Play all audios:
ABSTRACT Defective intracellular antioxidant enzyme production (IAP) has been demonstrated in adults with diabetic nephropathy. To evaluate the effects on IAP of vitamin E administration in
adolescents with type 1 diabetes and early signs of microangiopathy, 12 adolescents (aged 11–21 y; diabetes duration 10–18) were studied. Eight had retinopathy [background (four),
preproliferative (three), or proliferative (one)], four had persistent microalbuminuria, and seven had both. Skin fibroblasts were obtained by biopsies and cultured in Dulbecco's
modified Eagle's medium. CuZn superoxide dismutase (SOD), MnSOD, catalase (CAT), and glutathione-peroxidase (GPX) activity and mRNA expression were measured before and after 3 mo of
synthetic vitamin E supplementation (600 mg twice daily); on both occasions, IAP was evaluated at different _ex vivo_ glucose concentrations (5 and 22 mM). Ten adolescents with type 1
diabetes (aged 12–20 y) without angiopathy and eight healthy volunteers (aged 15–22 y) participated as control subjects. Vitamin E serum levels were measured throughout the study. In normal
glucose concentrations, CuZnSOD, MnSOD, CAT, and GPX activity and mRNA expression were not different among the groups. In high glucose, CuZnSOD activity and mRNA increased similarly in all
groups [angiopathics: 0.96 ± 0.30 U/mg protein; 9.9 ± 3.2 mRNA/glyceraldehyde-3-phosphate dehydrogenase). CAT and GPX activity and mRNA did not increase in high glucose only in adolescents
with angiopathy (0.35 ± 0.09; 4.2 ± 0.1 and 0.52 ± 0.14; 2.4 ± 0.9, respectively). MnSOD did not change in any group. Vitamin E supplementation had no effect on any enzymatic activity and
mRNA in both normal and hyperglycemic conditions. Adolescents with early signs of diabetic angiopathy have defective IAP and activity, which are not modified by vitamin E. SIMILAR CONTENT
BEING VIEWED BY OTHERS CARNITINE/ORGANIC CATION TRANSPORTER 1 PRECIPITATES THE PROGRESSION OF INTERSTITIAL FIBROSIS THROUGH OXIDATIVE STRESS IN DIABETIC NEPHROPATHY IN MICE Article Open
access 27 April 2021 THE NEPHROPROTECTIVE ACTION OF _PASSIFLORA EDULIS_ IN STREPTOZOTOCIN-INDUCED DIABETES Article Open access 20 October 2022 SYNERGISM OF MECHANISMS UNDERLYING EARLY-STAGE
CHANGES IN RETINA FUNCTION IN MALE HYPERGLYCEMIC _DB/DB_ MICE IN THE ABSENCE AND PRESENCE OF CHEMICALLY-INDUCED DYSLIPIDEMIA Article Open access 13 October 2023 MAIN It is widely known that
oxidative stress may play a relevant role in the pathogenesis of diabetic vascular complications (1–3). Increased production of reactive oxygen metabolites and species is a direct
consequence of high glucose concentrations (3,4). Hyperglycemia is able to increase the levels of oxygen radical scavenging enzymes in cultured endothelial cells (5) and in the kidney of
rats with diabetes induced by streptozotocin (6,7). Finally, hyperglycemia can induce formation of free radicals and activation of oxidative stress through nonenzymatic glycation of proteins
(8,9), auto-oxidative glycation (10), activation of protein kinase C (11), and increased polyol pathway (12). In normal individuals, exposure to high glucose concentrations induces an
antioxidant defensive mechanism in skin fibroblasts; in adults with type 1 diabetes with macroalbuminuria and overt nephropathy, this defensive mechanism is absent (13). Recently, we
demonstrated that fluorescent products of lipid peroxidation and malondialdehyde both are increased in adolescents and young adults with early nephropathy (14). Concurrently, vitamin E
levels were markedly reduced in these individuals. In the present study we evaluated intracellular antioxidant enzyme production in skin fibroblasts of young patients with persistent
microalbuminuria and early diabetic nephropathy; we also investigated whether administration of vitamin E (600 mg twice daily for 3 mo) is able to modify this cellular antioxidant mechanism.
METHODS PARTICIPANTS All patients gave their informed consent to the study, which was approved by the Ethics Committee of the School of Medicine, University of Chieti, Italy. Twelve
adolescents with type 1 diabetes agreed to participate; their age ranged from 11 to 21 y, and duration of diabetes ranged from 10 to 18 y. Eight of these patients had retinopathy [background
(four), preproliferative (three), or proliferative (one)], four had persistent microalbuminuria [defined as an albumin excretion rate >50 μg/min in two of three overnight urinary
collections), and seven had both. Skin fibroblasts obtained by skin biopsies were taken by excision under local anesthetic from the anterior surface of the forearm and cultured in
Dulbecco's modified Eagle's medium (DMEM). CuZn superoxide dismutase (SOD), MnSOD, catalase (CAT), and glutathione-peroxidase (GPX) activity and mRNA expression were measured
before and after 3 mo of vitamin E supplementation (600 mg twice daily); on both occasions, antioxidant enzyme activity was evaluated _ex vivo_ at different glucose concentrations (5 and 22
mM). Ten adolescents (aged 12–20 y) without diabetic angiopathy and eight healthy volunteers (aged 15–22 y) participated in the study as control groups. Clinical characteristics of
participants enrolled in the study are summarized in Table 1. Arterial blood pressure was measured in all patients and control subjects following the recommendations of the American Heart
Association and the American Academy of Pediatrics (15,16). Glomerular filtration rate (GFR) was measured as previously described (17). Vitamin E serum levels were evaluated every 2 wk and
measured as previously described (as α-tocopherol by HPLC) (18). CELL CULTURE Fibroblasts were cultured in DMEM (ICN Biochemicals, Thame, UK) supplemented with 20% FCS (Life Technologies,
Paisley, Scotland, UK), 2 mM glutamine (Sigma Chemical Co., Dorset, UK), 50 U/mL of penicillin (Life Technologies), and 50 μg/mL of streptomycin (Life Technologies). At the fourth passage,
cells were cooled gradually and then frozen at −180°C in 10% DMSO in DMEM until used for the experiments. It is well recognized that even long-term cryopreservation does not affect
fibroblasts' functional activities (19). EXPERIMENTS All experiments were conducted between the sixth and eighth passages, using the same batches of medium and FCS. The purchased medium
contained 5 mM of glucose, to which mannitol or glucose was added to obtain iso-osmolal experimental media; in other words, mannitol was added to the medium to ensure that the high glucose
culture media had the same osmolarity. Cells were cultured in iso-osmolal normal (5 mM) _ex vivo_ glucose and in high _ex vivo_ glucose concentrations (22 mM). Each sample of cells was grown
for 12 wk, with renewal of the medium every second day. For each culture condition (normal or high glucose), 12 80-cm2 plastic tissue culture flasks were used. Three flasks were used for
RNA extraction, three flasks for enzyme activity measurement, three flasks for the evaluation of cell membrane lipid peroxidation, and three flasks to determine cell number. CELL COUNTING
The medium was aspirated, and the monolayers were washed twice with PBS and detached by treatment with 2.5 mL trypsin-EDTA (Life Technologies) for 4–6 min at 37°C. Trypsin activity was
stopped by the addition of 7 mL of medium that contained serum, after verification under the microscope of the complete detachment of the cells. The cell suspension was passed several times
through a fine Pasteur pipette to disaggregate cell clumps, and 1 mL was counted in an electronic Coulter counter (ZBI model; Coulter Electronics, Beds, UK) equipped with a 100-μm aperture.
ANTIOXIDANT ENZYME ACTIVITY CAT AND GPX ACTIVITIES. The monolayers were rinsed twice with ice-cold PBS, and the cells were harvested with a sterile rubber cell scraper. The cells were
sedimented for 4 min at 1600 × _g_ and processed either for enzyme/protein or for mRNA analyses. For enzyme/protein lysates, cells were resuspended in 50 mM of potassium-phosphate buffer
that contained 0.5% Triton X-100 and sonicated (in an ice-water bath) for two 30-s bursts on a Branson sonicator B15 (position 2, continuous setting; Branson Ultrasonic, Danbury, CT) with a
30-s cooling interval. Total protein concentration was determined according to the procedure of Bradford (20). For CAT and GPX activities, sonicates were first spun 5 min at 800 × _g_ (4°C).
The supernatants were assayed according to the procedure of Clairborne (21) for CAT activity and Gunzler and Flohè (22) for GPX activity. SOD MEASUREMENTS. Cells were suspended in 100 mM of
triethanolamine-diethanolamine buffer and homogenized with a Teflon glass Dounce homogenizer. The homogenate was centrifuged at 105,000 × _g_ for 1 h (4°C), and the supernatant was passed
through a small Sephadex G25 (coarse) column to remove low-molecular-weight substances that interfere with the enzyme assay (23). An aliquot of the eluate was applied onto a 5.5%
polyacrylamide gel to localize SOD activity (24), with the exception that no tetramethyl-ethylenediamine was used for staining. MNSOD ACTIVITY. MnSOD activity was determined in mitochondrial
fractions that were prepared by differential centrifugation, as previously described (25). Mitochondria were disrupted by freezing-thawing in a high ionic strength buffer [0.25 mM of
sucrose, 0.12 M of KCl, and 10 mM of Tris-HCL (pH 7.4)]. Mitochondrial membranes were removed by sedimentation at 105,000 × _g_ for 1 h (4°C), and enzyme activity was measured in the
supernatant. NORTHERN BLOT ANALYSIS. Total RNA was prepared according to the procedure of Chirgwin _et al._ (26). Briefly, 10 μg of total RNA was electrophoresed on a 1.4%
agarose-formaldehyde gel and then transferred to gene screen membranes. The filters were prehybridized in 50 mM of Tris-HCl (pH 7.5), 0.1% sodium pyrophosphate, 0.2% Ficoll, 5 mM of EDTA, 1%
SDS, 2.2% poly(vinylpyrrolidone), 50% formamide, 0.2% BSA, 1× standard sodium citrate (SSC), and 150 μg/mL of denatured salmon sperm DNA at 65°C for 6 h. Blots were hybridized with
32P-labeled probes for human CuZnSOD (27), human CAT (27), human MnSOD (28), and bovine GPX (29), to a specific activity of 1 × 106 cpm/mL in hybridization fluid at 65°C overnight. The
filters were washed at 65°C twice for 15 min with 2× SSC-0.1% and twice for 15 min with 0.1× SSC-0.1% SDS and then subjected to autoradiography using an intensifying screen at −85°C.
Densitometry was performed on an LKB laser scanning densitometer. Hybridization to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA was used as internal control to correct for loading
inequalities. The filters were probed for the four antioxidant enzymes separately, and GAPDH was also used separately. The results were normalized against an ideal reference value obtained
from healthy individuals at 5 mmol glucose/L _ex vivo_. LIPID PEROXIDATION. Cells were trypsinized and centrifuged at 250 × _g_ for 10 min at 4°C. Cell pellets were resuspended in 1 mL of
cold PBS for assay of thiobarbituric acid–reactive substances and conjugated dienes, as previously described (30). STATISTICAL ANALYSIS ANOVA was used to test differences among the three
groups. Paired _t_ test was used to compare, for each group of fibroblasts, the results under conditions of normal _versus_ high _ex vivo_ glucose concentration, whereas Fisher least
significant differences test was used to evaluate the difference among the three different groups in either normal or high glucose condition. A _p_ < 0.05 was considered significant. Data
are expressed as means ± SD or as median and range. RESULTS CUZNSOD. In normal _ex vivo_ glucose concentration, CuZnSOD activity and mRNA expression were not different among the four
groups. In high _ex vivo_ glucose conditions, CuZnSOD mRNA and activity increased similarly in all groups (_p_ = NS by ANOVA). MNSOD. In normal _ex vivo_ glucose concentration, MnSOD
activity and mRNA expression were not different among the four groups. In high _ex vivo_ glucose conditions, MnSOD did not change in any group. CAT AND GPX ACTIVITY. In normal _ex vivo_
glucose concentration, CAT and GPX activity and mRNA expression were not different among the four groups. In high _ex vivo_ glucose conditions, CAT and GPX mRNA (_p_ < 0.001) and activity
(_p_ < 0.001) were significantly different between the groups by ANOVA (Figs. 1 and 2). Comparing the groups in high glucose conditions, CAT and GPX mRNA expression and CAT and GPX
protein activity were significantly higher in control subjects and diabetic subjects without angiopathy _versus_ angiopathic diabetic subjects, with no difference between adolescents without
diabetic angiopathy and control subjects (Figs. 1 and 2). LIPID PEROXIDATION. High _ex vivo_ glucose concentrations significantly increased lipid peroxidation in every group of cells.
Higher levels were found in cells of adolescents and young adults with diabetic angiopathy (_p_ < 0.001). VITAMIN E SUPPLEMENTATION. Vitamin E serum levels increased 2–3 wk after the
administration and remained high throughout the study. No adverse event was evident in any patient. Vitamin E supplementation (600 mg twice daily for 3 mo) did not change significantly any
of the enzymatic activity in both normal and hyperglycemic conditions (Table 2). With regard to mRNA expression, vitamin E was not able to modify the mRNA/GAPDH ratio for CuZnSOD at 5 and 22
mM _ex vivo_ glucose concentrations [diabetics with angiopathy (DA): 4.6 ± 1.6, 10.1 ± 2.9; diabetics without angiopathy (NDA): 4.9 ± 1.6, 10.3 ± 3.1], for MnSOD (DA: 0.9 ± 0.4, 1.1 ± 0.2;
NDA: 0.9 ± 0.5, 1.2 ± 0.4), for catalase (DA: 4.3 ± 1.3, 4.5 ± 1.4; NDA: 4.4 ± 1.5, 8.4 ± 2.7), and for GPX (DA: 2.3 ± 1.0, 2.5 ± 0.9; NDA: 2.4 ± 1.1, 4.3 ± 1.1). DISCUSSION The present
study indicates that exposure to high _ex vivo_ glucose concentrations induces an increase in mRNA levels and biologic activity of CuZnSOD, CAT, and GPX in fibroblasts from control subjects
and adolescents without diabetic angiopathy; by contrast, in fibroblasts from diabetic adolescents with angiopathy, only CuZnSOD is increased. This finding may have important consequences
concerning glucose-induced oxidative stress damage to the cell; in fact, glucose-induced oxidative stress has been demonstrated to damage several cells, including endothelial cells (2,5).
Both CuZnSOD, which is located primarily in the cytoplasm, and MnSOD, a structurally distinct protein located in the mitochondria, catalyze the reaction O2− + O2− + 2H+ = O2 + H2O2 (28).
H2O2 is converted to H2O in peroxisomes by the antioxidant enzyme CAT and in the cytoplasm by GPX (31). These antioxidant enzymes protect the cell from oxidative stress, but the threshold of
protection can vary dramatically as a function of their activity and balance (32). CAT and GPX are far more efficient than CuZnSOD in protecting fibroblasts against oxidative stress
(32,33). However, in several instances, cells with increased levels of CuZnSOD are hypersensitive to oxidative stress rather than protected from it (32). This happens because CuZnSOD
increases the formation of H2O2, which, if not efficiently converted to H2O by an adequate level of CAT and GPX, may be detrimental to the cell (32). It is therefore not surprising that
generally an increase in CuZnSOD is accompanied by a concomitant increase in CAT and GPX (32). In the presence of high _ex vivo_ glucose concentrations, we confirmed this phenomenon in the
fibroblasts derived from control subjects and diabetic young patients without microvascular complications. In the fibroblasts of young patients with childhood-onset diabetes and angiopathy,
however, high glucose induced a significant increase only in CuZnSOD but no change in the activity of CAT and GPX. These results are largely confirmatory of previous results obtained in
adult diabetic patients with macroproteinuria and overt nephropathy (13) and suggest that cells of youths with type 1 diabetes and incipient angiopathy are not able to adjust their
antioxidant defenses when high _ex vivo_ glucose concentration–induced oxidative stress is produced, so they are more susceptible to oxidative stress. Alternatively, one could argue that in
the absence of the ability to increase CAT and GPX, the cells may “decide” not to enhance CuZnSOD and MnSOD, in that the mechanism could simply be switched-off. However, this event should be
operative also in individuals with diabetes without angiopathy and in control subjects. High glucose concentrations _in vitro_ and hyperglycemia _in vivo_ are well-known stimuli for the
production of free radicals and the generation of oxidative stress, with a consequent increase in the expression and activity of antioxidant enzymes (1–3), which act as a defense system
against cell damage (33). Hyperglycemia is also a necessary factor for the development of the glomerular lesions of diabetes. The observation that, despite hyperglycemia, only a portion of
the population of patients with type 1 diabetes will progress to diabetic microangiopathy indicates that there is individual diversity in cell response to high _ex vivo_ glucose
concentrations. It is therefore of great relevance that a disturbance in the mechanisms of protection from oxidative stress was found only in the cells of adolescents with angiopathy. By
contrast, in adolescents and young adults with long-term type 1 diabetes without angiopathy, a group that seems to be protected from vascular complications, the defense mechanisms against
high glucose–induced oxidative stress were intact or similar to those of nondiabetic individuals. The novel finding of this study is that vitamin E supplementation (600 mg twice daily for 3
mo) was unable to substantially modify the antioxidant enzyme production and activity in young patients with early signs of angiopathy. Contrasting results have been obtained on the effects
of vitamin E on markers of oxidative stress: recently, we were able to demonstrate that administration of vitamin E (at the same dosage used in the present study) was able to reduce plasma
concentrations of MCP-1 (an inflammatory chemokine possibly involved in the pathogenesis of diabetic angiopathy) (14); fluorescent products of lipid peroxidation and malondialdehyde were
also reduced after treatment and vitamin E levels increased. In a double-blinded, placebo-controlled study, high-dose vitamin E supplementation (∼1230 mg/d) was able to normalize retinal
blood flow and creatinine clearance in patients with type 1 diabetes (34). In patients with type 2 diabetes, supplementation with vitamin E (∼550 mg/d) induced a significant reduction of
risk factors for macrovascular complications (35). Even low doses of vitamin E (∼70 mg/d) were able to reduce glutathione and lower lipid peroxidation and HbA1c concentrations in the
erythrocytes of patients with type 1 diabetes (36). At variance, in a recent study, a lower dose of vitamin E (∼270 mg/d) taken orally for 8 wk had no significant effect on oxidatively
induced LDL or DNA damage in patients with type 1 diabetes, but the same dosage regimen did reduce susceptibility to LDL oxidative change in control subjects (37). These studies are
difficult to compare, because they examine patients with type 1 and type 2 diabetes; in some, natural vitamin E is used; in others, synthetic vitamin is used, different doses are given, and
the duration of treatment is also different. These factors must be taken into consideration when comparing studies. Furthermore, clinical trials with vitamin E failed to demonstrate any
beneficial effect on the development of diabetic complications (38). On this matter, it was suggested recently that antioxidant therapy with vitamin E or other antioxidants is limited to
scavenging already-formed antioxidants and therefore may be considered a more “symptomatic” rather than a “causal” treatment for vascular oxidative stress (39,40). Some studies have
documented that vitamin E is able to inhibit protein kinase C activation and consequently to induce a beneficial effect on endothelial cell dysfunction and diabetic angiopathy (41,42);
however, the lack of effect of vitamin E in the present study was evident in both youths with diabetes and angiopathy and in those with no signs of diabetic vascular disease. Therefore, at
least at the doses and for the time used in the present study, vitamin E is not effective in modifying the defective intracellular (in skin fibroblasts) antioxidant enzyme production in
young adults with childhood-onset diabetes and signs of incipient retinopathy and nephropathy. CONCLUSION In conclusion, this study confirms that exposure to high _ex vivo_ glucose
concentrations induces an antioxidant defense mechanism in skin fibroblasts of normal young subjects and that a failure of this defensive mechanism is present in fibroblasts obtained from
young patients with childhood-onset diabetes and early signs of diabetic retinopathy and nephropathy. Vitamin E supplementation (at least at the dose of 600 mg twice daily for 3 mo) is
unable to significantly modify these cellular antioxidant mechanisms. Consequently, treatment with these doses of vitamin E should not be used routinely as an adjunct treatment for secondary
prevention of angiopathy in patients with childhood-onset type 1 diabetes. Similar to the Diabetes Control and Complications Trial, researchers need to do a long-term clinical trial with a
large patient population to assess whether vitamin E supplementation (in different doses and for longer periods) may help to lower the incidence of development and progression of
microvascular complications in patients with diabetes (43). ABBREVIATIONS * CAT: catalase * DMEM: Dulbecco's modified Eagle's medium * GAPDH: glyceraldehyde-3-phosphate
dehydrogenase * GPX: glutathione-peroxidase * SOD: superoxide dismutase * SSC: standard sodium citrate REFERENCES * Baynes JW 1991 Role of oxidative stress in development of complications in
diabetes. _Diabetes_ 40: 405–412 Article CAS Google Scholar * Ceriello A, Giugliano D 1997 Oxidative stress and diabetic complications. In: Alberti KGMM, Zimmet P, De Fronzo RA (eds)
_International Textbook of Diabetes Mellitus_. John Wiley & Sons, Chichester, pp 1453–1461 Google Scholar * Baynes JW, Thorpe SR 1996 The role of oxidative stress in diabetic
complications. _Current Opin Endocrinol_ 3: 277–284 Article Google Scholar * Giugliano D, Ceriello A, Paolisso G 1996 Oxidative stress and diabetic vascular complications. _Diabetes Care_
19: 257–267 Article CAS Google Scholar * Ceriello A, dello Russo P, Amstad P, Cerutti P 1996 High glucose induces antioxidant enzymes in human endothelial cell in culture. Evidence
linking hyperglycemia and oxidative stress. _Diabetes_ 45: 471–477 Article CAS Google Scholar * Sechi LA, Ceriello A, Griffin CA, Catena C, Amstad P, Schambelan M, Bartoli E 1997 Renal
antioxidant enzyme mRNA levels are increased in rats with experimental diabetes mellitus. _Diabetologia_ 40: 23–29 Article CAS Google Scholar * Reddi AS, Bollineni JS 1997 Renal cortical
expression of mRNAs for antioxidant enzymes in normal and diabetic rats. _Biochem Biophys Res Commun_ 235: 598–601 Article CAS Google Scholar * Mullarkey CJ, Edelstein D, Brownlee M 1990
Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. _Biochem Biophys Res Commun_ 173: 932–939 Article CAS Google Scholar * Ceriello
A, Quatraro A, Giugliano D 1992 New insight on non-enzymatic glycosylation may lead to therapeutic approaches for the prevention of diabetic complications. _Diabet Med_ 9: 297–299 Article
CAS Google Scholar * Wolff SP, Dean RT 1987 Glucose autooxidation and protein modification. The potential role of “autoxidative glycosylation” in diabetes. _Biochem J_ 245: 243–250 Article
CAS Google Scholar * DeRubertis FR, Craven PA 1994 Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic
glomerulopathy. _Diabetes_ 43: 1–8 Article CAS Google Scholar * Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, van den Enden M, Kilo C, Tilton RG 1993
Hyperglycemic pseudohypoxia and diabetic complications. _Diabetes_ 42: 801–813 Article CAS Google Scholar * Ceriello A, Morocutti A, Mercuri F, Quagliaro L, Moro M, Damante G, Viberti GC
2000 Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. _Diabetes_ 49: 2170–2177 Article CAS Google Scholar * Chiarelli F, Cipollone F,
Mohn A, Marini M, Iezzi A, Tumini S, Fazia M, De Cesare D, Pomilio M, Pierdomenico SD, Cuccurullo F, Mezzetti A 2002 Circulating monocyte chemoattractant protein-1 and early development of
nephropathy in type 1 diabetes. _Diabetes Care_ 25: 1829–1834 Article CAS Google Scholar * Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ,
Oparil S, Wright JT Jr, Roccella EJ National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National
High Blood Pressure Education Program Coordinating Committee 2003 The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood
Pressure: the JNC 7 report. _JAMA_ 289: 2560–2572 * Task Force on Blood Pressure Control in Children; National Heart, Lung, and Blood Institute, Bethesda, Maryland 1987 Report of the Second
Task Force on Blood Pressure Control in Children—1987. _Pediatrics_ 79: 1–26 * Chiarelli F, Cipollone F, Romano F, Tumini S, Costantini F, di Ricco L, Pomilio M, Pierdomenico SD, Marini M,
Cuccurullo F, Mezzetti A 2000 Increased circulating nitric oxide in young patients with type 1 diabetes and persistent microalbuminuria: relation to glomerular hyperfiltration. _Diabetes_
49: 1258–1263 Article CAS Google Scholar * Mezzetti A, Guglielmi MD, Pierdomenico SD, Costantini F, Cipollone F, De Cesare D, Bucciarelli T, Ucchino S, Chiarelli F, Cuccurullo F, Romano F
1999 Increased systemic oxidative stress after elective endarterectomy: relation to vascular healing and remodeling. _Arterioscler Thromb Vasc Biol_ 19: 2659–2665 Article CAS Google
Scholar * Kearney JN 1991 Cryopreservation of cultured skin cells. _Burns_ 17: 380–383 Article CAS Google Scholar * Bradford M 1976 A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding. _Anal Biochem_ 72: 248–254 Article CAS Google Scholar * Clairborne A 1985 Catalase activity. In: Greenwald
R (ed) _Handbook of Methods for Oxygen Radical Research_, CRC Press, Boca Raton, pp 283–284 Google Scholar * Gunzler W, Flohé L 1985 Glutathione peroxidase. In: Greenwald R (ed) _Handbook
of Methods for Oxygen Radical Research_. CRC Press, Boca Raton, pp 285–290 Google Scholar * Paoletti F, Aldinucci D, Mocali A, Caparrini A 1986 A sensitive spectrophotometric method for the
determination of superoxide dismutase activity in tissue extracts. _Anal Biochem_ 154: 536–541 Article CAS Google Scholar * Beauchamp B, Fridovich I 1971 Superoxide dismutase improved
assays and an assay applicable to acrylamide gels. _Anal Biochem_ 44: 276–287 Article CAS Google Scholar * Lemasters JJ, Grunwald R, Emaus RK 1984 Thermodynamic limits to the ATP/site
stoichiometries of oxidative phosphorylation by rat liver mitochondria. _J Biol Chem_ 259: 3058–3063 CAS PubMed Google Scholar * Chirgwin J, Przbyla A, MacDonald RJ, Rutter WJ 1979
Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. _Biochemistry_ 18: 5294–5299 Article CAS Google Scholar * Amstad P, Peskin A, Shah G, Mirault ME,
Moret R, Zbinden I, Cerutti P 1991 The balance between Cu, Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. _Biochemistry_ 30:
9305–9313 Article CAS Google Scholar * Ho YS, Crapo JD 1998 Isolation and characterization of complementary DNAs encoding human manganese-containing superoxide dismutase. _FEBS Lett_ 229:
256–260 Article Google Scholar * Mullenbach GT, Tabrizi A, Irvine BD, Bell GI, Tainer JA, Halliwell RA 1988 cDNAs of three glutathione peroxidases: selenocystine incorporation. In:
Cerutti P, Fridovich I, McCord JM (eds) _Oxy-radicals in Molecular Biology and Pathology_. Alan R. Liss, New York, pp 313–326 Google Scholar * Freeman BA, Young SL, Crapo JD 1983
Liposome-mediated augmentation of superoxide dismutase in endothelial cells presents oxygen injury. _J Biol Chem_ 258: 12534–12542 CAS PubMed Google Scholar * Michiels C, Raes M, Houbion
A, Remacle J 1991 Association of antioxidant systems in the protection of human fibroblasts against oxygen derived free radicals. _Free Radic Res Commun_ 14: 323–334 Article CAS Google
Scholar * Michiels C, Raes M, Toussaint O, Remacle J 1994 Importance of Se-glutathione peroxidase, catalase and Cu/Zn-SOD for cell survival against oxidative stress. _Free Radic Biol Med_
17: 235–248 Article CAS Google Scholar * Beckam JS, Freeman BA 1986 Antioxidant enzymes as mechanic probes of oxygen-dependent toxicity. In: Taylor AE, Matalon S, Ward P (eds) _Physiology
of Oxygen Radicals_. American Physiological Society, Bethesda, pp 39–53 Google Scholar * Bursell SE, Clermont AC, Aiello LP, Aiello LM, Schlossman DK, Feener EP, Laffel L, King GL 1999
High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. _Diabetes Care_ 22: 1245–1251 Article CAS Google Scholar *
Upritchard JE, Sutherland WH, Mann JI 2000 Effect of supplementation with tomato juice, vitamin E, and vitamin C on LDL oxidation and products of inflammation activity in type 2 diabetes.
_Diabetes Care_ 23: 733–738 Article CAS Google Scholar * Jain SK, McVie R, Smith T 2000 Vitamin E supplementation restores glutathione and malonildialdehyde to normal concentrations in
erythrocytes of type 1 diabetic children. _Diabetes Care_ 23: 1389–1394 Article CAS Google Scholar * Astley S, Langrish-Smith A, Southon S, Sampson M 1999 Vitamin E supplementation and
oxidative damage to DNA and plasma LDL in type 1 diabetes. _Diabetes Care_ 22: 1626–1631 Article CAS Google Scholar * Marchioli R, Schweiger C, Levantesi G, Gavazzi L, Valagussa F 2001
Antioxidant vitamins and prevention of cardiovascular disease: epidemiological and clinical trial data. _Lipids_ 36: S53–S63 Article CAS Google Scholar * Cuzzocrea S, Riley DP, Caputi AP,
Salvemini D 2001 Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. _Pharmacol Rev_ 53: 135–159 CAS PubMed Google Scholar *
Ceriello A 2003 New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. _Diabetes Care_ 26: 1589–1596 Article CAS Google Scholar *
Venugopal SK, Devaraj S, Yang T, Jialal I 2002 Alpha-tocopherol decreases superoxide anion release in human monocytes under hyperglycaemic conditions via inhibition of protein kinase
C-alpha. _Diabetes_ 51: 3049–3054 Article CAS Google Scholar * Abiko T, Abiko A, Clermont AC, Shoelson B, Horio N, Takahashi J, Adamis AP, King GL, Bursell SE 2003 Characterization of
retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. _Diabetes_ 52: 829–837 Article CAS Google Scholar * Jain SK 1999
Should high-dose vitamin E supplementation be recommended to diabetic patients?. _Diabetes Care_ 22: 1242–1244 Article CAS Google Scholar Download references ACKNOWLEDGEMENTS We
acknowledge the editorial assistance provided by Antonella Bascelli. We also thank the Regional Juvenile Diabetes Association (AGDA) and in particular Mrs. Doriana D'Alimonte
D'Attilio for support in childhood diabetes care and research. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Departments of Pediatrics, University of Chieti, Chieti, I-66100, Italy
Francesco Chiarelli, Giuseppe Sabatino, Annalisa Blasetti, Stefano Tumini & Alberto Verrotti * Medicine, University of Chieti, Chieti, I-66100, Italy Francesca Santilli, Francesco
Cipollone & Andrea Mezzetti Authors * Francesco Chiarelli View author publications You can also search for this author inPubMed Google Scholar * Francesca Santilli View author
publications You can also search for this author inPubMed Google Scholar * Giuseppe Sabatino View author publications You can also search for this author inPubMed Google Scholar * Annalisa
Blasetti View author publications You can also search for this author inPubMed Google Scholar * Stefano Tumini View author publications You can also search for this author inPubMed Google
Scholar * Francesco Cipollone View author publications You can also search for this author inPubMed Google Scholar * Andrea Mezzetti View author publications You can also search for this
author inPubMed Google Scholar * Alberto Verrotti View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Francesco
Chiarelli. ADDITIONAL INFORMATION This study was supported by a grant of Italian Ministry of Research (grant COFIN) and a generous donation by Fondazione Carlo Erba, Italy. RIGHTS AND
PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Chiarelli, F., Santilli, F., Sabatino, G. _et al._ Effects of Vitamin E Supplementation on Intracellular Antioxidant
Enzyme Production in Adolescents with Type 1 Diabetes and Early Microangiopathy. _Pediatr Res_ 56, 720–725 (2004). https://doi.org/10.1203/01.PDR.0000141990.12375.13 Download citation *
Received: 19 August 2003 * Accepted: 19 March 2004 * Issue Date: 01 November 2004 * DOI: https://doi.org/10.1203/01.PDR.0000141990.12375.13 SHARE THIS ARTICLE Anyone you share the following
link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature
SharedIt content-sharing initiative