Trim3, a tumor suppressor linked to regulation of p21waf1/cip1

Trim3, a tumor suppressor linked to regulation of p21waf1/cip1

Play all audios:

Loading...

ABSTRACT The TRIM family of genes is largely studied because of their roles in development, differentiation and host cell antiviral defenses; however, roles in cancer biology are emerging.


Loss of heterozygosity of the TRIM3 locus in ∼20% of human glioblastomas raised the possibility that this NHL-domain containing member of the TRIM gene family might be a mammalian tumor


suppressor. Consistent with this, reducing TRIM3 expression increased the incidence of and accelerated the development of platelet-derived growth factor -induced glioma in mice. Furthermore,


TRIM3 can bind to the cdk inhibitor p21WAF1/CIP1. Thus, we conclude that TRIM3 is a tumor suppressor mapping to chromosome 11p15.5 and that it might block tumor growth by sequestering p21


and preventing it from facilitating the accumulation of cyclin D1–cdk4. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 50 print issues and online access $259.00 per year only $5.18 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS _TP53_: THE UNLUCKIEST OF GENES? Article Open access 23 October


2024 DEPTOR IS A DIRECT P53 TARGET THAT SUPPRESSES CELL GROWTH AND CHEMOSENSITIVITY Article Open access 12 November 2020 GFI1 UPREGULATES C-MYC EXPRESSION AND PROMOTES C-MYC-DRIVEN CELL


PROLIFERATION Article Open access 13 October 2020 REFERENCES * Huse JT, Holland EC . Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. _Nat


Rev Cancer_ 2010; 10: 319–331. Article  CAS  Google Scholar  * Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A _et al_. Glioblastoma subclasses can be defined by activity


among signal transduction pathways and associated genomic alterations. _PloS one_ 2009; 4: e7752. Article  Google Scholar  * Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P _et


al_. An integrated genomic analysis of human glioblastoma multiforme. _Science_ 2008; 321: 1807–1812. Article  CAS  Google Scholar  * Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y,


Wilkerson MD _et al_. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. _Cancer cell_ 2010;


17: 98–110. Article  CAS  Google Scholar  * Vitucci M, Hayes DN, Miller CR . Gene expression profiling of gliomas: merging genomic and histopathological classification for personalised


therapy. _Br J Cancer_ 2011; 104: 545–553. Article  CAS  Google Scholar  * Barrett LE, Granot Z, Coker C, Iavarone A, Hambardzumyan D, Holland EC _et al_. Self-renewal does not predict tumor


growth potential in mouse models of high-grade glioma. _Cancer cell_ 2012; 21: 11–24. Article  CAS  Google Scholar  * Chen J, McKay RM, Parada LF . Malignant glioma: lessons from genomics,


mouse models, and stem cells. _Cell_ 2012; 149: 36–47. Article  CAS  Google Scholar  * Boulay JL, Stiefel U, Taylor E, Dolder B, Merlo A, Hirth F . Loss of heterozygosity of TRIM3 in


malignant gliomas. _BMC cancer_ 2009; 9: 71. Article  Google Scholar  * Nisole S, Stoye JP, Saib A . TRIM family proteins: retroviral restriction and antiviral defence. _Nat Rev Microbiol_


2005; 3: 799–808. Article  CAS  Google Scholar  * Hatakeyama S . TRIM proteins and cancer. _Nat Rev Cancer_ 2011; 11: 792–804. Article  CAS  Google Scholar  * Wulczyn FG, Cuevas E, Franzoni


E, Rybak A . MiRNA need a TRIM regulation of miRNA activity by Trim-NHL proteins. _Adv Exp Med Biol_ 2010; 700: 85–105. Article  CAS  Google Scholar  * Reichert H . _Drosophila_ neural stem


cells: cell cycle control of self-renewal, differentiation, and termination in brain development. _Results Probl Cell Differ_ 2011; 53: 529–546. Article  CAS  Google Scholar  * Arama E,


Dickman D, Kimchie Z, Shearn A, Lev Z . Mutations in the beta-propeller domain of the _Drosophila_ brain tumor (brat) protein induce neoplasm in the larval brain. _Oncogene_ 2000; 19:


3706–3716. Article  CAS  Google Scholar  * Betschinger J, Mechtler K, Knoblich JA . Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem


cells. _Cell_ 2006; 124: 1241–1253. Article  CAS  Google Scholar  * Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA . The tumor suppressors Brat and Numb regulate


transit-amplifying neuroblast lineages in Drosophila. _Dev Cell_ 2008; 14: 535–546. Article  CAS  Google Scholar  * Lee CY, Wilkinson BD, Siegrist SE, Wharton RP, Doe CQ . Brat is a Miranda


cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. _Dev Cell_ 2006; 10: 441–449. Article  CAS  Google Scholar  * Januschke J, Gonzalez C . Drosophila


asymmetric division, polarity and cancer. _Oncogene_ 2008; 27: 6994–7002. Article  CAS  Google Scholar  * Bello B, Reichert H, Hirth F . The brain tumor gene negatively regulates neural


progenitor cell proliferation in the larval central brain of Drosophila. _Development_ 2006; 133: 2639–2648. Article  CAS  Google Scholar  * Choksi SP, Southall TD, Bossing T, Edoff K, de


Wit E, Fischer BE _et al_. Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. _Dev Cell_ 2006; 11: 775–789. Article  CAS  Google


Scholar  * Herranz H, Hong X, Perez L, Ferreira A, Olivieri D, Cohen SM _et al_. The miRNA machinery targets Mei-P26 and regulates Myc protein levels in the Drosophila wing. _EMBO J_ 2010;


29: 1688–1698. Article  CAS  Google Scholar  * Schwamborn JC, Berezikov E, Knoblich JA . The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural


progenitors. _Cell_ 2009; 136: 913–925. Article  CAS  Google Scholar  * Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW _et al_. PTEN/PI3K/Akt pathway regulates the


side population phenotype and ABCG2 activity in glioma tumor stem-like cells. _Cell stem cell_ 2009; 4: 226–235. Article  CAS  Google Scholar  * Charles N, Ozawa T, Squatrito M, Bleau AM,


Brennan CW, Hambardzumyan D _et al_. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. _Cell stem cell_ 2010; 6: 141–152.


Article  CAS  Google Scholar  * Charles NA, Holland EC . TRRAP and the maintenance of stemness in gliomas. _Cell stem cell_ 2010; 6: 6–7. Article  CAS  Google Scholar  * Dai C, Celestino JC,


Okada Y, Louis DN, Fuller GN, Holland EC . PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and


astrocytes _in vivo_. _Genes Dev_ 2001; 15: 1913–1925. Article  CAS  Google Scholar  * Katz AM, Amankulor NM, Pitter K, Helmy K, Squatrito M, Holland EC . Astrocyte-specific expression


patterns associated with the PDGF-induced glioma microenvironment. _PloS one_ 2012; 7: e32453. Article  CAS  Google Scholar  * Shih AH, Dai C, Hu X, Rosenblum MK, Koutcher JA, Holland EC .


Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. _Cancer Res_ 2004; 64: 4783–4789. Article  CAS  Google Scholar  * Ciznadija D, Liu Y, Pyonteck SM, Holland


EC, Koff A . Cyclin D1 and cdk4 mediate development of neurologically destructive oligodendroglioma. _Cancer Res_ 2011; 71: 6174–6183. Article  CAS  Google Scholar  * Hukkelhoven E, Liu Y,


Yeh N, Ciznadija D, Blain SW, Koff A . Tyrosine phosphorylation of p21 facilitates the development of proneural glioma. _J Biol Chem_ 2012; 287: 38523–38530. Article  CAS  Google Scholar  *


Liu Y, Yeh N, Zhu XH, Leversha M, Cordon-Cardo C, Ghossein R _et al_. Somatic cell type specific gene transfer reveals a tumor-promoting function for p21(Waf1/Cip1). _EMBO J_ 2007; 26:


4683–4693. Article  CAS  Google Scholar  * See WL, Heinberg AR, Holland EC, Resh MD . p27 deficiency is associated with migration defects in PDGF-expressing gliomas _in vivo_. _Cell Cycle_


2010; 9: 1562–1567. Article  CAS  Google Scholar  * See WL, Miller JP, Squatrito M, Holland E, Resh MD, Koff A . Defective DNA double-strand break repair underlies enhanced tumorigenesis and


chromosomal instability in p27-deficient mice with growth factor-induced oligodendrogliomas. _Oncogene_ 2010; 29: 1720–1731. Article  CAS  Google Scholar  * Cerami E, Demir E, Schultz N,


Taylor BS, Sander C . Automated network analysis identifies core pathways in glioblastoma. _PloS one_ 2010; 5: e8918. Article  Google Scholar  * Cheung CC, Yang C, Berger T, Zaugg K, Reilly


P, Elia AJ _et al_. Identification of BERP (brain-expressed RING finger protein) as a p53 target gene that modulates seizure susceptibility through interacting with GABA(A) receptors. _Proc


Natl Acad Sci USA_ 2010; 107: 11883–11888. Article  CAS  Google Scholar  * Aktas H, Cai H, Cooper GM . Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin


D1 and the Cdk inhibitor p27KIP1. _Mol Cell Biol_ 1997; 17: 3850–3857. Article  CAS  Google Scholar  * Yan Q, Sun W, Kujala P, Lotfi Y, Vida TA, Bean AJ . CART: an Hrs/actinin-4/BERP/myosin


V protein complex required for efficient receptor recycling. _Mol Biol Cell_ 2005; 16: 2470–2482. Article  CAS  Google Scholar  * Abbas T, Dutta A . p21 in cancer: intricate networks and


multiple activities. _Nat Rev Cancer_ 2009; 9: 400–414. Article  CAS  Google Scholar  * Broxmeyer HE . Enhancing engraftment of cord blood cells via insight into the biology of


stem/progenitor cell function. _Ann N Y Acad Sci_ 2012; 1266: 151–160. Article  CAS  Google Scholar  * Gao H, Ouyang X, Banach-Petrosky W, Borowsky AD, Lin Y, Kim M _et al_. A critical role


for p27kip1 gene dosage in a mouse model of prostate carcinogenesis. _Proc Natl Acad Sci USA_ 2004; 101: 17204–17209. Article  CAS  Google Scholar  * Lee J, Kim SS . The function of p27 KIP1


during tumor development. _Exp Mol Med_ 2009; 41: 765–771. Article  CAS  Google Scholar  * Muraoka RS, Lenferink AE, Law B, Hamilton E, Brantley DM, Roebuck LR _et al_. ErbB2/Neu-induced,


cyclin D1-dependent transformation is accelerated in p27-haploinsufficient mammary epithelial cells but impaired in p27-null cells. _Mol Cell Biol_ 2002; 22: 2204–2219. Article  CAS  Google


Scholar  * Viglietto G, Motti ML, Fusco A . Understanding p27(kip1) deregulation in cancer: down-regulation or mislocalization. _Cell Cycle_ 2002; 1: 394–400. Article  CAS  Google Scholar  *


Aaltomaa S, Lipponen P, Eskelinen M, Ala-Opas M, Kosma VM . Prognostic value and expression of p21(waf1/cip1) protein in prostate cancer. _Prostate_ 1999; 39: 8–15. Article  CAS  Google


Scholar  * Bae DS, Cho SB, Kim YJ, Whang JD, Song SY, Park CS _et al_. Aberrant expression of cyclin D1 is associated with poor prognosis in early stage cervical cancer of the uterus.


_Gynecol Oncol_ 2001; 81: 341–347. Article  CAS  Google Scholar  * Baretton GB, Klenk U, Diebold J, Schmeller N, Lohrs U . Proliferation- and apoptosis-associated factors in advanced


prostatic carcinomas before and after androgen deprivation therapy: prognostic significance of p21/WAF1/CIP1 expression. _Br J Cancer_ 1999; 80: 546–555. Article  CAS  Google Scholar  *


Ceccarelli C, Santini D, Chieco P, Lanciotti C, Taffurelli M, Paladini G _et al_. Quantitative p21(waf-1)/p53 immunohistochemical analysis defines groups of primary invasive breast


carcinomas with different prognostic indicators. _Int J Cancer_ 2001; 95: 128–134. Article  CAS  Google Scholar  * Cheung TH, Lo KW, Yu MM, Yim SF, Poon CS, Chung TK _et al_. Aberrant


expression of p21(WAF1/CIP1) and p27(KIP1) in cervical carcinoma. _Cancer Lett_ 2001; 172: 93–98. Article  CAS  Google Scholar  * Ferrandina G, Stoler A, Fagotti A, Fanfani F, Sacco R, De


Pasqua A _et al_. p21WAF1/CIP1 protein expression in primary ovarian cancer. _Int J Oncol_ 2000; 17: 1231–1235. CAS  PubMed  Google Scholar  * Sarbia M, Gabbert HE . Modern pathology:


prognostic parameters in squamous cell carcinoma of the esophagus. _Recent Results Cancer Res_ 2000; 155: 15–27. Article  CAS  Google Scholar  * Winters ZE, Leek RD, Bradburn MJ, Norbury CJ,


Harris AL . Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/ neu in breast cancer and is an independent predictor of prognosis. _Breast Cancer Res_ 2003; 5: R242–R249. Article


  CAS  Google Scholar  * James MK, Ray A, Leznova D, Blain SW . Differential modification of p27Kip1 controls its cyclin D-cdk4 inhibitory activity. _Mol Cell Biol_ 2008; 28: 498–510.


Article  CAS  Google Scholar  * Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L _et al_. The tripartite motif family identifies cell compartments. _EMBO J_ 2001; 20: 2140–2151.


Article  CAS  Google Scholar  * Xu XL, Fang Y, Lee TC, Forrest D, Gregory-Evans C, Almeida D _et al_. Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific


MDM2 signaling. _Cell_ 2009; 137: 1018–1031. Article  CAS  Google Scholar  * Yeh N, Miller JP, Gaur T, Capellini TD, Nikolich-Zugich J, de la Hoz C _et al_. Cooperation between p27 and p107


during endochondral ossification suggests a genetic pathway controlled by p27 and p130. _Mol Cell Biol_ 2007; 27: 5161–5171. Article  CAS  Google Scholar  * Taylor BS, Barretina J, Socci ND,


Decarolis P, Ladanyi M, Meyerson M _et al_. Functional copy-number alterations in cancer. _PloS one_ 2008; 3: e3179. Article  Google Scholar  Download references ACKNOWLEDGEMENTS We thank


Marta Kovatcheva and other members of the Koff lab, Pengbo Zhou (Cornell University Medical School), John Petrini (MSKCC) and Hakim Djaballah (MSKCC) for comments on this manuscript, and Max


Chan Liu (The Browning School) for his assistance with Id1 staining and image acquisition. This work was supported by the Memorial Sloan-Kettering Cancer Center Core Grant (P30CA08748) and


grants to Andrew Koff (CA89563). Funding was also provided by the Brain Tumor Center (YL, DC) and the Golfers Against Cancer Foundation (AK). _Author contributions:_ YL carried out the


experiments identifying TRIM3 and measuring the effect of manipulating TRIM3 on p21 in cells. AMP, TO, NPG, CB and ECH analyzed TRIM3 expression in human tumors and human tumor extract. RR,


NY, DC, EH, HEB and PT provided experimental assistance or reagents throughout the course of this work. AK directed the research. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Programs in


Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA Y Liu, R Raheja, N Yeh, D Ciznadija, E Hukkelhoven, H Erdjument-Bromage, P Tempst & A Koff * Human Oncology


and Pathogenesis, New York, NY, USA A M Pedraza & C Brennan * Cancer Biology, New York, NY, USA T Ozawa & E C Holland * Computational Biology. Memorial Sloan Kettering Cancer Center,


New York, NY, USA N P Gauthier Authors * Y Liu View author publications You can also search for this author inPubMed Google Scholar * R Raheja View author publications You can also search


for this author inPubMed Google Scholar * N Yeh View author publications You can also search for this author inPubMed Google Scholar * D Ciznadija View author publications You can also


search for this author inPubMed Google Scholar * A M Pedraza View author publications You can also search for this author inPubMed Google Scholar * T Ozawa View author publications You can


also search for this author inPubMed Google Scholar * E Hukkelhoven View author publications You can also search for this author inPubMed Google Scholar * H Erdjument-Bromage View author


publications You can also search for this author inPubMed Google Scholar * P Tempst View author publications You can also search for this author inPubMed Google Scholar * N P Gauthier View


author publications You can also search for this author inPubMed Google Scholar * C Brennan View author publications You can also search for this author inPubMed Google Scholar * E C Holland


View author publications You can also search for this author inPubMed Google Scholar * A Koff View author publications You can also search for this author inPubMed Google Scholar


CORRESPONDING AUTHOR Correspondence to A Koff. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no conflict of interest. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE Liu, Y., Raheja, R., Yeh, N. _et al._ TRIM3, a tumor suppressor linked to regulation of p21Waf1/Cip1. _Oncogene_ 33, 308–315 (2014).


https://doi.org/10.1038/onc.2012.596 Download citation * Received: 07 August 2012 * Revised: 01 November 2012 * Accepted: 04 November 2012 * Published: 14 January 2013 * Issue Date: 16


January 2014 * DOI: https://doi.org/10.1038/onc.2012.596 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable


link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * glioma * p21 * PDGF * stem/progenitor *


TRIM3