Play all audios:
ABSTRACT Infection is known to impair the growth of developing lungs. It is known that plasma free nitrotyrosine (NT) levels can reach 150 μM during sepsis. Free NT incorporates into
microtubules and impairs cell function. We hypothesize that free NT perturbs the angiogenic activity of pulmonary artery endothelial cells (PAEC) in developing lungs. PAEC from fetal lamb
lungs were incubated with NT (1–100 μM). We examined the effects of NT on tube formation, cell proliferation, apoptosis, and α-tubulin assembly in PAEC. We assessed superoxide anion (O2−)
and NO levels in PAEC during NT exposure. Effects of NT on endothelial NO synthase (eNOS) were examined with respect to eNOS-dimer formation and the association of eNOS chaperone,
heat-shock-protein-90 (hsp90). NT decreased tube formation and increased apoptosis in PAEC. NT also decreased NO levels, increased NOS-dependent O2− generation, and promoted α-tubulin
depolymerization. Although NT increased eNOS homodimer formation, it decreased the hsp90 association with eNOS. Our data suggest that increased NT formation during sepsis may uncouple eNOS
activity and increase oxidative stress. Because NO plays an important role in angiogenesis and vasodilation, these observations suggest a mechanism for the impaired vasodilation and
angiogenesis during sepsis in the developing lung. SIMILAR CONTENT BEING VIEWED BY OTHERS ANGIOPOIETIN-1 PROTECTS AGAINST ENDOTOXIN-INDUCED NEONATAL LUNG INJURY AND ALVEOLAR SIMPLIFICATION
IN MICE Article 12 May 2021 ABERRANT PGC-1Α SIGNALING IN A LAMB MODEL OF PERSISTENT PULMONARY HYPERTENSION OF THE NEWBORN Article 06 June 2024 _IN UTERO_ HYPOXIA ATTENUATED
ACETYLCHOLINE-MEDIATED VASODILATATION VIA CHRM3/P-NOS3 IN FETAL SHEEP MCA: ROLE OF ROS/ERK1/2 Article 18 May 2022 MAIN Infection is known to affect the growth of developing lungs, especially
in premature infants. Premature infants are at an increased risk of bronchopulmonary dysplasia (BPD), which is characterized by impaired alveolar formation and decreased blood vessel
density in the lungs (1). Previous studies have pointed out a significant association between postnatal infection and the development of BPD (2). It is known that during sepsis, increased
levels of superoxide (O2−) and NO increase the formation of peroxynitrite (3), which nitrates tyrosine to form 3-nitrotyrosine (NT). NT can also be formed _via_ NO2, H2O2 with nitrite, or
myeloperoxidase-mediated processes during infection (4). In healthy subjects, plasma concentrations of free NT are generally less than 1 μM (5). During severe sepsis, free NT levels can
increase to 1–150 μM (6). Originally, NT was considered to be merely a footprint for increased nitrosative stress. However, emerging evidence suggests that NT is more than an innocent
biomarker. Free NT impairs vascular endothelial function (7), impairs the response of systemic arteries to angiotensin II (8), and inhibits the proliferation of vascular smooth muscle cells
(9). Free NT also can be incorporated into α-tubulin, _via_ tubulin-tyrosine ligase, to impair cytoskeleton function (10). Whether this incorporation is a reversible or irreversible process
remains unclear. The cytoskeleton plays vital roles in cell proliferation, migration/invasion, and apoptosis, all of which are involved in the process of angiogenesis. Microtubule assembly
can modulate heat-shock-protein-90 (hsp90) and calmodulin, two proteins that are required for coupled endothelial NO synthase (eNOS) activity (11). Chemical reagents that alter the
cytoskeleton are used to kill tumors by either inducing cell apoptosis (12) or inhibiting angiogenesis (13). NT can potentially impair the growth of developing lungs by inhibition of
angiogenesis. However, the effects of NT on angiogenesis in developing lungs have not been explored previously. Here, we hypothesize that 1) free NT incorporates into microtubules of
pulmonary artery endothelial cells (PAEC); 2) the incorporation of free NT impairs angiogenesis of PAEC isolated from developing lungs; and 3) free NT uncouples eNOS activity to reduce NO
bioavailability. The studies were done in PAEC isolated from fetal lamb lungs delivered prematurely by cesarean section. MATERIALS AND METHODS The use of animals for isolation of PAEC was
approved by the Medical College of Wisconsin Institutional Animal Care and Use Committee (IACUC) and conformed to the guidelines of the National Institutes of Health for the care and use of
laboratory animals. PAEC were isolated from 132-d gestation fetal lambs (term = 145 d) using methods we previously described (14). The pulmonary arteries were dissected up to the third
generation branches in the lung, and PAEC were isolated using 0.1% collagenase type A. Cell identity was confirmed by staining for factor VIII antigen and acetylated-LDL uptake (14). The
BrdU assay kit, cell death detection kit, and _in situ_ cell death TUNEL-POD kit were from Roche Applied Science (Indianapolis, IN). Recombinant human VEGF was obtained from
NCIFCRF-Biological Resources Branch of National Cancer Institute and dihydroethidium (DHE) and 4-amino-5-methylamino-2′,7′-difluorofluoresceine diacetate (DAF-FM-DA) from Invitrogen
(Carlsbad, CA). All other chemicals were obtained from Sigma Chemical Co.-Aldrich (St. Louis, MO). Monoclonal anti-α-tubulin antibodies (B-5-1-2 and D-M-1-A), horseradish peroxidase
(HRP)-conjugated anti-rabbit IgG, Protein A-sepharose, and anti-mouse IgG were from Sigma Chemical Co.. Monoclonal anti-eNOS antibodies were from BIOMOL (clone H32) and Invitrogen (clone
9D10). Monoclonal anti-hsp90 antibody (clone 68) and growth-factor-reduced Matrigel was from BD Biosciences (Bedford, MA). ExactaCruz E, Preclearing Matrix E, and ExactaCruz E-HRP were from
Santa Cruz Biotechnology (Santa Cruz, CA). Polyclonal NT antibodies (clone 4709) and Cu,Zn-superoxide dismutase (Cu,Zn-SOD) was provided by Dr. J.S. Beckman. Polyclonal
anti-nitrotyrosinated-α-tubulin antibody was from Dr. C.A. Arce. ImageJ (National Institutes of Health) software was used to analyze the band densities for Western blots. PREPARATION OF NT
STOCK SOLUTION. NT from Sigma Chemical Co.-Aldrich was freshly dissolved in sterile 0.1N NaOH and filtered through 0.22-μm filter to make 10 mM stock solution. The pH of control media were
adjusted with 0.1N NaOH (8.04 ± 0.01 _versus_ 8.05 ± 0.01). After 48 h in the incubator, there was no difference in pH between NT-containing media (7.52 ± 0.07) and NaOH-adjusted media (7.45
± 0.03). CELL CULTURES. PAECs were cultured in DMEM with 20% FCS in our experiments and appropriate amount of 0.1N NaOH was used to adjust the pH of the medium. INCORPORATION OF NT INTO
MICROTUBULES. PAECs at ∼80% confluence were serum-starved (0.5% FCS) for 2 h. The medium was renewed and incubated for 48 h with different amounts of NT and appropriate amount of NaOH to
adjust the pH. One plate (80 μM NT) was then changed to NT-free medium for another 24 h for comparison. For immunoprecipitation, the cells were exposed to NT for 48 h. PAECs were lysed in
RIPA buffer and treated with Preclearing Matrix E. The supernatant was incubated with anti-α-tubulin (B-5-1-2) antibody and ExactaCruz E. The immunoprecipitates were separated by 7.5%
SDS-PAGE before transferring to nitrocellulose membranes. The membranes were blotted with polyclonal NT (1:5,000), polyclonal nitrotyrosinated-α-tubulin (1:800), or monoclonal α-tubulin
antibody (D-M-1-A, 1:1,000). Goat anti-rabbit-IgG-HRP (1:10,000) served as the secondary antibody for nitrated proteins, whereas ExactaCruz E-HRP was used for α-tubulin. Signal was developed
using enhanced chemiluminescence and autoradiography to CL-Xposure film (Pierce). Integrated optical densities (IOD) were quantified using ImageJ. ANGIOGENIC ACTIVITIES. Cell growth,
apoptosis/necrosis, proliferation, and tube formation assays were performed as previously described (14). PAECs, 1 × 105 per well in 12-well plate, were cultured until attached and media
were renewed with/without 50 μM NT. Cells were trypsinized after 48 h and counts (viable and nonviable) were obtained using hemocytometer after trypan-blue exclusion stain. Similar
experiments were performed with 50 μM NT after adding the scavengers of reactive oxygen species, Cu,Zn-SOD (1 μg/mL) and/or catalase (420 U/mL), and after adding NOS antagonist,
_N_ω-nitro-l-arginine methyl ester hydrochloride (l-NAME, 300 μM). _In situ_ TUNEL stain was used to detect apoptosis (15). PAECs 2 × 104 were cultured in 96-well plates, for
apoptosis/necrosis and cell proliferation assays, to near confluence then serum-starved for 2 h. The media was changed with/without 50 μM NT for overnight. Anti-histone-III antibody or
bromo-deoxy-uridine (BrdU) was then added. Absorbance at 560 nm was measured after addition of the chromophore as the reflection of cell apoptosis/necrosis or proliferation, respectively
(14). Matrigel 50 μL was added to each well of 96-well plate, and 2 × 104 of PAECs were seeded per well. Each well contained DMEM (5% FCS) and VEGF (10−9 M) with/without NT at 1, 10, or 100
μM, or no VEGF/NT (controls). Tube lengths were measured for each condition. LEVELS OF O2− AND NO BY EPIFLUORESCENCE. NT effect on PAEC O2− levels was examined by both reduced
ferricytochrome-c assay and DHE epifluorescence, whereas NO production was assessed using DAF-FM-DA epifluorescence after digitonin treatment. PAECs were incubated with NT overnight at ∼60%
confluence. Epifluorescence expressed as integrated relative light unit (RLU) was measured by MetaVue software. IMMUNOFLUORESCENT STAINING OF MICROTUBULES. PAECs (∼60% confluence) were
incubated overnight with NT before fixation in cold (−20°C) methanol. The slides were rehydrated (PBS with 0.1% saponin) for 1 h, followed by blocking solution (PBS, 0.1% saponin, and 5%
goat serum) for 1 h. The slides were treated with primary antibody (B-5-1-2; 1:200) at 4°C overnight, washed, and incubated with FITC-conjugated anti-mouse antibody (1:320). Pictures were
taken using fluorescence microscope (Ex490/Em520). ENOS HOMODIMER FORMATION AND HSP90 ASSOCIATION. Homodimer formation was evaluated using low-temperature immunoblots (16). PAEC were
incubated overnight in media with or without NT (100 μM) at ∼80% confluence followed by lysis in RIPA buffer. Lysates were immunoprecipitated with monoclonal anti-eNOS antibody (H32).
Proteins were separated by 7.5% SDS-PAGE. Monoclonal anti-eNOS antibody (9D10, 1:500) and monoclonal anti-hsp90 antibody (1:500) were used to identify the protein signals on the
nitrocellulose membrane. HRP-conjugated anti-mouse IgG antibody was used (1:9,000) as the secondary antibody and exposed to CL-Xposure film after treatment with enhanced chemiluminescence.
IOD of the bands were analyzed using ImageJ and IOD ratios of signals for hsp90 and corresponding eNOS were calculated for comparison. STATISTICAL ANALYSIS. Data were expressed as mean ± SE.
One-way ANOVA followed by Student-Newman-Keuls test was used for comparisons among more than two groups. Student _t_ test, or Mann-Whitney _U_ test, was used for comparing two groups
wherever appropriate. A _p_ value < 0.05 was considered statistically significant. RESULTS NT INCORPORATES INTO MICROTUBULES. Immunoblots using polyclonal NT antibody showed several
nitrated protein bands in cell lysates from both control and NT-treated PAEC cultures. A prominent nitrated protein band (∼50 kD) was observed only in the lysates from NT-treated PAEC (Fig.
1_A_). This nitrated protein band corresponds to α-tubulin and the signal increased with exposure to increasing concentrations of NT. Replacing the culture media with NT-deficient media
decreased the signal of nitrated protein band (Fig. 1_B_), suggesting that incorporation of NT is either a reversible process or that NT is enzymatically degraded. Immunoprecipitation of
α-tubulin showed that α-tubulin was nitrated in direct relation to NT concentrations (Fig. 1_C_) and the nitrotyrosinated α-tubulin was seen only in NT-treated cells. An
anti-nitrotyrosinated-α-tubulin antibody detects NT that has been incorporated into the c-terminus of α-tubulin (Fig. 1_D_) (17). NT REDUCES THE CELL GROWTH, DECREASES CELL PROLIFERATION,
AND INCREASES CELL DEATH. NT decreased the number of proliferating PAEC. Addition of Cu,Zn-SOD to NT-treated cultures caused further decreases in PAEC number. Catalase alone had no effect on
cell counts when PAEC were incubated with NT. Addition of both catalase and Cu,Zn-SOD to NT-treated PAEC cultures increased cell counts to control levels (Fig. 2_A_). The difference in cell
counts was mainly due to difference in viable cells (Fig. 2_B_). These results suggest that both O2− and H2O2 impair PAEC proliferation, whereas scavenging both radicals by the combination
of Cu,Zn-SOD and catalase is protective. Addition of l-NAME to NT-treated PAEC blocked the inhibitory effects of NT on cell counts (Fig. 2_C_). l-NAME also tempered the Cu,Zn-SOD effect on
cell counts (Fig. 2_D_). These data suggest that NOS-dependent O2− contributes to the inhibition of PAEC proliferation by NT. Control PAECs had low levels of apoptosis (Fig. 2_E_). NT
increased apoptosis by nearly 2.6-fold (Fig. 2_F_). Apoptosis increased to 17.4 ± 2.4%, 22.4 ± 1.9%, and 28.3 ± 1.2% as the concentration of NT increased to 1, 10, and 100 μM, respectively
(_p_ < 0.001, Fig. 2_G_). Analysis using anti-histone-III antibody showed that 50 μM NT increased the index of apoptosis/necrosis from 13.9 ± 4.0% to 26.2 ± 4.4% (_p_ = 0.022). Finally,
NT 50 μM decreased cell proliferation assessed by BrdU incorporation (0.149 ± 0.004 _versus_ 0.136 ± 0.002, Fig. 2_H_). NT DECREASES TUBE FORMATION. VEGF increased tube formation by control
PAEC at 6 h (223.6 ± 13.3% _versus_ 100.0 ± 12.4%, _p_ < 0.01) but not at 14 h (94.8 ± 16.3% _versus_ 127.9 ± 7.7%, _p_ = 0.10). NT decreased VEGF induced tube formation. At 6 h, the
total tube lengths were 77.3 ± 8.%, 68.1 ± 3.6%, and 57.0 ± 6.9% for 1, 10, and 100 μM NT, respectively (_p_ < 0.001). These differences persisted even at 14 h (65.4 ± 8.7%, 50.4 ± 7.3%,
and 39.0 ± 6.1% for 1, 10, and 100 μM NT, respectively; _p_ < 0.001; Fig. 3_F_). Branching points per high-power-field were 3.2 ± 0.6 for unstimulated PAEC at 6 h and increased to 7.8 ±
0.4 in the presence of VEGF but no difference was seen at 14 h (2.4 ± 0.7 _versus_ 2.2 ± 0.2). NT decreased the branch point number to 2.2 ± 0.4 and 1.2 ± 0.4 at 1 μM, 1.6 ± 0.2 and 0.4 ±
0.2 at 10 μM, and 1.6 ± 0.4 and 0.6 ± 0.2 at 100 μM for 6 and 14 h, respectively. NT AFFECTS POLYMERIZATION OF MICROTUBULES. Immunofluorescent staining for α-tubulin showed filamentous
microtubules in PAEC (Fig. 4_A_). The filamentous structures surrounding the perinuclear area disappeared when PAEC were incubated with 1 μM NT (Fig. 4_B_) and 10 μM NT (Fig. 4_C_). The more
diffuse the staining, the more the microtubules are depolymerized. In the presence of 100 μM NT, PAEC appeared to be smaller with a diffuse speckled pattern (Fig. 4_D_). These images
suggest that free NT increases microtubule depolymerization (18). NT AFFECTS ENOS HOMODIMER FORMATION AND HSP90 ASSOCIATION. NT increased eNOS homodimer formation (Fig. 5_A_) but decreased
eNOS association with hsp90 (∼50%) even after stimulation with eNOS agonist, ATP (Fig. 5_B_). As hsp90 is a required cofactor for NO synthesis, it appears that free NT uncouples eNOS by
decreasing hsp90 association rather than by increasing eNOS monomer formation. NT AFFECTS THE LEVELS OF O2- AND NO. NT increased both basal and ATP-stimulated DHE epifluorescence. l-NAME
decreased the NT enhanced DHE epifluorescence (Fig. 6_A_), suggesting that NOS is the source of increased epifluorescence. Inhibition of DHE epifluorescence by SOD suggests that the
increased epifluorescence with NT is due to O2− (Fig. 6_B_). Similarly, using ferricytochrome-C reduction assay, PAEC cultures that were incubated with NT had increased basal O2− levels
(Fig. 6_C_). NT decreased the DAF-FM-DA epifluorescence, both at basal level and in response to ATP stimulation (Fig. 7). l-NAME decreased DAF-FM-DA epifluorescence in the presence/absence
of NT, suggesting that DAF-FM-DA fluorescence was due to NO. Taken together, these results suggest that NT uncouples eNOS activity to increases eNOS dependent O2− production. DISCUSSION PAEC
from prematurely delivered fetal lambs, readily incorporate free NT into α-tubulin. This leads to microtubule depolymerization, decreased cell size, and impaired angiogenesis by PAEC. Our
data also suggest that eNOS uncoupling is associated with impaired angiogenesis by NT. Using two different assays for the detection of O2−, we observed that NT increases O2− production in
PAEC by a NOS-dependent mechanism (19). We also observed a decrease in hsp90-eNOS association after incubation with NT suggesting a mechanism for NT-induced eNOS uncoupling. These findings
demonstrate that NT is more than a simple biomarker of oxidative stress and may contribute to the impaired angiogenesis observed in premature infants with infections. The effect of NT on
pulmonary vascular endothelial function, especially during the developmental stage, has not been studied before. Using PAEC from fetal lambs allows us to examine the potential effects of NT
on the angiogenesis function in developing lungs. In this study, we used NT in a range of concentrations (1–100 μM) that are seen during infection (6). We observed marked protein nitration
in cell lysates that corresponds to α-tubulin after NT treatment. Immunoblots using antibody that was specifically raised against nitrotyrosinated-α-tubulin verified that NT was incorporated
into α-tubulin as previously described (17). Removal of NT from the media for 24 h dramatically decreases the levels of nitrated α-tubulin in PAEC as reported earlier by Bisig _et al_.
(17). Although the specific mechanisms for scavenging nitrated proteins in PAEC remain unknown, these data suggest that the effects of NT on PAEC function may be reversible. Because
nitrotyrosinated-α-tubulin is resistant to carboxypeptidase (10), it is possible that other enzyme systems are involved in the removal of NT or denitration of NT. We cannot rule out the
possible role of normal protein turnover in the process. Nosocomial infections develop in 20% of very LBW infants (20). Infection contributes to lung injury and increases the risk of BPD in
premature infants (21). Increased formation of O2− during infection decreases NO availability and also generates peroxynitrite, a potent nitrating agent through the reaction between NO and
O2−. Protein nitration can affect cell function (22) and NT inhibits tumor growth (23). A potential mechanism for the alteration of cell function by NT is the posttranslational
nitrotyrosination of α-tubulin (10). Microtubules play critical roles in maintaining cell structure, intracellular transport, and mitosis. Previous studies demonstrated that a reversible,
posttranslational modification of tyrosine residue occurs at the c-terminus of the α-tubulin (24). Dynamic microtubules, characteristic of dividing cells, have tyrosine incorporated into
their c-terminus (tyrosinated), whereas stable, long-lived microtubules have their tyrosine removed from the c-terminus (detyrosinated). Drugs targeting the cytoskeleton have been studied
extensively as antitumor agents, and some of their effects were attributed to inhibition of angiogenesis (25). Because α-tubulin plays a vital role in the formation of microtubules, it is
possible that modification of α-tubulin can affect cell function and differentiation (7–9,26). Free NT is excreted through kidneys, but impaired kidney function is commonly seen in septic
premature neonates, which can lead to high plasma levels of NT. Because cell proliferation and angiogenesis are very active in the developing lungs, higher NT concentration may have a
potential detrimental effect on lung development. The relationship between NT concentration in the media and signal density of nitrotyrosinated-α-tubulin observed in our study is similar to
previous reports (9,10). However, unlike previous studies (10), we observed that NT incorporation into α-tubulin is a reversible process in fetal PAECs. Microtubule-active agents are known
to modify NO production (18) and cell migration in vascular endothelial cells (27). Using nocodazole, Su _et al_. observed that disruption of microtubules leads to decreased NO production
and hsp90-eNOS association. Our findings suggest that NT also disrupts polymerized microtubules and leads to eNOS uncoupling. We also found that NT reduces cell proliferation, as reported in
other cell lines (9). Our observation that scavenging both O2− and H2O2 improves cell counts suggests that the effect of NT is mediated by ROS. Several oxidative enzymes in PAECs can be a
source of O2− (28). l-NAME improved the cell counts after NT treatment, suggesting that eNOS uncoupling after NT incorporation to α-tubulin contributes to the increased O2− production. We
previously demonstrated that disrupting the interaction between hsp90 and eNOS leads to eNOS uncoupling (19). In this study, we found that NT increases eNOS homodimer formation but decreases
hsp90-eNOS association. With increased O2− production and decreased NO production, we believe that NT uncouples eNOS by blocking the interaction between hsp90 and eNOS. It is also possible
that the increased O2− reacted with NO to form peroxynitrite and nitrated the tyrosine(s) of α-tubulin (29), which may also contribute to NT formation in our samples. It is also possible
that eNOS or hsp90 is nitrated and leads to eNOS uncoupling. The later possibility deserves further investigation. In conclusion, increased free NT, which occurs during infection, may result
in altered endothelial cell biology and impaired angiogenesis. This is especially important to the developing lungs because impaired angiogenesis can affect alveolar growth and lung
development (1). The limitation of our study is that we did not test our hypothesis in intact animals. Because kidneys effectively excrete free NT, it is difficult to study the _in vivo_
effect of NT unless kidney function is impaired in the study animals. However, investigation of angiogenesis using cultured PAEC provides an excellent model system to obtain mechanistic
information about the impaired angiogenesis. Can our findings be one of the explanations why inhalational NO therapy fails to show benefit in decreasing BPD in very premature infants remains
to be determined? Future studies will address the long-term effects of NT on lung growth and differentiation _in vivo_. ABBREVIATIONS * DAF-FM-DA:
4-amino-5-methylamino-2′,7′-difluorofluoresceine diacetate * DHE: dihydroethidium * eNOS: endothelial NO synthase * hsp90: heat-shock-protein-90 * NT: 3-nitrotyrosine * O2−: superoxide anion
* PAEC: pulmonary artery endothelial cell REFERENCES * Abman SH 2001 Bronchopulmonary dysplasia: a vascular hypothesis. _Am J Respir Crit Care Med_ 164: 1755–1756 Article CAS PubMed
Google Scholar * Van Marter LJ, Dammann O, Allred EN, Leviton A, Pagano M, Moore M, Martin C 2002 Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic
lung disease in preterm infants. _J Pediatr_ 140: 171–176 Article PubMed Google Scholar * Blough NV, Zafiriou OC 1985 Reaction of superoxide with nitric oxide to form peroxonitrite in
alkaline aqueous solution. _Inorg Chem_ 24: 3502–3504 Article CAS Google Scholar * Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A 1998 Formation of
nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. _Nature_ 391: 393–397 Article CAS PubMed Google Scholar * Frost MT, Barry Halliwell B, Moore KP 2000
Analysis of free and protein-bound nitrotyrosine in human plasma by a gas chromatography/mass spectrometry method that avoids nitration artifacts. _Biochem J_ 345: 453–458 Article CAS
PubMed PubMed Central Google Scholar * Fukuyama N, Takebayashi Y, Hida M, Ischda H, Ichimori K, Nakazawa H 1997 Clinical evidence of peroxynitrite formation in chronic renal failure
patients with septic shock. _Free Radic Biol Med_ 22: 771–774 Article CAS PubMed Google Scholar * Kooy NW, Lewis SJ 1996 Nitrotyrosine attenuates the hemodynamic effects of adrenoceptor
agonists in vivo: relevance to the pathophysiology of peroxynitrite. _Eur J Pharmacol_ 310: 155–161 Article CAS PubMed Google Scholar * Mihm MJ, Jing L, Bauer JA 2000 Nitrotyrosine
causes selective vascular endothelial dysfunction and DNA damage. _J Cardiovasc Pharmacol_ 36: 182–187 Article CAS PubMed Google Scholar * Phung AD, Soucek K, Kubala L, Harper RW,
Bulinski JC, Eiserich JP 2006 Posttranslational nitrotyrosination of alpha-tubulin induces cell cycle arrest and inhibits proliferation of vascular smooth muscle cells. _Eur J Cell Biol_ 85:
1241–1252 Article CAS PubMed Google Scholar * Eiserich JP, Estevez AG, Bamberg TV, Ye YZ, Chumley PH, Beckman JS, Freeman BA 1999 Microtubule dysfunction by posttranslational
nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. _Proc Natl Acad Sci USA_ 96: 6365–6370 Article CAS PubMed PubMed Central Google Scholar * Czar
MJ, Welsh MJ, Pratt WB 1996 Immunofluorescence localization of the 90-kDa heat-shock protein to cytoskeleton. _Eur J Cell Biol_ 70: 322–330 CAS PubMed Google Scholar * Wang LG, Liu XM,
Kreis W, Budman DR 1999 The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. _Cancer Chemother Pharmacol_ 44: 355–361 Article CAS PubMed Google
Scholar * Hotchkiss KA, Ashton AW, Mahmood R, Russell RG, Sparano JA, Schwartz EL 2002 Inhibition of endothelial cell function in vitro and angiogenesis in vivo by Docetaxel (Taxotere):
association with impaired repositioning of the microtubule organizing center. _Mol Cancer Ther_ 1: 1191–1200 CAS PubMed Google Scholar * Teng RJ, Eis A, Bakhutashvili I, Arul N, Konduri
GG 2009 Increased superoxide production contributes to the impaired angiogenesis of fetal pulmonary arteries with in utero pulmonary hypertension. _Am J Physiol Lung Cell Mol Physiol_ 297:
L184–L195 Article CAS PubMed PubMed Central Google Scholar * Sgonc R, Boeck G, Dietrich H, Gruber J, Recheis H, Wick G 1994 Simultaneous determination of cell surface antigens and
apoptosis. _Trends Genet_ 10: 41–42 Article CAS PubMed Google Scholar * Klatt P, Schmidt K, Lehner D, Glatter O, Bächinger HB, Mayer B 1995 Structural analysis of porcine brain nitric
oxide synthase reveals a role for tetrahydrobiopterin and l-arginine in the formation of an SDS-resistant dimer. _EMBO J_ 14: 3687–3695 HB Article CAS PubMed PubMed Central Google
Scholar * Bisig CG, Purro SA, Contin MA, Barra HS, Arce CA 2002 Incorporation of 3-nitrotyrosine into the C-terminus of α-tubulin is reversible and not detrimental to dividing cells. _Eur J
Biochem_ 269: 5037–5045 Article CAS PubMed Google Scholar * Su Y, Zharikov SI, Block ER 2002 Microtubule-active agents modify nitric oxide production in pulmonary artery endothelial
cells. _Am J Physiol Lung Cell Mol Physiol_ 282: L1183–L1189 Article CAS PubMed Google Scholar * Konduri GG, Bakhutashvili I, Eis A, Pritchard K Jr 2007 Oxidant stress from uncoupled
nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension. _Am J Physiol Heart Circ Physiol_ 292: H1812–H1820 Article CAS PubMed Google Scholar *
Stoll BJ, Gordon T, Korones SB, Shankaran S, Tyson JE, Bauer CR, Fanaroff AA, Lemons JA, Donovon EF, Oh W, Stevenson DK, Ehrenkranz RA, Papile L-A, Verter J, Wright LL 1996 Late-onset sepsis
in very low birth weight neonates: a report from the National Institute of Child Health and Human Development Neonatal Research Network. _J Pediatr_ 129: 63–71 Article CAS PubMed Google
Scholar * Kallapur SG, Jobe AH 2006 Contribution of inflammation to lung injury and development. _Arch Dis Child Fetal Neonatal Ed_ 91: F132–F135 Article CAS PubMed PubMed Central
Google Scholar * Peluffo G, Radi R 2007 Biochemistry of protein tyrosine nitration in cardiovascular pathology. _Cardiovasc Res_ 75: 291–302 Article CAS PubMed Google Scholar * MacLean
SJ, Huber RE 1971 The effects of DL-p-fluorophenylalanine and l-3-nitrotyrosine on the growth and biochemistry of the Taper liver tumor. _Cancer Res_ 31: 1669–1672 CAS PubMed Google
Scholar * Barra HS, Arce CA, Argaraña CE 1988 Post-translational tyrosination/detyrosination of tubulin. _Mol Neurobiol_ 2: 133–153 Article CAS PubMed Google Scholar * Hinnen P, Eskens
FA 2007 Vascular disrupting agents in clinical development. _Br J Cancer_ 96: 1159–1165 Article CAS PubMed PubMed Central Google Scholar * Chang W, Webster DR, Salam AA, Gruber D,
Prasad A, Eiserich JP, Bulinski JC 2002 Alteration of the c-terminal amino acid of tubulin specifically inhibits myogenic differentiation. _J Biol Chem_ 277: 30690–30698 Article CAS PubMed
Google Scholar * Lu H, Murtagh J, Schwartz EL 2006 The microtubule binding drug Laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is
synergistic when combined with Docetaxel (Taxotere). _Mol Pharmacol_ 69: 1207–1215 Article CAS PubMed Google Scholar * Li PF, Dietz R, von Harsdorf R 1997 Differential effect of hydrogen
peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells. _Circulation_ 96: 3602–3609 Article CAS PubMed Google Scholar * Tedeschi G, Cappelletti G,
Negri A, Pagliato L, Maggioni MG, Maci R, Ronchi S 2005 Characterization of nitroproteome in neuron-like PC12 cells differentiated with nerve growth factor: Identification of two nitration
sites in α-tubulin. _Proteomics_ 5: 2422–2432 Article CAS PubMed Google Scholar Download references AUTHOR INFORMATION Author notes * Kirkwood A Pritchard and Girija G Konduri: Supported
by NHLBI HL-081139-04 [K.A.P.] and a research grant from Advancing Healthier Foundation, NHLBI RO1-HL-057268 and CRI endowment fund [G.G.K.]. AUTHORS AND AFFILIATIONS * Department of
Pediatrics, Medical College of Wisconsin, Wauwatosa, 53226, Wisconsin Ru-Jeng Teng, Tzong-Jin Wu, Annie Eis & Girija G Konduri * Cardiovascular Research Center, Medical College of
Wisconsin, Wauwatosa, 53226, Wisconsin Girija G Konduri * Children Research Institute, Medical College of Wisconsin, Wauwatosa, 53226, Wisconsin Ru-Jeng Teng, Annie Eis, Kirkwood A Pritchard
& Girija G Konduri * Department of Surgery, Medical College of Wisconsin, Wauwatosa, 53226, Wisconsin Kirkwood A Pritchard * Departamento de Quimica Biologica, Universidad Nacional de
Cordoba, Cordoba, 5000, Argentina C Gaston Bisig Authors * Ru-Jeng Teng View author publications You can also search for this author inPubMed Google Scholar * Tzong-Jin Wu View author
publications You can also search for this author inPubMed Google Scholar * C Gaston Bisig View author publications You can also search for this author inPubMed Google Scholar * Annie Eis
View author publications You can also search for this author inPubMed Google Scholar * Kirkwood A Pritchard View author publications You can also search for this author inPubMed Google
Scholar * Girija G Konduri View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Ru-Jeng Teng. RIGHTS AND PERMISSIONS
Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Teng, RJ., Wu, TJ., Bisig, C. _et al._ Nitrotyrosine Impairs Angiogenesis and Uncouples eNOS Activity of Pulmonary Artery
Endothelial Cells Isolated From Developing Sheep Lungs. _Pediatr Res_ 69, 112–117 (2011). https://doi.org/10.1203/PDR.0b013e318204dcb8 Download citation * Received: 17 May 2010 * Accepted:
21 September 2010 * Issue Date: February 2011 * DOI: https://doi.org/10.1203/PDR.0b013e318204dcb8 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this
content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative