Prostate cancer: Better VISTAs ahead? Potential and pitfalls of immunotherapy. _Nat. Rev. Urol._ 14, 455–456 (2017). Article  PubMed  PubMed Central  Google Scholar


  * Sfanos, K. S. _ et al_. Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. _Prostate_ 69, 1694–1703 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


De Marzo, A. M. _ et al_. Inflammation in prostate carcinogenesis. _Nat. Rev. Cancer_ 7, 256–269 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Taylor, B. S. _ et al_.


Integrative genomic profiling of human prostate cancer. _Cancer. Cell._ 18, 11–22 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tan, S. H. _ et al_. Evaluation of ERG


responsive proteome in prostate cancer. _Prostate_ 74, 70–89 (2014). Article  CAS  PubMed  Google Scholar  * Kim, J. J. _ et al_. Induction of immune responses and safety profiles in rhesus


macaques immunized with a DNA vaccine expressing human prostate specific antigen. _Oncogene_ 20, 4497–4506 (2001). Article  CAS  PubMed  Google Scholar  * Sfanos, K. S. _ et al_. Phenotypic


analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. _Clin. Cancer Res._ 14, 3254–3261 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lopez-Bujanda,


Z. & Drake, C. G. Myeloid-derived cells in prostate cancer progression: phenotype and prospective therapies. _J. Leukoc. Biol._ 102, 393–406 (2017). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Sizemore, G. M. _ et al_. Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1. _Oncogene_ 36, 2297–2308 (2017). Article  CAS  PubMed 


Google Scholar  * Kaukonen, R. _ et al_. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. _Nat. Commun._ 7, 12237 (2016).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour microenvironment. _Nat. Rev.


Immunol._ 15, 669–682 (2015). Article  CAS  PubMed  Google Scholar  * Kalluri, R. The biology and function of fibroblasts in cancer. _Nat. Rev. Cancer._ 16, 582–598 (2016). Article  CAS 


PubMed  Google Scholar  * Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. _Nat. Rev. Immunol._ 17, 559–572


(2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vinay, D. S. _ et al_. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. _Semin. Cancer Biol._ 35


(Suppl.), S185–S198 (2015). Article  CAS  PubMed  Google Scholar  * Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. _Nature_ 473, 298–307


(2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Smith, B. A. _ et al_. A basal stem cell signature identifies aggressive prostate cancer phenotypes. _Proc. Natl Acad. Sci.


USA_ 112, E6544–E6552 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chauhan, A. & Anthony, L. Immune oncology and neuroendocrine tumors. _Ann. Oncol._ 28, 2322–2323


(2017). Article  CAS  PubMed  Google Scholar  * Alvarado, A. G. _ et al_. Glioblastoma cancer stem cells evade innate immune suppression of self-renewal through reduced TLR4 expression.


_Cell. Stem Cell._ 20, 450–461.e4 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sultan, M. _ et al_. Hide-and-seek: the interplay between cancer stem cells and the immune


system. _Carcinogenesis_ 38, 107–118 (2017). Article  CAS  PubMed  Google Scholar  * Bishop, J., Sangha, B., Gleave, M. & Zoubeidi, A. Immune evasion strategies of neuroendocrine-like


Enzalutamide resistant prostate cancer. _J. Immunother. Cancer_ 1 (Suppl. 1), P147 (2013). Article  PubMed Central  Google Scholar  * Bronte, V. _ et al_. Boosting antitumor responses of T


lymphocytes infiltrating human prostate cancers. _J. Exp. Med._ 201, 1257–1268 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mercader, M. _ et al_. T cell infiltration of


the prostate induced by androgen withdrawal in patients with prostate cancer. _Proc. Natl Acad. Sci. USA_ 98, 14565–14570 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Healy, C. G. _ et al_. Impaired expression and function of signal-transducing zeta chains in peripheral T cells and natural killer cells in patients with prostate cancer. _Cytometry_ 32,


109–119 (1998). Article  CAS  PubMed  Google Scholar  * Ness, N. _ et al_. The prognostic role of immune checkpoint markers programmed cell death protein 1 (PD-1) and programmed death ligand


1 (PD-L1) in a large, multicenter prostate cancer cohort. _Oncotarget_ 8, 26789–26801 (2017). Article  PubMed  PubMed Central  Google Scholar  * Morse, M. D. & McNeel, D. G. T cells


localized to the androgen-deprived prostate are TH1 and TH17 biased. _Prostate_ 72, 1239–1247 (2012). Article  CAS  PubMed  Google Scholar  * Zhang, Q. _ et al_. Targeting Th17-IL-17 pathway


in prevention of micro-invasive prostate cancer in a mouse model. _Prostate_ 77, 888–899 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Foster, B. A., Gingrich, J. R.,


Kwon, E. D., Madias, C. & Greenberg, N. M. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. _Cancer Res._


57, 3325–3330 (1997). CAS  PubMed  Google Scholar  * Hurwitz, A. A., Foster, B. A., Allison, J. P., Greenberg, N. M. & Kwon, E. D. in _Current Protocols in Immunology_ (eds Coligan, J.


E. _ et al_.) Unit 20.5 (2001). Google Scholar  * Won, H. _ et al_. TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear


MDSCs. _J. Leukoc. Biol._ 102, 423–436 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Leventhal, D. S. _ et al_. Dendritic cells coordinate the development and homeostasis


of organ-specific regulatory T cells. _Immunity_ 44, 847–859 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pasero, C. _ et al_. Inherent and tumor-driven immune tolerance


in the prostate microenvironment impairs natural killer cell antitumor activity. _Cancer Res._ 76, 2153–2165 (2016). Article  CAS  PubMed  Google Scholar  * Ammirante, M., Luo, J. L.,


Grivennikov, S., Nedospasov, S. & Karin, M. B-Cell-derived lymphotoxin promotes castration-resistant prostate cancer. _Nature_ 464, 302–305 (2010). CAS  PubMed  PubMed Central  Google


Scholar  * Shalapour, S. _ et al_. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. _Nature_ 521, 94–98 (2015). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Kwek, S. S., Cha, E. & Fong, L. Unmasking the immune recognition of prostate cancer with CTLA4 blockade. _Nat. Rev. Cancer._ 12, 289–297 (2012). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Goswami, S., Aparicio, A. & Subudhi, S. K. Immune checkpoint therapies in prostate cancer. _Cancer J._ 22, 117–120 (2016). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Kambayashi, T. & Laufer, T. M. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? _Nat. Rev. Immunol._ 14, 719–730


(2014). Article  CAS  PubMed  Google Scholar  * Gujar, S. A. & Lee, P. W. Oncolytic virus-mediated reversal of impaired tumor antigen presentation. _Front. Oncol._ 4, 77 (2014). Article


  PubMed  PubMed Central  Google Scholar  * Wennier, S. T., Liu, J. & McFadden, G. Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. _Curr. Pharm. Biotechnol._ 13,


1817–1833 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Marcato, P., Shmulevitz, M., Pan, D., Stoltz, D. & Lee, P. W. Ras transformation mediates reovirus oncolysis by


enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. _Mol. Ther._ 15, 1522–1530 (2007). Article  CAS  PubMed  Google Scholar  * Russell, S. J. & Peng, K. W.


Oncolytic virotherapy: a contest between apples and oranges. _Mol. Ther._ 25, 1107–1116 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bell, J. & McFadden, G. Viruses


for tumor therapy. _Cell. Host Microbe_ 15, 260–265 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Parato, K. A., Lichty, B. D. & Bell, J. C. Diplomatic immunity:


turning a foe into an ally. _Curr. Opin. Mol. Ther._ 11, 13–21 (2009). CAS  PubMed  Google Scholar  * Shmulevitz, M., Marcato, P. & Lee, P. W. Unshackling the links between reovirus


oncolysis, Ras signaling, translational control and cancer. _Oncogene_ 24, 7720–7728 (2005). Article  CAS  PubMed  Google Scholar  * Strong, J. E., Coffey, M. C., Tang, D., Sabinin, P. &


Lee, P. W. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. _EMBO J._ 17, 3351–3362 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Coffey, M. C., Strong, J. E., Forsyth, P. A. & Lee, P. W. Reovirus therapy of tumors with activated Ras pathway. _Science_ 282, 1332–1334 (1998). Article  CAS  PubMed  Google Scholar


  * Kirn, D. Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. _Oncogene_ 19, 6660–6669 (2000). Article  CAS  PubMed  Google Scholar  * Andtbacka,


R. H. _ et al_. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. _J. Clin. Oncol._ 33, 2780–2788 (2015). Article  CAS  PubMed  Google Scholar  *


Rehman, H., Silk, A. W., Kane, M. P. & Kaufman, H. L. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. _J. Immunother. Cancer._


4, 53 (2016). Article  PubMed  PubMed Central  Google Scholar  * Schvartsman, G., Perez, K., Flynn, J. E., Myers, J. N. & Tawbi, H. Safe and effective administration of T-VEC in a


patient with heart transplantation and recurrent locally advanced melanoma. _J. Immunother. Cancer._ 5, 45 (2017). Article  PubMed  PubMed Central  Google Scholar  * US National Library of


Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT00769704 (2016). * Danziger, O., Shai, B., Sabo, Y., Bacharach, E. & Ehrlich, M. Combined genetic and epigenetic


interferences with interferon signaling expose prostate cancer cells to viral infection. _Oncotarget_ 7, 52115–52134 (2016). Article  PubMed  PubMed Central  Google Scholar  * DeWeese, T. L.


_ et al_. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. _Cancer


Res._ 61, 7464–7472 (2001). CAS  PubMed  Google Scholar  * Small, E. J. _ et al_. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic


adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. _Mol. Ther._ 14, 107–117 (2006). Article  CAS  PubMed  Google Scholar  * Freytag, S. O., Barton, K. N. &


Zhang, Y. Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. _Gene Ther._ 20, 1131–1139 (2013). Article  CAS  PubMed 


Google Scholar  * Freytag, S. O. _ et al_. Five-year follow-up of trial of replication-competent adenovirus-mediated suicide gene therapy for treatment of prostate cancer. _Mol. Ther._ 15,


636–642 (2007). Article  CAS  PubMed  Google Scholar  * Freytag, S. O. _ et al_. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of


locally recurrent prostate cancer. _Cancer Res._ 62, 4968–4976 (2002). CAS  PubMed  Google Scholar  * Fukuhara, H., Homma, Y. & Todo, T. Oncolytic virus therapy for prostate cancer.


_Int. J. Urol._ 17, 20–30 (2010). Article  CAS  PubMed  Google Scholar  * Arulanandam, R. _ et al_. VEGF-mediated induction of PRD1-BF1/Blimp1 expression sensitizes tumor vasculature to


oncolytic virus infection. _Cancer Cell._ 28, 210–224 (2015). Article  CAS  PubMed  Google Scholar  * Ilkow, C. S. _ et al_. Reciprocal cellular cross-talk within the tumor microenvironment


promotes oncolytic virus activity. _Nat. Med._ 21, 530–536 (2015). Article  CAS  PubMed  Google Scholar  * Breitbach, C. J. _ et al_. Targeting tumor vasculature with an oncolytic virus.


_Mol. Ther._ 19, 886–894 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lucas, T. _ et al_. Adenoviral-mediated endothelial precursor cell delivery of soluble CD115


suppresses human prostate cancer xenograft growth in mice. _Stem Cells_ 27, 2342–2352 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Passer, B. J. _ et al_. Combination of


vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. _Cancer Gene Ther._ 20, 17–24 (2013).


Article  CAS  PubMed  Google Scholar  * Jha, B. K., Dong, B., Nguyen, C. T., Polyakova, I. & Silverman, R. H. Suppression of antiviral innate immunity by sunitinib enhances oncolytic


virotherapy. _Mol. Ther._ 21, 1749–1757 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Munz, C., Lunemann, J. D., Getts, M. T. & Miller, S. D. Antiviral immune


responses: triggers of or triggered by autoimmunity? _Nat. Rev. Immunol._ 9, 246–258 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Getts, D. R., Chastain, E. M., Terry, R.


L. & Miller, S. D. Virus infection, antiviral immunity, and autoimmunity. _Immunol. Rev._ 255, 197–209 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Thirukkumaran, C.


M. _ et al_. Oncolytic viral therapy for prostate cancer: efficacy of reovirus as a biological therapeutic. _Cancer Res._ 70, 2435–2444 (2010). Article  CAS  PubMed  Google Scholar  *


Varghese, S. _ et al_. Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. _Cancer Gene Ther._


13, 253–265 (2006). Article  CAS  PubMed  Google Scholar  * Fong, L., Ruegg, C. L., Brockstedt, D., Engleman, E. G. & Laus, R. Induction of tissue-specific autoimmune prostatitis with


prostatic acid phosphatase immunization: implications for immunotherapy of prostate cancer. _J. Immunol._ 159, 3113–3117 (1997). CAS  PubMed  Google Scholar  * Kottke, T. _ et al_. Broad


antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors. _Nat. Med._ 17, 854–859 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Castelo-Branco, P. _ et al_. Oncolytic herpes simplex virus armed with xenogeneic homologue of prostatic acid phosphatase enhances antitumor efficacy in prostate cancer. _Gene Ther._ 17,


805–810 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim, Y. _ et al_. Dendritic cells in oncolytic virus-based anti-cancer therapy. _Viruses_ 7, 6506–6525 (2015). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Komaru, A. _ et al_. Sustained and NK/CD4+ T cell-dependent efficient prevention of lung metastasis induced by dendritic cells harboring


recombinant Sendai virus. _J. Immunol._ 183, 4211–4219 (2009). Article  CAS  PubMed  Google Scholar  * Kruslin, B., Tomas, D., Dzombeta, T., Milkovic-Perisa, M. & Ulamec, M. Inflammation


in prostatic hyperplasia and carcinoma-basic scientific approach. _Front. Oncol._ 7, 77 (2017). Article  PubMed  PubMed Central  Google Scholar  * Schenk, J. M. _ et al_. Biomarkers of


systemic inflammation and risk of incident, symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial. _Am. J. Epidemiol._ 171, 571–582 (2010). Article 


PubMed  PubMed Central  Google Scholar  * Gurel, B. _ et al_. Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate


cancer prevention trial. _Cancer Epidemiol. Biomarkers Prev._ 23, 847–856 (2014). Article  PubMed  PubMed Central  Google Scholar  * Hsing, A. W., Tsao, L. & Devesa, S. S. International


trends and patterns of prostate cancer incidence and mortality. _Int. J. Cancer_ 85, 60–67 (2000). Article  CAS  PubMed  Google Scholar  * Vidal, A. C. _ et al_. Racial differences in


prostate inflammation: results from the REDUCE study. _Oncotarget_ 8, 71393–71399 (2016). PubMed  PubMed Central  Google Scholar  * Coussens, L. M. & Werb, Z. Inflammation and cancer.


_Nature_ 420, 860–867 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Adler, H. L. _ et al_. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1


in patients with metastatic prostatic carcinoma. _J. Urol._ 161, 182–187 (1999). Article  CAS  PubMed  Google Scholar  * Yang, Y. F. _ et al_. Antitumor effects of oncolytic adenovirus


armed with PSA-IZ-CD40L fusion gene against prostate cancer. _Gene Ther._ 21, 723–731 (2014). Article  CAS  PubMed  Google Scholar  * Moussavi, M. _ et al_. Targeting and killing of


metastatic cells in the transgenic adenocarcinoma of mouse prostate model with vesicular stomatitis virus. _Mol. Ther._ 21, 842–848 (2013). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Seyedin, S. N. _ et al_. Strategies for combining immunotherapy with radiation for anticancer therapy. _Immunotherapy_ 7, 967–980 (2015). Article  CAS  PubMed  Google Scholar  *


Nguyen, A., Ho, L. & Wan, Y. Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. _Front. Oncol._ 4, 145 (2014). PubMed  PubMed Central  Google Scholar  *


Galluzzi, L., Bravo- San Pedro, J. M., Demaria, S., Formenti, S. C. & Kroemer, G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. _Nat. Rev. Clin.


Oncol._ 14, 247–258 (2017). Article  CAS  PubMed  Google Scholar  * Galluzzi, L., Senovilla, L., Zitvogel, L. & Kroemer, G. The secret ally: immunostimulation by anticancer drugs. _Nat.


Rev. Drug Discov._ 11, 215–233 (2012). Article  CAS  PubMed  Google Scholar  * Cao, W. _ et al_. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells


requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. _Nat. Immunol._ 9, 1157–1164 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Olagnier, D. _ et al_. Activation of


Nrf2 signaling augments vesicular stomatitis virus oncolysis via autophagy-driven suppression of antiviral immunity. _Mol. Ther._ 25, 1900–1916 (2017). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Garg, A. D. & Agostinis, P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. _Immunol. Rev._ 280, 126–148 (2017).


Article  CAS  PubMed  Google Scholar  * Meng, S., Xu, J., Wu, Y. & Ding, C. Targeting autophagy to enhance oncolytic virus-based cancer therapy. _Expert Opin. Biol. Ther._ 13, 863–873


(2013). Article  CAS  PubMed  Google Scholar  * Passer, B. J. _ et al_. Oncolytic herpes simplex virus vectors and taxanes synergize to promote killing of prostate cancer cells. _Cancer Gene


Ther._ 16, 551–560 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Nielsen, L. L., Lipari, P., Dell, J., Gurnani, M. & Hajian, G. Adenovirus-mediated p53 gene therapy


and paclitaxel have synergistic efficacy in models of human head and neck, ovarian, prostate, and breast cancer. _Clin. Cancer Res._ 4, 835–846 (1998). CAS  PubMed  Google Scholar  * Yu, D.


C. _ et al_. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. _Cancer Res._ 61, 517–525 (2001). CAS  PubMed  Google Scholar  * Fehl, D. J.


& Ahmed, M. Curcumin promotes the oncoltyic capacity of vesicular stomatitis virus for the treatment of prostate cancers. _Virus Res._ 228, 14–23 (2017). Article  CAS  PubMed  Google


Scholar  * Hodzic, J., Sie, D., Vermeulen, A. & van Beusechem, V. W. Functional screening identifies human miRNAs that modulate adenovirus propagation in prostate cancer cells. _Hum.


Gene Ther._ 28, 766–780 (2017). Article  CAS  PubMed  Google Scholar  * Mansfield, D. C. _ et al_. Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy


in prostate cancer. _Gene Ther._ 23, 357–368 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Trujillo, M. A., Oneal, M. J., McDonough, S., Qin, R. & Morris, J. C. A steep


radioiodine dose response scalable to humans in sodium-iodide symporter (NIS)-mediated radiovirotherapy for prostate cancer. _Cancer Gene Ther._ 19, 839–844 (2012). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Muthana, M. _ et al_. Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation. _Cancer Res._ 73,


490–495 (2013). Article  CAS  PubMed  Google Scholar  * Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. _Nat. Rev.


Immunol._ 17, 97–111 (2017). Article  CAS  PubMed  Google Scholar  * Gujar, S. A., Clements, D. & Lee, P. W. Two is better than one: Complementing oncolytic virotherapy with gemcitabine


to potentiate antitumor immune responses. _Oncoimmunology_ 3, e27622 (2014). Article  PubMed  PubMed Central  Google Scholar  * Gujar, S. A. _ et al_. Gemcitabine enhances the efficacy of


reovirus-based oncotherapy through anti-tumour immunological mechanisms. _Br. J. Cancer_ 110, 83–93 (2014). Article  CAS  PubMed  Google Scholar  * Schirrmacher, V., Bihari, A. S., Stucker,


W. & Sprenger, T. Long-term remission of prostate cancer with extensive bone metastases upon immuno- and virotherapy: a case report. _Oncol. Lett._ 8, 2403–2406 (2014). Article  PubMed 


PubMed Central  Google Scholar  * Jiang, H., Lin, J. J., Su, Z. Z., Goldstein, N. I. & Fisher, P. B. Subtraction hybridization identifies a novel melanoma differentiation associated


gene, mda-7, modulated during human melanoma differentiation, growth and progression. _Oncogene_ 11, 2477–2486 (1995). CAS  PubMed  Google Scholar  * Sarkar, D. _ et al_. Eradication of


therapy-resistant human prostate tumors using a cancer terminator virus. _Cancer Res._ 67, 5434–5442 (2007). Article  CAS  PubMed  Google Scholar  * Sarkar, S. _ et al_. Novel therapy of


prostate cancer employing a combination of viral-based immunotherapy and a small molecule BH3 mimetic. _Oncoimmunology_ 5, e1078059 (2015). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Pradhan, A. K. _ et al_. mda-7/IL-24 mediates cancer cell-specific death via regulation of miR-221 and the Beclin-1 axis. _Cancer Res._ 77, 949–959 (2017). Article  CAS  PubMed 


Google Scholar  * Su, Z. Z. _ et al_. Ionizing radiation enhances therapeutic activity of mda-7/IL-24: overcoming radiation- and mda-7/IL-24-resistance in prostate cancer cells


overexpressing the antiapoptotic proteins bcl-xL or bcl-2. _Oncogene_ 25, 2339–2348 (2006). Article  CAS  PubMed  Google Scholar  * Lebedeva, I. V. _ et al_. Strategy for reversing


resistance to a single anticancer agent in human prostate and pancreatic carcinomas. _Proc. Natl Acad. Sci. USA_ 104, 3484–3489 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar 


* Fukuhara, H., Ino, Y., Kuroda, T., Martuza, R. L. & Todo, T. Triple gene-deleted oncolytic herpes simplex virus vector double-armed with interleukin 18 and soluble B7-1 constructed by


bacterial artificial chromosome-mediated system. _Cancer Res._ 65, 10663–10668 (2005). Article  CAS  PubMed  Google Scholar  * Varghese, S., Rabkin, S. D., Nielsen, P. G., Wang, W. &


Martuza, R. L. Systemic oncolytic herpes virus therapy of poorly immunogenic prostate cancer metastatic to lung. _Clin. Cancer Res._ 12, 2919–2927 (2006). Article  CAS  PubMed  Google


Scholar  * Liu, C., Hasegawa, K., Russell, S. J., Sadelain, M. & Peng, K. W. Prostate-specific membrane antigen retargeted measles virotherapy for the treatment of prostate cancer.


_Prostate_ 69, 1128–1141 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Madan, R. A. _ et al_. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in


metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. _Lancet Oncol._ 13, 501–508 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * US National


Library of Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT01867333 (2017). * US National Library of Medicine. _ClinicalTrials.gov_


https://clinicaltrials.gov/ct2/show/NCT01875250 (2017). * US National Library of Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT02861573. (2017). * Harris, K. S. &


Kerr, B. A. Prostate cancer stem cell markers drive progression, therapeutic resistance, and bone metastasis. _Stem Cells Int._ 2017, 8629234 (2017). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Velardi, E. _ et al_. Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. _J. Exp. Med._ 211, 2341–2349 (2014). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Goldberg, G. L. _ et al_. Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. _Transplantation_ 80, 1604–1613


(2005). Article  PubMed  Google Scholar  * Tang, S. & Dubey, P. Opposing effects of androgen ablation on immune function in prostate cancer. _Oncoimmunology_ 1, 1220–1221 (2012). Article


  PubMed  PubMed Central  Google Scholar  * Tang, S., Moore, M. L., Grayson, J. M. & Dubey, P. Increased CD8+ T-cell function following castration and immunization is countered by


parallel expansion of regulatory T cells. _Cancer Res._ 72, 1975–1985 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kissick, H. T. _ et al_. Androgens alter T-cell immunity


by inhibiting T-helper 1 differentiation. _Proc. Natl Acad. Sci. USA_ 111, 9887–9892 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pu, Y. _ et al_. Androgen receptor


antagonists compromise T cell response against prostate cancer leading to early tumor relapse. _Sci. Transl Med._ 8, 333ra47 (2016). Article  CAS  PubMed  Google Scholar  * Antonarakis, E.


S. _ et al_. Sequencing of Sipuleucel-T and androgen deprivation therapy in men with hormone-sensitive biochemically recurrent prostate cancer: a phase II randomized trial. _Clin. Cancer


Res._ 23, 2451–2459 (2017). Article  CAS  PubMed  Google Scholar  * Gamat, M. & McNeel, D. G. Androgen deprivation and immunotherapy for the treatment of prostate cancer. _Endocr. Relat.


Cancer_ 24, T297–T310 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Akira, S., Saitoh, T. & Kawai, T. Nucleic acids recognition by innate immunity. _Uirusu_ 62, 39–45


(2012). Article  CAS  PubMed  Google Scholar  * Alemany, R. & Cascallo, M. Oncolytic viruses from the perspective of the immune system. _Future Microbiol._ 4, 527–536 (2009). Article 


CAS  PubMed  Google Scholar  * Barker, H. E., Paget, J. T., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. _Nat.


Rev. Cancer._ 15, 409–425 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Murphy, J. P. _ et al_. MHC-I ligand discovery using targeted database searches of mass


spectrometry data: implications for T-cell immunotherapies. _J. Proteome Res._ 16, 1806–1816 (2017). Article  CAS  PubMed  Google Scholar  * Nielsen, M. & Andreatta, M. NetMHCpan- 3.0;


improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. _Genome Med._ 8, 33 (2016). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Croft, N. P., Purcell, A. W. & Tscharke, D. C. Quantifying epitope presentation using mass spectrometry. _Mol. Immunol._ 68, 77–80 (2015). Article  CAS  PubMed


  Google Scholar  * Yadav, M. _ et al_. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. _Nature_ 515, 572–576 (2014). Article  CAS  PubMed 


Google Scholar  * Comber, J. D. & Philip, R. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines. _Ther. Adv. Vaccines_ 2, 77–89


(2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Serganova, I. _ et al_. Enhancement of PSMA-directed CAR adoptive immunotherapy by PD-1/PD-L1 blockade. _Mol. Ther. Oncolyt._


4, 41–54 (2016). Article  CAS  Google Scholar  * Amin Al Olama, A. _ et al_. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among


Europeans. _Hum. Mol. Genet._ 24, 5589–5602 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fraser, M. _ et al_. Genomic hallmarks of localized, non-indolent prostate cancer.


_Nature_ 541, 359–364 (2017). Article  CAS  PubMed  Google Scholar  * Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. _Cell_ 163, 1011–1025 (2015).


* Boutros, P. C. _ et al_. Spatial genomic heterogeneity within localized, multifocal prostate cancer. _Nat. Genet._ 47, 736–745 (2015). Article  CAS  PubMed  Google Scholar  * Chosey, L. C.


_ et al_. _Biosafety in Microbiological and Biomedical Laboratories (BMBL)_ 5th edn (U.S. Department of Health and Human Services, 2009). Google Scholar  * Hoos, A., Wolchok, J. D.,


Humphrey, R. W. & Hodi, F. S. CCR 20th Anniversary Commentary: Immune-related response criteria — capturing clinical activity in immuno-oncology. _Clin. Cancer Res._ 21, 4989–4991


(2015). Article  CAS  PubMed  Google Scholar  * Freytag, S. O. _ et al_. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic


adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer. _Int. J. Radiat. Oncol. Biol. Phys._ 89, 268–276 (2014). Article  PubMed  PubMed Central  Google Scholar  *


Pol, J. _ et al_. Trial Watch — Oncolytic viruses and cancer therapy. _Oncoimmunology_ 5, e1117740 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * US National Library of


Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT02555397 (2016). * [No authors listed.] UMIN-CTR Clinical Trial UMIN000010463. _University Hospital Information Network_


https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000012228&language=E (2016). * Vidal, L. _ et al_. A phase I study of


intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. _Clin. Cancer Res._ 14, 7127–7137 (2008). Article  CAS  PubMed  Google Scholar  * US National Library of


Medicine. _ClinicalTrials.gov_ https://clinicaltrials.gov/ct2/show/NCT01619813 (2016). * [No authors listed.] UMIN-CTR Clinical Trial UMIN000010840. _University Hospital Information Network_


https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000012688&language=E (2016). * Lei, N. _ et al_. An oncolytic adenovirus


expressing granulocyte macrophage colony-stimulating factor shows improved specificity and efficacy for treating human solid tumors. _Cancer Gene Ther._ 16, 33–43 (2009). Article  CAS 


PubMed  Google Scholar  * Huang, X. F. _ et al_. A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine. _Cancer Res._ 63, 7321–7329 (2003). CAS  PubMed 


Google Scholar  * Li, J. L. _ et al_. A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. _Gene Ther._


16, 376–382 (2009). Article  CAS  PubMed  Google Scholar  * Kaufman, H. L. _ et al_. Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the


Eastern Cooperative Oncology Group. _J. Clin. Oncol._ 22, 2122–2132 (2004). Article  CAS  PubMed  Google Scholar  * Madan, R. A., Arlen, P. M., Mohebtash, M., Hodge, J. W. & Gulley, J.


L. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. _Expert Opin. Investig. Drugs_ 18, 1001–1011 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Fukuhara, H., Martuza, R. L., Rabkin, S. D., Ito, Y. & Todo, T. Oncolytic herpes simplex virus vector g47delta in combination with androgen ablation for the treatment of human prostate


adenocarcinoma. _Clin. Cancer Res._ 11, 7886–7890 (2005). Article  CAS  PubMed  Google Scholar  * Parato, K. A. _ et al_. The oncolytic poxvirus JX-594 selectively replicates in and destroys


cancer cells driven by genetic pathways commonly activated in cancers. _Mol. Ther._ 20, 749–758 (2012). Article  CAS  PubMed  Google Scholar  * Moussavi, M. _ et al_. Oncolysis of prostate


cancers induced by vesicular stomatitis virus in PTEN knockout mice. _Cancer Res._ 70, 1367–1376 (2010). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS S.G. and


P.L. are supported by grants from Prostate Cancer Canada, Canadian Institutes of Health Research (CIHR), Terry Fox Research Institute (TFRI), and Canadian Cancer Research Institute (CCSRI).


The authors thank Y. Kim for her help with graphics and manuscript preparation. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Pathology and Department of Microbiology and


Immunology, Dalhousie University, Halifax, B3H 1X5, Nova Scotia, Canada Patrick Lee & Shashi Gujar * Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre,


Halifax, B3K 6R8, Nova Scotia, Canada Shashi Gujar Authors * Patrick Lee View author publications You can also search for this author inPubMed Google Scholar * Shashi Gujar View author


publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS S.G. researched data for the article and wrote the manuscript. Both authors made substantial


contributions to discussion of the article content and reviewed and/or edited the manuscript before submission. CORRESPONDING AUTHORS Correspondence to Patrick Lee or Shashi Gujar. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3


POWERPOINT SLIDE FOR TABLE 1 POWERPOINT SLIDE FOR TABLE 2 GLOSSARY * Oncolytic viruses Viruses that preferentially infect and kill cancer cells ('onco' means cancer;


'lytic' means killing). * Tumour microenvironment The milieu in which the tumour resides, consisting of malignant cells and nonmalignant cells, including stromal and immune cells.


* Myeloid-derived suppressor cells (MDSCs). The heterogeneous population of myeloid cells that suppress the functions of various immune cells, especially natural killer cells and T cells,


through direct or indirect mechanisms. * Lactic acid A metabolite that has the capacity to suppress the functions of immune mediators when produced as an aberrant by-product of cancer


metabolism. * Tumour immune evasion Cancers employ various suppressive mechanisms to resist the development of antitumour immune activities and, thus, evade immune-mediated attack and


elimination. * Immune checkpoint inhibitors Agents that inhibit the interactions between immune checkpoint molecules on tumour cells and their receptors on immune cells, releasing the


inhibitory signal and enabling tumour-directed immune responses. * MHC ligands Peptides that are presented in the antigen presentation groove of major histocompatibility complex (MHC) class


I and class II molecules; this ligand-bound MHC complex is recognized by T cell receptors in a highly specific manner. * Immunologically privileged site Anatomical sites or locations, such


as the brain or eyes, that contain impaired or modified lymphatic drainage and immune surveillance are privileged against immune-response-induced collateral tissue damage. * Autoantibodies


Antibodies that are specific against an individual's own proteins and antigens. * Epithelial–mesenchymal transition A biological process through which epithelial cells lose their


characteristic cell polarity and adhesion properties and acquire a migratory and invasive phenotype similar to that of mesenchymal cells. * Cancer stem cells Cancer cells that are


pluripotent and have self-renewal capacity and, thus, possess stem-cell-like characteristics. * Neuroendocrine tumours Tumours that arise from neuroendocrine cells, which are specialized


cells that often produce hormones under neuronal control. * T cell anergy A state in which T cells remain tolerant or dysfunctional. * Immunogenic cell death A form of cell death that is


accompanied by the expression of molecules that lead to the activation of dendritic cells, which subsequently prime T cells. * Tumour-associated antigens These antigens are often


preferentially expressed on tumours but can also be found in normal tissues, whereas tumour-specific antigens are usually expressed specifically in tumours, often arising from mutations or


virally encoded oncoproteins. * Autophagy A 'self-eating' homeostatic cellular process in which damaged organelles are digested under normal physiological situations and in which,


during stress conditions, macromolecules, such as nucleic acids and amino acids, are recycled. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lee, P.,


Gujar, S. Potentiating prostate cancer immunotherapy with oncolytic viruses. _Nat Rev Urol_ 15, 235–250 (2018). https://doi.org/10.1038/nrurol.2018.10 Download citation * Published: 13


February 2018 * Issue Date: April 2018 * DOI: https://doi.org/10.1038/nrurol.2018.10 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative