Rsk2 protects human breast cancer cells under endoplasmic reticulum stress through activating ampkα2-mediated autophagy

Rsk2 protects human breast cancer cells under endoplasmic reticulum stress through activating ampkα2-mediated autophagy

Play all audios:

Loading...

ABSTRACT Autophagy can protect stressed cancer cell by degradation of damaged proteins and organelles. However, the regulatory mechanisms behind this cellular process remain incompletely


understood. Here, we demonstrate that RSK2 (p90 ribosomal S6 kinase 2) plays a critical role in ER stress-induced autophagy in breast cancer cells. We demonstrated that the promotive effect


of RSK2 on autophagy resulted from directly binding of AMPKα2 in nucleus and phosphorylating it at Thr172 residue. IRE1α, an ER membrane-associated protein mediating unfolded protein


response (UPR), is required for transducing the signal for activation of ERK1/2-RSK2 under ER stress. Suppression of autophagy by knockdown of RSK2 enhanced the sensitivity of breast cancer


cells to ER stress both in vitro and in vivo. Furthermore, we demonstrated that inhibition of RSK2-mediated autophagy rendered breast cancer cells more sensitive to paclitaxel, a


chemotherapeutic agent that induces ER stress-mediated cell death. This study identifies RSK2 as a novel controller of autophagy in tumor cells and suggests that targeting RSK2 can be


exploited as an approach to reinforce the efficacy of ER stress-inducing agents against cancer. Access through your institution Buy or subscribe This is a preview of subscription content,


access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 50 print issues and online access $259.00 per year only $5.18 per issue Learn


more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS


OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS SMURF1 ATTENUATES ENDOPLASMIC RETICULUM STRESS


BY PROMOTING THE DEGRADATION OF KEAP1 TO ACTIVATE NRF2 ANTIOXIDANT PATHWAY Article Open access 14 June 2023 XAF1 DRIVES APOPTOTIC SWITCH OF ENDOPLASMIC RETICULUM STRESS RESPONSE THROUGH


DESTABILIZATION OF GRP78 AND CHIP Article Open access 28 July 2022 LAMC2 MITIGATES ER STRESS BY ENHANCING ER-MITOCHONDRIA INTERACTION VIA BINDING TO MYH9 AND MYH10 Article Open access 27


October 2023 REFERENCES * Cheng Y, Ren X, Hait WN, Yang JM. Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol Rev. 2013;65:1162–97. CAS  PubMed  PubMed


Central  Google Scholar  * Nam HY, Han MW, Chang HW, Kim SY, Kim SW. Prolonged autophagy by MTOR inhibitor leads radioresistant cancer cells into senescence. Autophagy. 2013;9:1631–2. CAS 


PubMed  Google Scholar  * He J, Yu JJ, Xu Q, Wang L, Zheng JZ, Liu LZ, et al. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by


inhibiting cyto-protective autophagy. Autophagy. 2015;11:373–84. PubMed  PubMed Central  Google Scholar  * Lozy F, Cai-McRae X, Teplova I, Price S, Reddy A, Bhanot G, et al. ERBB2


overexpression suppresses stress-induced autophagy and renders ERBB2-induced mammary tumorigenesis independent of monoallelic Becn1 loss. Autophagy. 2014;10:662–76. CAS  PubMed  PubMed


Central  Google Scholar  * Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42. CAS  PubMed  Google Scholar  * Wang M, Kaufman RJ. The impact of


the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer. 2014;14:581–97. CAS  PubMed  Google Scholar  * Cubillos-Ruiz JR, Bettigole SE, Glimcher LH.


Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in. Cancer Cell. 2017;168:692–706. CAS  Google Scholar  * Shi YH, Ding ZB, Zhou J, Hui B, Shi GM, Ke AW, et al.


Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy. 2011;7:1159–72. CAS  PubMed  Google Scholar  * Nawrocki ST, Carew


JS, Dunner K Jr., Boise LH, Chiao PJ, Huang P, et al. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells.


Cancer Res. 2005;65:11510–9. CAS  PubMed  Google Scholar  * Lei Y, Henderson BR, Emmanuel C, Harnett PR, deFazio A. Inhibition of ANKRD1 sensitizes human ovarian cancer cells to endoplasmic


reticulum stress-induced apoptosis. Oncogene. 2015;34:485–95. CAS  PubMed  Google Scholar  * Li N, Zoubeidi A, Beraldi E, Gleave ME. GRP78 regulates clusterin stability, retrotranslocation


and mitochondrial localization under ER stress in prostate cancer. Oncogene. 2013;32:1933–42. CAS  PubMed  Google Scholar  * Luan Q, Jin L, Jiang CC, Tay KH, Lai F, Liu XY, et al. RIPK1


regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975–94. CAS  PubMed  PubMed Central  Google Scholar  * Li X, Zhu F, Jiang


J, Sun C, Zhong Q, Shen M, et al. Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer


cells. Autophagy. 2016;12:1521–37. CAS  PubMed  PubMed Central  Google Scholar  * Zhao C, Yin S, Dong Y, Guo X, Fan L, Ye M, et al. Autophagy-dependent EIF2AK3 activation compromises ursolic


acid-induced apoptosis through upregulation of MCL1 in MCF-7 human breast cancer cells. Autophagy. 2013;9:196–207. CAS  PubMed  PubMed Central  Google Scholar  * Ciechomska IA, Gabrusiewicz


K, Szczepankiewicz AA, Kaminska B. Endoplasmic reticulum stress triggers autophagy in malignant glioma cells undergoing cyclosporine a-induced cell death. Oncogene. 2013;32:1518–29. CAS 


PubMed  Google Scholar  * Cheng Y, Ren X, Zhang Y, Shan Y, Huber-Keener KJ, Zhang L, et al. Integrated regulation of autophagy and apoptosis by EEF2K controls cellular fate and modulates the


efficacy of curcumin and velcade against tumor cells. Autophagy. 2013;9:208–19. CAS  PubMed  PubMed Central  Google Scholar  * Gawecka JE, Young-Robbins SS, Sulzmaier FJ, Caliva MJ,


Heikkila MM, Matter ML, et al. RSK2 protein suppresses integrin activation and fibronectin matrix assembly and promotes cell migration. J Biol Chem. 2012;287:43424–37. CAS  PubMed  PubMed


Central  Google Scholar  * Lara R, Seckl MJ, Pardo OE. The p90 RSK family members: common functions and isoform specificity. Cancer Res. 2013;73:5301–8. CAS  PubMed  Google Scholar  * Houles


T, Roux PP. Defining the role of the RSK isoforms in cancer. Semin Cancer Biol. 2018;48:53–61. CAS  PubMed  Google Scholar  * Cho YY, Yao K, Pugliese A, Malakhova ML, Bode AM, Dong Z. A


regulatory mechanism for RSK2 NH(2)-terminal kinase activity. Cancer Res. 2009;69:4398–406. CAS  PubMed  PubMed Central  Google Scholar  * Piasecka D, Kitowska K, Czaplinska D, Mieczkowski


K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011–25. PubMed  PubMed Central 


Google Scholar  * Stratford AL, Reipas K, Hu K, Fotovati A, Brough R, Frankum J, et al. Targeting p90 ribosomal S6 kinase eliminates tumor-initiating cells by inactivating Y-box binding


protein-1 in triple-negative breast cancers. Stem Cells. 2012;30:1338–48. CAS  PubMed  Google Scholar  * Cho YY, Lee MH, Lee CJ, Yao K, Lee HS, Bode AM, et al. RSK2 as a key regulator in


human skin cancer. Carcinogenesis. 2012;33:2529–37. CAS  PubMed  PubMed Central  Google Scholar  * Eisinger-Mathason TS, Andrade J, Groehler AL, Clark DE, Muratore-Schroeder TL, Pasic L, et


al. Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival. Mol Cell. 2008;31:722–36. CAS  PubMed  PubMed Central  Google Scholar


  * She QB, Ma WY, Zhong S, Dong Z. Activation of JNK1, RSK2, and MSK1 is involved in serine 112 phosphorylation of Bad by ultraviolet B radiation. J Biol Chem. 2002;277:24039–48. CAS 


PubMed  Google Scholar  * Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent


mechanisms. Science. 1999;286:1358–62. CAS  PubMed  Google Scholar  * Zhu YX, Yin H, Bruins LA, Shi CX, Jedlowski P, Aziz M, et al. RNA interference screening identifies lenalidomide


sensitizers in multiple myeloma, including RSK2. Blood. 2015;125:483–91. CAS  PubMed  PubMed Central  Google Scholar  * Sulzmaier FJ, Young-Robbins S, Jiang P, Geerts D, Prechtl AM, Matter


ML, et al. RSK2 activity mediates glioblastoma invasiveness and is a potential target for new therapeutics. Oncotarget. 2016;7:79869–84. PubMed  PubMed Central  Google Scholar  * van


Jaarsveld MT, Blijdorp IC, Boersma AW, Pothof J, Mathijssen RH, Verweij J, et al. The kinase RSK2 modulates the sensitivity of ovarian cancer cells to cisplatin. Eur J Cancer.


2013;49:345–51. PubMed  Google Scholar  * Xu L, Su L, Liu X. PKCdelta regulates death receptor 5 expression induced by PS-341 through ATF4-ATF3/CHOP axis in human lung cancer cells. Mol


Cancer Ther. 2012;11:2174–82. CAS  PubMed  Google Scholar  * Fujiki K, Inamura H, Matsuoka M. PI3K signaling mediates diverse regulation of ATF4 expression for the survival of HK-2 cells


exposed to cadmium. Arch Toxicol. 2014;88:403–14. CAS  PubMed  Google Scholar  * Kang S, Chen J. Targeting RSK2 in human malignancies. Expert Opin Ther Targets. 2011;15:11–20. CAS  PubMed 


Google Scholar  * Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 2008;9:747–58. CAS  PubMed  Google Scholar  * Wang Q, Wu S, Zhu


H, Ding Y, Dai X, Ouyang C, et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy. 2017;13:404–22. CAS  PubMed  PubMed


Central  Google Scholar  * Rao SV, Solum G, Niederdorfer B, Norsett KG, Bjorkoy G, Thommesen L. Gastrin activates autophagy and increases migration and survival of gastric adenocarcinoma


cells. BMC Cancer. 2017;17:68. PubMed  PubMed Central  Google Scholar  * Shin HJ, Kim H, Oh S, Lee JG, Kee M, Ko HJ, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation


of autophagy. Nature. 2016;534:553–7. CAS  PubMed  PubMed Central  Google Scholar  * Zaouali MA, Boncompagni E, Reiter RJ, Bejaoui M, Freitas I, Pantazi E, et al. AMPK involvement in


endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: a role for melatonin and trimetazidine cocktail. J Pineal Res. 2013;55:65–78. CAS  PubMed  Google


Scholar  * Qiang L, Sample A, Shea CR, Soltani K, Macleod KF, He YY. Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy.


2017;13:2086–103. CAS  PubMed  PubMed Central  Google Scholar  * Gao J, Fan M, Peng S, Zhang M, Xiang G, Li X, et al. Small-molecule RL71-triggered excessive autophagic cell death as a


potential therapeutic strategy in triple-negative breast cancer. Cell Death Dis. 2017;8:e3049. CAS  PubMed  PubMed Central  Google Scholar  * Maddalena F, Sisinni L, Lettini G, Condelli V,


Matassa DS, Piscazzi A, et al. Resistance to paclitxel in breast carcinoma cells requires a quality control of mitochondrial antiapoptotic proteins by TRAP1. Mol Oncol. 2013;7:895–906. CAS 


PubMed  PubMed Central  Google Scholar  * Janczar S, Nautiyal J, Xiao Y, Curry E, Sun M, Zanini E, et al. WWOX sensitises ovarian cancer cells to paclitaxel via modulation of the ER stress


response. Cell Death Dis. 2017;8:e2955. CAS  PubMed  PubMed Central  Google Scholar  * Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y, Parisi F, et al. Regulation of glutamine carrier


proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell. 2015;27:354–69. CAS  PubMed  PubMed Central  Google Scholar  * Xu L, Liu JH, Zhang J,


Zhang N, Wang ZH. Blockade of autophagy aggravates endoplasmic reticulum stress and improves Paclitaxel cytotoxicity in human cervical cancer cells. Cancer Res Treat. 2015;47:313–21. CAS 


PubMed  Google Scholar  * Wen J, Yeo S, Wang C, Chen S, Sun S, Haas MA, et al. Autophagy inhibition re-sensitizes pulse stimulation-selected paclitaxel-resistant triple negative breast


cancer cells to chemotherapy-induced apoptosis. Breast Cancer Res Treat. 2015;149:619–29. CAS  PubMed  PubMed Central  Google Scholar  * Zhang SF, Wang XY, Fu ZQ, Peng QH, Zhang JY, Ye F, et


al. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy. 2015;11:225–38. PubMed  PubMed Central  Google Scholar  * Liu S, Li X. Autophagy inhibition


enhances sensitivity of endometrial carcinoma cells to paclitaxel. Int J Oncol. 2015;46:2399–408. CAS  PubMed  Google Scholar  * Hospital MA, Jacquel A, Mazed F, Saland E, Larrue C, Mondesir


J, et al. RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia. Leukemia. 2018;32:597–605. CAS  PubMed  Google Scholar  * Im JY, Kim BK, Lee JY,


Park SH, Ban HS, Jung KE, et al. DDIAS suppresses TRAIL-mediated apoptosis by inhibiting DISC formation and destabilizing caspase-8 in cancer cells. Oncogene. 2018;37:1251–62. CAS  PubMed 


Google Scholar  * Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Investig.


2012;122:4621–34. CAS  PubMed  Google Scholar  * Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol.


2019. https://doi.org/10.1016/j.semcancer.2019.11.007. online ahead of print. * Spaan CN, Smit WL, van Lidth de Jeude JF, Meijer BJ, Muncan V, van den Brink GR, et al. Expression of UPR


effector proteins ATF6 and XBP1 reduce colorectal cancer cell proliferation and stemness by activating PERK signaling. Cell Death Dis. 2019;10:490. PubMed  PubMed Central  Google Scholar  *


Dey S, Tameire F, Koumenis C. PERK-ing up autophagy during MYC-induced tumorigenesis. Autophagy. 2013;9:612–4. CAS  PubMed  PubMed Central  Google Scholar  * Xiang XY, Yang XC, Su J, Kang


JS, Wu Y, Xue YN, et al. Inhibition of autophagic flux by ROS promotes apoptosis during DTT-induced ER/oxidative stress in HeLa cells. Oncol Rep. 2016;35:3471–9. CAS  PubMed  Google Scholar


  * Goncalves RLS, Hotamisligil GS. TMEM2 mdulates ER stress in a non-canonical manner. Cell Metab. 2019;30:999–1001. CAS  PubMed  Google Scholar  * Tameire F, Verginadis II, Leli NM, Polte


C, Conn CS, Ojha R, et al. ATF4 couples MYC-dependent translational activity to bioenergetic demands during tumour progression. Nat Cell Biol. 2019;21:889–99. CAS  PubMed  PubMed Central 


Google Scholar  * Smith MD, Harley ME, Kemp AJ, Wills J, Lee M, Arends M, et al. CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis. Dev


Cell. 2018;44:217–32.e11. CAS  PubMed  PubMed Central  Google Scholar  * Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell.


2017;66:789–800. CAS  PubMed  PubMed Central  Google Scholar  * Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res. 2014;24:42–57. CAS  PubMed  Google Scholar


  * Schaffer BE, Levin RS, Hertz NT, Maures TJ, Schoof ML, Hollstein PE, et al. Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and


facilitates large-scale substrate prediction. Cell Metab. 2015;22:907–21. CAS  PubMed  PubMed Central  Google Scholar  * Salt IP, Hardie DG. AMP-activated protein kinase: an ubiquitous


signaling pathway with key roles in the cardiovascular system. Circ Res. 2017;120:1825–41. CAS  PubMed  PubMed Central  Google Scholar  * Shang L, Chen S, Du F, Li S, Zhao L, Wang X.


Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci USA. 2011;108:4788–93. CAS  PubMed 


Google Scholar  * Hong-Brown LQ, Brown CR, Navaratnarajah M, Lang CH. FoxO1-AMPK-ULK1 regulates ethanol-induced autophagy in muscle by enhanced ATG14 association with the BECN1-PIK3C3


complex. Alcohol Clin Exp Res. 2017;41:895–910. CAS  PubMed  PubMed Central  Google Scholar  * Zhang D, Wang W, Sun X, Xu D, Wang C, Zhang Q, et al. AMPK regulates autophagy by


phosphorylating BECN1 at threonine 388. Autophagy. 2016;12:1447–59. CAS  PubMed  PubMed Central  Google Scholar  * Cho YY, He Z, Zhang Y, Choi HS, Zhu F, Choi BY, et al. The p53 protein is a


novel substrate of ribosomal S6 kinase 2 and a critical intermediary for ribosomal S6 kinase 2 and histone H3 interaction. Cancer Res. 2005;65:3596–603. CAS  PubMed  Google Scholar  * Lim


HC, Xie L, Zhang W, Li R, Chen ZC, Wu GZ, et al. Ribosomal S6 kinase 2 (RSK2) maintains genomic stability by activating the Atm/p53-dependent DNA damage pathway. PLoS ONE. 2013;8:e74334. CAS


  PubMed  PubMed Central  Google Scholar  * Liu K, Cho YY, Yao K, Nadas J, Kim DJ, Cho EJ, et al. Eriodictyol inhibits RSK2-ATF1 signaling and suppresses EGF-induced neoplastic cell


transformation. J Biol Chem. 2011;286:2057–66. CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China


under Grant Nos. 81472593 and 81972480; the Postgraduate Research and Innovation Project of Central South University under Grant No. 1053320183910. AUTHOR INFORMATION Author notes * These


authors contributed equally: Lan-Ya Li, Xi-Sha Chen AUTHORS AND AFFILIATIONS * Department of Pharmacy, The Second Xiangya Hospital, Central South University, 410011, Changsha, China Lan-Ya


Li, Xi-Sha Chen, Yi-Di Guan, Xin-Yuan Sun & Yan Cheng * Xiangya School of Pharmaceutical Sciences, Central South University, 410008, Changsha, China Lan-Ya Li, Dong-Sheng Cao, Xin-Yuan


Sun & Ao-Xue Li * Department of Pathology, Xiangya hospital and Department of Pathology, School of Basic Medicine, Central South University, 410078, Changsha, China Kuan-Song Wang *


Department of Cancer Biology and Toxicology, Department of Pharmacology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA Xing-Cong Ren & 


Jin-Ming Yang * Cancer Research Institute, School of Basic Medicine, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Central South University, 410078,


Changsha, China Yong-Guang Tao & Ming-Hua Wu * Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 410008, Suzhou, China Yi Zhang * Department of


Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008,


Hunan, China Ming-Zhu Yin * Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,


518057, Shenzhen, China Xin-Luan Wang Authors * Lan-Ya Li View author publications You can also search for this author inPubMed Google Scholar * Xi-Sha Chen View author publications You can


also search for this author inPubMed Google Scholar * Kuan-Song Wang View author publications You can also search for this author inPubMed Google Scholar * Yi-Di Guan View author


publications You can also search for this author inPubMed Google Scholar * Xing-Cong Ren View author publications You can also search for this author inPubMed Google Scholar * Dong-Sheng Cao


View author publications You can also search for this author inPubMed Google Scholar * Xin-Yuan Sun View author publications You can also search for this author inPubMed Google Scholar *


Ao-Xue Li View author publications You can also search for this author inPubMed Google Scholar * Yong-Guang Tao View author publications You can also search for this author inPubMed Google


Scholar * Yi Zhang View author publications You can also search for this author inPubMed Google Scholar * Ming-Zhu Yin View author publications You can also search for this author inPubMed 


Google Scholar * Xin-Luan Wang View author publications You can also search for this author inPubMed Google Scholar * Ming-Hua Wu View author publications You can also search for this author


inPubMed Google Scholar * Jin-Ming Yang View author publications You can also search for this author inPubMed Google Scholar * Yan Cheng View author publications You can also search for


this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Yan Cheng. ETHICS DECLARATIONS CONFLICT OF INTEREST The authors declare that they have no conflict of interest.


ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION


SUPPLEMENTAL MATERIAL RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Li, LY., Chen, XS., Wang, KS. _et al._ RSK2 protects human breast cancer cells


under endoplasmic reticulum stress through activating AMPKα2-mediated autophagy. _Oncogene_ 39, 6704–6718 (2020). https://doi.org/10.1038/s41388-020-01447-0 Download citation * Received: 26


July 2019 * Revised: 14 August 2020 * Accepted: 24 August 2020 * Published: 21 September 2020 * Issue Date: 22 October 2020 * DOI: https://doi.org/10.1038/s41388-020-01447-0 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative