Cdk8 maintains stemness and tumorigenicity of glioma stem cells by regulating the c-myc pathway

Cdk8 maintains stemness and tumorigenicity of glioma stem cells by regulating the c-myc pathway

Play all audios:

Loading...

ABSTRACT Glioblastoma (GBM) is the most malignant form of glioma. Glioma stem cells (GSCs) contribute to the initiation, progression, and recurrence of GBM as a result of their self-renewal


potential and tumorigenicity. Cyclin-dependent kinase 8 (CDK8) belongs to the transcription-related CDK family. Although CDK8 has been shown to be implicated in the malignancy of several


types of cancer, its functional role and mechanism in gliomagenesis remain largely unknown. Here, we demonstrate how CDK8 plays an essential role in maintaining stemness and tumorigenicity


in GSCs. The genetic inhibition of _CDK8_ by shRNA or CRISPR interference resulted in an abrogation of the self-renewal potential and tumorigenicity of patient-derived GSCs, which could be


significantly rescued by the ectopic expression of _c-MYC_, a stem cell transcription factor. Moreover, we demonstrated that the pharmacological inhibition of CDK8 significantly attenuated


the self-renewal potential and tumorigenicity of GSCs. _CDK8_ expression was significantly higher in human GBM tissues than in normal brain tissues, and its expression was positively


correlated with stem cell markers including _c-MYC_ and _SOX2_ in human GBM specimens. Additionally, _CDK8_ expression is associated with poor survival in GBM patients. Collectively, these


findings highlight the importance of the CDK8-c-MYC axis in maintaining stemness and tumorigenicity in GSCs; these findings also identify the CDK8-c-MYC axis as a potential target for


GSC-directed therapy. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Subscribe to this journal Receive 50 print issues and online access $259.00 per year only $5.18 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MCM8 IS REGULATED BY EGFR SIGNALING AND PROMOTES THE GROWTH OF GLIOMA STEM CELLS THROUGH ITS INTERACTION WITH


DNA-REPLICATION-INITIATING FACTORS Article 15 June 2021 CDC42EP3 PROMOTES GLIOMA PROGRESSION VIA REGULATION OF CCND1 Article Open access 01 April 2022 TRANSCRIPTIONAL CDK INHIBITORS, CYC065


AND THZ1 PROMOTE BIM-DEPENDENT APOPTOSIS IN PRIMARY AND RECURRENT GBM THROUGH CELL CYCLE ARREST AND MCL-1 DOWNREGULATION Article Open access 03 August 2021 REFERENCES * Ostrom QT, Gittleman


H, Kruchko C, Barnholtz-Sloan JS. Primary brain and other central nervous system tumors in Appalachia: regional differences in incidence, mortality, and survival. J Neurooncol.


2019;142:27–38. Article  CAS  PubMed  Google Scholar  * Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide


for glioblastoma. N Engl J Med. 2005;352:987–96. Article  CAS  PubMed  Google Scholar  * Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507. Article  CAS  PubMed 


Google Scholar  * Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in


glioblastoma. Cancer Cell. 2013;24:331–46. Article  CAS  PubMed  Google Scholar  * Venere M, Fine HA, Dirks PB, Rich JN. Cancer stem cells in gliomas: identifying and understanding the apex


cell in cancer’s hierarchy. Glia. 2011;59:1148–54. Article  PubMed  PubMed Central  Google Scholar  * Waghmare I, Roebke A, Minata M, Kango-Singh M, Nakano I. Intercellular cooperation and


competition in brain cancers: lessons from Drosophila and human studies. Stem Cells Transl Med. 2014;3:1262–8. Article  CAS  PubMed  PubMed Central  Google Scholar  * Meyer M, Reimand J, Lan


X, Head R, Zhu X, Kushida M, et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci USA. 2015;112:851–6. Article 


CAS  PubMed  Google Scholar  * Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary


glioblastoma. Science. 2014;344:1396–401. Article  CAS  PubMed  PubMed Central  Google Scholar  * Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, et al. Glioblastoma stem cells generate


vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139–52. Article  CAS  PubMed  PubMed Central  Google Scholar  * Lathia JD, Mack SC, Mulkearns-Hubert EE,


Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29:1203–17. Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul


J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170–82. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Lim S, Kaldis PCdks. cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140:3079–93. Article  CAS  PubMed  Google Scholar  * Malumbres M.


Cyclin-dependent kinases. Genome Biol. 2014;15:122. Article  PubMed  PubMed Central  Google Scholar  * Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev


Cancer. 2009;9:153–66. Article  CAS  PubMed  Google Scholar  * Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Ribociclib as first-line therapy for


HR-positive, advanced breast cancer. N Engl J Med. 2018;379:2582 Article  Google Scholar  * Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, et al. Palbociclib and letrozole in advanced


breast cancer. N Engl J Med. 2016;375:1925–36. Article  CAS  PubMed  Google Scholar  * Laderian B, Fojo T. CDK4/6 Inhibition as a therapeutic strategy in breast cancer: palbociclib,


ribociclib, and abemaciclib. Semin Oncol. 2017;44:395–403. Article  CAS  PubMed  Google Scholar  * Sledge GW Jr., Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. MONARCH 2: abemaciclib in


combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35:2875–84. Article  CAS  PubMed  Google


Scholar  * Kumar SK, LaPlant B, Chng WJ, Zonder J, Callander N, Fonseca R, et al. Dinaciclib, a novel CDK inhibitor, demonstrates encouraging single-agent activity in patients with relapsed


multiple myeloma. Blood. 2015;125:443–8. Article  CAS  PubMed  PubMed Central  Google Scholar  * Conaway RC, Conaway JW. Function and regulation of the mediator complex. Curr Opin Genet Dev.


2011;21:225–30. Article  CAS  PubMed  PubMed Central  Google Scholar  * Taatjes DJ. The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem Sci.


2010;35:315–22. Article  CAS  PubMed  PubMed Central  Google Scholar  * Galbraith MD, Allen MA, Bensard CL, Wang X, Schwinn MK, Qin B, et al. HIF1A employs CDK8-mediator to stimulate RNAPII


elongation in response to hypoxia. Cell. 2013;153:1327–39. Article  CAS  PubMed  PubMed Central  Google Scholar  * Knuesel MT, Meyer KD, Donner AJ, Espinosa JM, Taatjes DJ. The human CDK8


subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol. 2009;29:650–61. Article  CAS  PubMed  Google Scholar  * Firestein


R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I, et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature. 2008;455:547–51. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Xu D, Li CF, Zhang X, Gong Z, Chan CH, Lee SW, et al. Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis. Nat Commun. 2015;6:6641. Article 


CAS  PubMed  PubMed Central  Google Scholar  * Brägelmann J, Klümper N, Offermann A, von Mässenhausen A, Böhm D, Deng M, et al. Pan-cancer analysis of the mediator complex transcriptome


identifies CDK19 and CDK8 as therapeutic targets in advanced prostate cancer. Clin Cancer Res. 2017;23:1829–40. Article  PubMed  Google Scholar  * Xu W, Wang Z, Zhang W, Qian K, Li H, Kong


D, et al. Mutated K-ras activates CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/β-catenin signaling pathway. Cancer Lett.


2015;356:613–27. Article  CAS  PubMed  Google Scholar  * Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF, Emanuel PO, et al. The histone variant macroH2A suppresses melanoma


progression through regulation of CDK8. Nature. 2010;468:1105–9. Article  CAS  PubMed  PubMed Central  Google Scholar  * Pelish HE, Liau BB, Nitulescu II, Tangpeerachaikul A, Poss ZC, Da


Silva DH, et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature. 2015;526:273–6. * Gu W, Wang C, Li W, Hsu FN, Tian L, Zhou J, et al.


Tumor-suppressive effects of CDK8 in endometrial cancer cells. Cell Cycle. 2013;12:987–99. Article  CAS  PubMed  PubMed Central  Google Scholar  * Adler AS, McCleland ML, Truong T, Lau S,


Modrusan Z, Soukup TM, et al. CDK8 maintains tumor dedifferentiation and embryonic stem cell pluripotency. Cancer Res. 2012;72:2129–39. Article  CAS  PubMed  Google Scholar  * Zhang JF,


Zhang JS, Zhao ZH, Yang PB, Ji SF, Li N, et al. MicroRNA-770 affects proliferation and cell cycle transition by directly targeting CDK8 in glioma. Cancer Cell Int. 2018;18:195. Article  CAS


  PubMed  PubMed Central  Google Scholar  * Bancerek J, Poss ZC, Steinparzer I, Sedlyarov V, Pfaffenwimmer T, Mikulic I, et al. CDK8 kinase phosphorylates transcription factor STAT1 to


selectively regulate the interferon response. Immunity. 2013;38:250–62. Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE, et al.


c-Myc is required for maintenance of glioma cancer stem cells. PLoS ONE. 2008;3:e3769. Article  PubMed  PubMed Central  Google Scholar  * Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ,


Chen AJ, et al. Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant


Biol. 2008;73:427–37. Article  CAS  PubMed  Google Scholar  * Broude EV, Győrffy B, Chumanevich AA, Chen M, McDermott MS, Shtutman M, et al. Expression of CDK8 and CDK8-interacting genes as


potential biomarkers in breast cancer. Curr Cancer Drug Targets. 2015;15:739–49. Article  CAS  PubMed  PubMed Central  Google Scholar  * Kitao T, Ito Y, Fukui M, Yamamoto M, Shoji Y, Takeda


S, et al. A novel oral anti-osteoporosis drug with osteogenesis-promoting effects via osteoblast differentiation. Yakugaku Zasshi. 2019;139:19–25. * Malumbres M, Harlow E, Hunt T, Hunter T,


Lahti JM, Manning G, et al. Cyclin-dependent kinases: a family portrait. Nat Cell Biol. 2009;11:1275–6. Article  CAS  PubMed  PubMed Central  Google Scholar  * Wasylishen AR, Penn LZ. Myc:


the beauty and the beast. Genes Cancer. 2010;1:532–41. Article  CAS  PubMed  PubMed Central  Google Scholar  * Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic


opportunities. Clin Cancer Res. 2009;15:6479–83. Article  CAS  PubMed  PubMed Central  Google Scholar  * Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic


and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. Article  CAS  PubMed  Google Scholar  * Ramana CV, Grammatikakis N, Chernov M, Nguyen H, Goh KC, Williams BR, et al.


Regulation of c-myc expression by IFN-gamma through Stat1-dependent and -independent pathways. Embo J. 2000;19:263–72. Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang N, Wei P,


Gong A, Chiu WT, Lee HT, Colman H, et al. FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011;20:427–42.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Quevedo M, Meert L, Dekker MR, Dekkers DHW, Brandsma JH, van den Berg DLC, et al. Mediator complex interaction partners organize the


transcriptional network that defines neural stem cells. Nat Commun. 2019;10:2669. Article  PubMed  PubMed Central  Google Scholar  * Alarcón C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S,


et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 2009;139:757–69. Article  PubMed  PubMed Central  Google Scholar  * Serrao A,


Jenkins LM, Chumanevich AA, Horst B, Liang J, Gatza ML, et al. Mediator kinase CDK8/CDK19 drives YAP1-dependent BMP4-induced EMT in cancer. Oncogene. 2018;37:4792–808. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Martinez-Fabregas J, Wang L, Pohler E, Cozzani A, Wilmes S, Kazemian M, et al. CDK8 Fine-Tunes IL-6 Transcriptional Activities by Limiting STAT3 Resident


Time at the Gene Loci. Cell Rep. 2020;33:108545. Article  PubMed  PubMed Central  Google Scholar  * Chen M, Liang J, Ji H, Yang Z, Altilia S, Hu B, et al. CDK8/19 Mediator kinases potentiate


induction of transcription by NFκB. Proc Natl Acad Sci USA. 2017;114:10208–13. Article  CAS  PubMed  Google Scholar  * Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K.


Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell. 2009;5:504–14. Article  CAS  PubMed  Google Scholar  *


Rinkenbaugh AL, Cogswell PC, Calamini B, Dunn DE, Persson AI, Weiss WA, et al. IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance. Oncotarget. 2016;7:69173–87. Article 


PubMed  PubMed Central  Google Scholar  * Sachdeva R, Wu M, Johnson K, Kim H, Celebre A, Shahzad U, et al. BMP signaling mediates glioma stem cell quiescence and confers treatment resistance


in glioblastoma. Sci Rep. 2019;9:14569. Article  PubMed  PubMed Central  Google Scholar  * Shi Y, Guryanova OA, Zhou W, Liu C, Huang Z, Fang X. et al. Ibrutinib inactivates BMX-STAT3 in


glioma stem cells to impair malignant growth and radioresistance. Sci Transl Med. 2018;10. * Putz EM, Gotthardt D, Hoermann G, Csiszar A, Wirth S, Berger A, et al. CDK8-mediated STAT1-S727


phosphorylation restrains NK cell cytotoxicity and tumorsurveillance. Cell Rep. 2013;4:437–44. Article  CAS  PubMed  PubMed Central  Google Scholar  * Witalisz-Siepracka A, Gotthardt D,


Prchal-Murphy M, Didara Z, Menzl I, Prinz D, et al. NK Cell-Specific CDK8 Deletion Enhances Antitumor Responses. Cancer Immunol Res. 2018;6:458–66. Article  CAS  PubMed  Google Scholar  *


McCleland ML, Soukup TM, Liu SD, Esensten JH, de Sousa e Melo F, Yaylaoglu M, et al. Cdk8 deletion in the Apc(Min) murine tumour model represses EZH2 activity and accelerates tumourigenesis.


J Pathol. 2015;237:508–19. Article  CAS  PubMed  Google Scholar  * Westerling T, Kuuluvainen E, Mäkelä TP. Cdk8 is essential for preimplantation mouse development. Mol Cell Biol.


2007;27:6177–82. Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS We wish to thank Dr. H. Hojo (University of Tokyo) for technical training in


RNA-seq data analysis. RNA-seq data and survival analysis were performed using the super-computing resource provided by Human Genome Center, the Institute of Medical Science, the University


of Tokyo. This work was supported in part by the Japan Society for the Promotion of Science (20H03407 to EH), and the Extramural Collaborative Research Grant of Cancer Research Institute,


Kanazawa University. AUTHOR INFORMATION Author notes * These authors equally contributed: Kazuya Fukasawa, Takuya Kadota, Tetsuhiro Horie AUTHORS AND AFFILIATIONS * Laboratory of


Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan Kazuya Fukasawa, Takuya Kadota, Tetsuhiro Horie, Kazuya Tokumura, Ryuichi Terada, Yuka Kitaguchi,


 Gyujin Park, Shinsuke Ochiai, Sayuki Iwahashi, Yasuka Okayama, Manami Hiraiwa, Takanori Yamada, Takashi Iezaki & Eiichi Hinoi * Drug Discovery Research Department, Kyoto Pharmaceutical


Industries, Ltd, Kyoto, Japan Takuya Kadota, Megumi Yamamoto, Tatsuya Kitao & Hiroaki Shirahase * Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa


University Graduate School, Kanazawa, Ishikawa, Japan Yuka Kitaguchi & Katsuyuki Kaneda * Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University,


Kanazawa, Ishikawa, Japan Masaharu Hazawa & Richard W. Wong * WPI Nano Life Science Institute (WPI‐Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan Richard W. Wong & Atsushi


Hirao * Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan Tomoki Todo * Cancer and Stem Cell Research Program, Division of Molecular


Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan Atsushi Hirao * United Graduate School of Drug Discovery and Medical Information Sciences, Gifu


University, Gifu, Japan Eiichi Hinoi Authors * Kazuya Fukasawa View author publications You can also search for this author inPubMed Google Scholar * Takuya Kadota View author publications


You can also search for this author inPubMed Google Scholar * Tetsuhiro Horie View author publications You can also search for this author inPubMed Google Scholar * Kazuya Tokumura View


author publications You can also search for this author inPubMed Google Scholar * Ryuichi Terada View author publications You can also search for this author inPubMed Google Scholar * Yuka


Kitaguchi View author publications You can also search for this author inPubMed Google Scholar * Gyujin Park View author publications You can also search for this author inPubMed Google


Scholar * Shinsuke Ochiai View author publications You can also search for this author inPubMed Google Scholar * Sayuki Iwahashi View author publications You can also search for this author


inPubMed Google Scholar * Yasuka Okayama View author publications You can also search for this author inPubMed Google Scholar * Manami Hiraiwa View author publications You can also search


for this author inPubMed Google Scholar * Takanori Yamada View author publications You can also search for this author inPubMed Google Scholar * Takashi Iezaki View author publications You


can also search for this author inPubMed Google Scholar * Katsuyuki Kaneda View author publications You can also search for this author inPubMed Google Scholar * Megumi Yamamoto View author


publications You can also search for this author inPubMed Google Scholar * Tatsuya Kitao View author publications You can also search for this author inPubMed Google Scholar * Hiroaki


Shirahase View author publications You can also search for this author inPubMed Google Scholar * Masaharu Hazawa View author publications You can also search for this author inPubMed Google


Scholar * Richard W. Wong View author publications You can also search for this author inPubMed Google Scholar * Tomoki Todo View author publications You can also search for this author


inPubMed Google Scholar * Atsushi Hirao View author publications You can also search for this author inPubMed Google Scholar * Eiichi Hinoi View author publications You can also search for


this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Eiichi Hinoi. ETHICS DECLARATIONS CONFLICT OF INTEREST TKadota, MY, TKitao, and HS are employees of Kyoto


Pharmaceutical Industries, Ltd. EH is supported by a research fund from Kyoto Pharmaceutical Industries, Ltd. The other authors declare no potential competing interests. ADDITIONAL


INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY


INFORMATION SUPPLEMENTARY FIGURE 1 SUPPLEMENTARY FIGURE 2 SUPPLEMENTARY FIGURE 3 SUPPLEMENTARY FIGURE 4 SUPPLEMENTARY FIGURE 5 SUPPLEMENTARY FIGURE 6 SUPPLEMENTARY TABLE 1 SUPPLEMENTARY


TABLE 2 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Fukasawa, K., Kadota, T., Horie, T. _et al._ CDK8 maintains stemness and tumorigenicity of glioma


stem cells by regulating the c-MYC pathway. _Oncogene_ 40, 2803–2815 (2021). https://doi.org/10.1038/s41388-021-01745-1 Download citation * Received: 20 June 2020 * Revised: 18 February


2021 * Accepted: 01 March 2021 * Published: 16 March 2021 * Issue Date: 15 April 2021 * DOI: https://doi.org/10.1038/s41388-021-01745-1 SHARE THIS ARTICLE Anyone you share the following link


with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative