RTK-RAS pathway mutation is enriched in myeloid sarcoma

RTK-RAS pathway mutation is enriched in myeloid sarcoma

Play all audios:

Loading...

Download PDF Correspondence Open access Published: 23 May 2018 RTK-RAS pathway mutation is enriched in myeloid sarcoma Mihong Choi1, Yoon Kyung Jeon2, Choong-Hyun Sun3, Hong-Seok Yun4, Junshik Hong1, Dong-Yeop Shin1, Inho Kim1, Sung-Soo Yoon1 & …Youngil Koh1 Show authors Blood Cancer Journal volume 8, Article number: 43 (2018) Cite this article  2060 Accesses 1 Altmetric Metrics details Subjects Acute myeloid leukaemiaCancer genetics Myeloid sarcoma (MS), or granulocytic sarcoma, is a rare extramedullary tumor of immature myeloid cells. MS may present simultaneously with or during the course of acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), or any forms of myeloproliferative neoplasms (MPN). Less commonly, it is detected as an isolated form without bone marrow (BM) involvement. Although the prognosis of MS has not been well examined due to the rarity of this disorder, it is known to be refractory to standard therapies of AML and is generally associated with a poor outcome1. Furthermore, it has been noted that patients with myeloid sarcoma have a predisposition to extramedullary relapses2.Recently, immune checkpoint blockade with ipilimumab was shown to induce complete remission in four patients with extramedullary relapse after allogeneic hematopoietic stem cell transplantation (HSCT) for AML, which lasted for more than 1 year in two of them3. This was an intriguing therapeutic breakthrough in that extramedullary myeloid leukemia, which had hitherto been an area of unmet medical need for being unamenable to standard treatment, was highly susceptible to immuno-oncology drugs.In light of this distinct biologic behavior of MS compared to that of conventional AML, namely, homing and clustering outside the hematopoietic system, being responsive to immune checkpoint inhibitors while refractory to conventional chemotherapeutic agents used in AML, we hypothesized that MS could share some of the genetic abnormalities commonly found in solid tumors demonstrating features mimicking them. The aim of this study was to explore this using a more expanded panel of cancer genes, which are not necessarily restricted to known AML-associated genes, to gain insight into the molecular pathogenesis of MS and to identify potential drug targets.We retrospectively identified and collected clinical data of 62 patients with a diagnosis of MS made between March 2003 and May 2016 at Seoul National University Hospital (SNUH). Of these, 13 patients went through planned panel sequencing of 83 genes (Figure S1). The study protocol was reviewed and approved by the Institutional Review Board of SNUH.Genomic DNA was isolated from formalin-fixed paraffin-embedded (FFPE) tumor tissue blocks using the QIAamp DNA Mini Kit (Qiagen, Mancheester, UK), and the qualified DNA samples were captured and sequenced with SureSelect (Agilent, Inc., USA) following the manufacturer’s instructions. The targeted 83 cancer genes were concentrated more on well-known oncogenes reported in the Catalog of Somatic Mutations in Cancer database than on relatively unknown genes whose functional effects are currently in question and included the coding exons of 72 genes for the detection of single nucleotide variants (SNVs), insertion/deletions (indels), and copy number variations (CNVs), and some introns for 5 genes for the detection of gene fusions. The mean coverage of all the samples was 673 × (range 33–1506). (see Supplementary Methods for details).Sixty-two patients with a clinical and/or pathologic diagnosis of MS were included in our clinical analysis, whose median age at presentation was 46 years old (range 18–83), and the female-to-male ratio was 1.06. These MS cases presented most commonly with a concurrent initial diagnosis of AML (33.9%) followed by a relapse or persistence of marrow disease (22.6%), and so on. Except for de novo MS, all cases were accompanied by AML (Table S1). Results of the clinical analysis are depicted in the Supplementary Results.Table 1 and Table S3 summarize the clinical and/or mutational data by case in our series. All 13 sequenced cases had at least one well-known oncogenic mutation, and more than one mutation was found in four patients, with all cases positive for the IDH2 and/or NPM1 mutation in the current study exhibiting another co-mutation. Although the number of sequenced cases in this series was too small to test for a certain trend, patients with normal cytogenetics from their BM tended to have more known point mutations in MS than their counterparts (p = .066). In contrast, age seemed to have no association with the number of driver mutations in the MS samples (p = .178), whereas it correlated with the number of mutations in the reported data of AML4.Table 1 Clinical and mutational profiles of sequenced casesFull size tableStrikingly, most of them (11 out of 13 cases) had a mutation in the genes of the receptor tyrosine kinase (RTK)-RAS pathway. NRAS was the most frequent genetic alterations among these, affecting four cases. FLT3 ITD, KIT, and KRAS each were found in two patients, whereas ERBB2, JAK2, PIK3CA, and RET each were identified in one case. Of the affected genes not grouped as the RTK-RAS pathway, the IDH2 R140Q mutation was reported in three cases, and the NPM1 mutation was found in two cases, which was consistent with their marrow findings. Interestingly, GNAQ T96S was reported in two cases with an allele frequency of 5.7 and 5.9, respectively. The functional effect of this mutations is yet to be known, although it has been previously identified in sequencing studies on melanoma5 and pancreatic adenocarcinoma6, and computationally predicted to be deleterious by LRT7 and FATHMM8.CNVs were reliably analyzed in 5 samples, where the mean target coverage was approximated to be 1000–1500 × : #1, #4, #5, #8, and #10. Of these, only case #5 was remarkable for PTEN deletion. No known gene fusion was found among those 13 cases.Because previous studies have already disclosed the comprehensive mutational landscape of AML, we compared the mutational frequency of the genes sequenced in this series with that from the reported data of AML4,9. As noted above, most of the driver mutations in MS occurred in genes of the RTK-RAS pathway, and their mutational frequency as a group was 84.6%, which was significantly greater than that of 43.1 and 54.6% in AML, as reported from whole genome and whole exome sequencing in the Cancer Genome Atlas and extensive target sequencing involving more than 1500 AML patients, respectively (p = .007 and p = .046, respectively; Table 2)Table 2 Comparison of mutational frequency in MS with reported dataFull size tableThis would hint at a likely pathophysiology of MS in part. Being subclonal, mutation of the RTK-RAS signaling genes is inferred as a late event in leukemogenesis of AML4,10. Likewise, MS has a good chance of occurring late in AML evolution, acquiring additional mutations in the process that potentially explain the unusual tropism of the myeloid blasts for extramedullary tissues. It also has an important therapeutic implication because biochemical inhibition of oncogenic Ras signaling is being actively studied with FLT3 inhibitors being at the forefront11 closely followed by BLU-285, a potent and selective inhibitor of the exon 17 mutant KIT kinase12. On the other hand, clonal mutation including IDH2 R140Q is retained in MS, so that molecular targeted therapy against these early lesions is expected to be effective on MS as well. Furthermore, if multiple mutations are gained to engender myeloid blasts to home outside the BM, this high mutational burden of MS can be predictive of its responsiveness to immunotherapy13, as is the case with ipilimumab for extramedullary relapse of AML3.There were two previous NGS studies of MS comparable to this study: Li et al. and Pastoret et al. reported on the results of targeted sequencing of 21 and 28 genes from 6 and 14 MS cases, respectively. Genetic abnormalities were found in various AML-associated genes encoding tyrosine kinases (FLT3, KIT, and KRAS), tumor suppressors (WT1 and TP53), epigenetic modifiers (TET2 and ASXL1), spliceosome proteins (SF3B1 and SRSF2), and transcription factors (RUNX1)14,15. Although the current analysis partially reproduced these results, both of the prior studies used panels consisting of a limited number of genes rendering their results inconclusive to examine whether a certain oncogenic pathway is affected in MS. In addition, novel variants discovered from panel sequencing can either be a pathogenic mutation or neutral variation, for which we restricted our analysis to well-known variants.Our study nevertheless has several limitations. First, this is a retrospective study with unavoidable selection bias. Second, as we extracted DNA from FFPE, artifacts caused by fixation and storage cannot be ruled out, and the CNV analysis was unreliable for most samples presumably reflecting this. Third, although we tested an expanded set of genes compared to earlier studies, genes not included in our panel could have an important implication. In addition, we did not assess the functional consequence of identified mutations. Furthermore, the referenced data of AML included AML with MS as well as AML without MS. We believe, however, that this would have reinforced our point, if the mutational profile of MS had been compared only with that of AML without MS. Lastly, the small sample size of our analysis undermines the statistical power, although these few cases consistently demonstrated RTK-RAS enrichment.In summary, the pattern of molecular derangements in MS was generally consistent with that in AML, but MS was apparently more enriched with mutations of the RTK-RAS pathway genes, sharing genetic commonalities with solid tumors than with AML. Future studies are warranted to elucidate their therapeutic and prognostic implications as well as the detailed molecular mechanism underlying their distinct phenotypic expression. References Pileri, S. A. et al. Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia 21, 340–350 (2007). Article  PubMed  CAS  Google Scholar   Michel, G. et al. Risk of extramedullary relapse following allogeneic bone marrow transplantation for acute myelogenous leukemia with leukemia cutis. Bone Marrow Transplant. 20, 107–112 (1997). Article  PubMed  CAS  Google Scholar   Davids, M. S. et al. Ipilimumab for patients with relapse after allogeneic transplantation. N. Engl. J. Med. 375, 143–153 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar   Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar   Sanborn, J. Z. et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc. Natl Acad. Sci. USA 112, 10995–11000 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar   Witkiewicz, A. K. et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 6, 6744 (2015). Article  PubMed  CAS  Google Scholar   Chun, S. & Fay, J. C. Identification of deleterious mutations within three human genomes. Genome Res. 19, 1553–1561 (2009). Article  PubMed  PubMed Central  CAS  Google Scholar   Shihab, H. A., Gough, J., Cooper, D. N., Day, I. N. & Gaunt, T. R. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics 29, 1504–1510 (2013). Article  PubMed  PubMed Central  CAS  Google Scholar   Cancer Genome Atlas Research, N. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013). Article  CAS  Google Scholar   Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012). Article  PubMed  PubMed Central  CAS  Google Scholar   Ward, A. F., Braun, B. S. & Shannon, K. M. Targeting oncogenic Ras signaling in hematologic malignancies. Blood 120, 3397–3406 (2012). Article  PubMed  PubMed Central  CAS  Google Scholar   Evans, E. K. et al. BLU-285, the first selective inhibitor of PDGFR alpha D842V and KIT Exon 17 mutants. Cancer Res. 75, 2015, Abstract nr 791. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015). Article  PubMed  CAS  Google Scholar   Li, Z. et al. Next-generation sequencing reveals clinically actionable molecular markers in myeloid sarcoma. Leukemia 29, 2113–2116 (2015). Article  PubMed  PubMed Central  CAS  Google Scholar   Pastoret, C. et al. Detection of clonal heterogeneity and targetable mutations in myeloid sarcoma by high-throughput sequencing. Leuk. Lymphoma 58, 1008–1012 (2017). Article  PubMed  Google Scholar   Download referencesAcknowledgementsThis study was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant number: HI14C1277).Author informationAuthors and Affiliations Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea Mihong Choi, Junshik Hong, Dong-Yeop Shin, Inho Kim, Sung-Soo Yoon & Youngil Koh Department of Pathology, Seoul National University Hospital, Seoul, Korea Yoon Kyung Jeon Development Group, Samsung SDS, Seoul, Korea Choong-Hyun Sun Department of Bioinformatics, Seoul National University Hospital, Seoul, Korea Hong-Seok YunAuthorsMihong ChoiView author publications You can also search for this author inPubMed Google ScholarYoon Kyung JeonView author publications You can also search for this author inPubMed Google ScholarChoong-Hyun SunView author publications You can also search for this author inPubMed Google ScholarHong-Seok YunView author publications You can also search for this author inPubMed Google ScholarJunshik HongView author publications You can also search for this author inPubMed Google ScholarDong-Yeop ShinView author publications You can also search for this author inPubMed Google ScholarInho KimView author publications You can also search for this author inPubMed Google ScholarSung-Soo YoonView author publications You can also search for this author inPubMed Google ScholarYoungil KohView author publications You can also search for this author inPubMed Google ScholarCorresponding author Correspondence to Youngil Koh.Ethics declarations Conflict of interest The authors declare that they have no conflict of interest. Additional informationPublishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialSupplementarly informationRights and permissions Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Reprints and permissionsAbout this articleCite this article Choi, M., Jeon, Y.K., Sun, CH. et al. RTK-RAS pathway mutation is enriched in myeloid sarcoma. Blood Cancer Journal 8, 43 (2018). https://doi.org/10.1038/s41408-018-0083-6 Download citationReceived: 17 November 2017Revised: 19 December 2017Accepted: 09 January 2018Published: 23 May 2018DOI: https://doi.org/10.1038/s41408-018-0083-6Share this article Anyone you share the following link with will be able to read this content:Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF Correspondence Open access Published: 23 May 2018 RTK-RAS pathway mutation is enriched in myeloid sarcoma Mihong Choi1, Yoon Kyung Jeon2, Choong-Hyun Sun3, Hong-Seok Yun4,


Junshik Hong1, Dong-Yeop Shin1, Inho Kim1, Sung-Soo Yoon1 & …Youngil Koh1 Show authors Blood Cancer Journal volume 8, Article number: 43 (2018) Cite this article


2060 Accesses


1 Altmetric


Metrics details

Subjects Acute myeloid leukaemiaCancer genetics


Myeloid sarcoma (MS), or granulocytic sarcoma, is a rare extramedullary tumor of immature myeloid cells. MS may present simultaneously with or during the course of acute myeloid leukemia


(AML), myelodysplastic syndrome (MDS), or any forms of myeloproliferative neoplasms (MPN). Less commonly, it is detected as an isolated form without bone marrow (BM) involvement. Although


the prognosis of MS has not been well examined due to the rarity of this disorder, it is known to be refractory to standard therapies of AML and is generally associated with a poor outcome1.


Furthermore, it has been noted that patients with myeloid sarcoma have a predisposition to extramedullary relapses2.


Recently, immune checkpoint blockade with ipilimumab was shown to induce complete remission in four patients with extramedullary relapse after allogeneic hematopoietic stem cell


transplantation (HSCT) for AML, which lasted for more than 1 year in two of them3. This was an intriguing therapeutic breakthrough in that extramedullary myeloid leukemia, which had hitherto


been an area of unmet medical need for being unamenable to standard treatment, was highly susceptible to immuno-oncology drugs.


In light of this distinct biologic behavior of MS compared to that of conventional AML, namely, homing and clustering outside the hematopoietic system, being responsive to immune checkpoint


inhibitors while refractory to conventional chemotherapeutic agents used in AML, we hypothesized that MS could share some of the genetic abnormalities commonly found in solid tumors


demonstrating features mimicking them. The aim of this study was to explore this using a more expanded panel of cancer genes, which are not necessarily restricted to known AML-associated


genes, to gain insight into the molecular pathogenesis of MS and to identify potential drug targets.


We retrospectively identified and collected clinical data of 62 patients with a diagnosis of MS made between March 2003 and May 2016 at Seoul National University Hospital (SNUH). Of these,


13 patients went through planned panel sequencing of 83 genes (Figure S1). The study protocol was reviewed and approved by the Institutional Review Board of SNUH.


Genomic DNA was isolated from formalin-fixed paraffin-embedded (FFPE) tumor tissue blocks using the QIAamp DNA Mini Kit (Qiagen, Mancheester, UK), and the qualified DNA samples were captured


and sequenced with SureSelect (Agilent, Inc., USA) following the manufacturer’s instructions. The targeted 83 cancer genes were concentrated more on well-known oncogenes reported in the


Catalog of Somatic Mutations in Cancer database than on relatively unknown genes whose functional effects are currently in question and included the coding exons of 72 genes for the


detection of single nucleotide variants (SNVs), insertion/deletions (indels), and copy number variations (CNVs), and some introns for 5 genes for the detection of gene fusions. The mean


coverage of all the samples was 673 × (range 33–1506). (see Supplementary Methods for details).


Sixty-two patients with a clinical and/or pathologic diagnosis of MS were included in our clinical analysis, whose median age at presentation was 46 years old (range 18–83), and the


female-to-male ratio was 1.06. These MS cases presented most commonly with a concurrent initial diagnosis of AML (33.9%) followed by a relapse or persistence of marrow disease (22.6%), and


so on. Except for de novo MS, all cases were accompanied by AML (Table S1). Results of the clinical analysis are depicted in the Supplementary Results.


Table 1 and Table S3 summarize the clinical and/or mutational data by case in our series. All 13 sequenced cases had at least one well-known oncogenic mutation, and more than one mutation


was found in four patients, with all cases positive for the IDH2 and/or NPM1 mutation in the current study exhibiting another co-mutation. Although the number of sequenced cases in this


series was too small to test for a certain trend, patients with normal cytogenetics from their BM tended to have more known point mutations in MS than their counterparts (p = .066). In


contrast, age seemed to have no association with the number of driver mutations in the MS samples (p = .178), whereas it correlated with the number of mutations in the reported data of


AML4.

Table 1 Clinical and mutational profiles of sequenced casesFull size table


Strikingly, most of them (11 out of 13 cases) had a mutation in the genes of the receptor tyrosine kinase (RTK)-RAS pathway. NRAS was the most frequent genetic alterations among these,


affecting four cases. FLT3 ITD, KIT, and KRAS each were found in two patients, whereas ERBB2, JAK2, PIK3CA, and RET each were identified in one case. Of the affected genes not grouped as the


RTK-RAS pathway, the IDH2 R140Q mutation was reported in three cases, and the NPM1 mutation was found in two cases, which was consistent with their marrow findings. Interestingly, GNAQ T96S


was reported in two cases with an allele frequency of 5.7 and 5.9, respectively. The functional effect of this mutations is yet to be known, although it has been previously identified in


sequencing studies on melanoma5 and pancreatic adenocarcinoma6, and computationally predicted to be deleterious by LRT7 and FATHMM8.


CNVs were reliably analyzed in 5 samples, where the mean target coverage was approximated to be 1000–1500 × : #1, #4, #5, #8, and #10. Of these, only case #5 was remarkable for PTEN


deletion. No known gene fusion was found among those 13 cases.


Because previous studies have already disclosed the comprehensive mutational landscape of AML, we compared the mutational frequency of the genes sequenced in this series with that from the


reported data of AML4,9. As noted above, most of the driver mutations in MS occurred in genes of the RTK-RAS pathway, and their mutational frequency as a group was 84.6%, which was


significantly greater than that of 43.1 and 54.6% in AML, as reported from whole genome and whole exome sequencing in the Cancer Genome Atlas and extensive target sequencing involving more


than 1500 AML patients, respectively (p = .007 and p = .046, respectively; Table 2)

Table 2 Comparison of mutational frequency in MS with reported dataFull size table


This would hint at a likely pathophysiology of MS in part. Being subclonal, mutation of the RTK-RAS signaling genes is inferred as a late event in leukemogenesis of AML4,10. Likewise, MS has


a good chance of occurring late in AML evolution, acquiring additional mutations in the process that potentially explain the unusual tropism of the myeloid blasts for extramedullary


tissues. It also has an important therapeutic implication because biochemical inhibition of oncogenic Ras signaling is being actively studied with FLT3 inhibitors being at the forefront11


closely followed by BLU-285, a potent and selective inhibitor of the exon 17 mutant KIT kinase12. On the other hand, clonal mutation including IDH2 R140Q is retained in MS, so that molecular


targeted therapy against these early lesions is expected to be effective on MS as well. Furthermore, if multiple mutations are gained to engender myeloid blasts to home outside the BM, this


high mutational burden of MS can be predictive of its responsiveness to immunotherapy13, as is the case with ipilimumab for extramedullary relapse of AML3.


There were two previous NGS studies of MS comparable to this study: Li et al. and Pastoret et al. reported on the results of targeted sequencing of 21 and 28 genes from 6 and 14 MS cases,


respectively. Genetic abnormalities were found in various AML-associated genes encoding tyrosine kinases (FLT3, KIT, and KRAS), tumor suppressors (WT1 and TP53), epigenetic modifiers (TET2


and ASXL1), spliceosome proteins (SF3B1 and SRSF2), and transcription factors (RUNX1)14,15. Although the current analysis partially reproduced these results, both of the prior studies used


panels consisting of a limited number of genes rendering their results inconclusive to examine whether a certain oncogenic pathway is affected in MS. In addition, novel variants discovered


from panel sequencing can either be a pathogenic mutation or neutral variation, for which we restricted our analysis to well-known variants.


Our study nevertheless has several limitations. First, this is a retrospective study with unavoidable selection bias. Second, as we extracted DNA from FFPE, artifacts caused by fixation and


storage cannot be ruled out, and the CNV analysis was unreliable for most samples presumably reflecting this. Third, although we tested an expanded set of genes compared to earlier studies,


genes not included in our panel could have an important implication. In addition, we did not assess the functional consequence of identified mutations. Furthermore, the referenced data of


AML included AML with MS as well as AML without MS. We believe, however, that this would have reinforced our point, if the mutational profile of MS had been compared only with that of AML


without MS. Lastly, the small sample size of our analysis undermines the statistical power, although these few cases consistently demonstrated RTK-RAS enrichment.


In summary, the pattern of molecular derangements in MS was generally consistent with that in AML, but MS was apparently more enriched with mutations of the RTK-RAS pathway genes, sharing


genetic commonalities with solid tumors than with AML. Future studies are warranted to elucidate their therapeutic and prognostic implications as well as the detailed molecular mechanism


underlying their distinct phenotypic expression.


References Pileri, S. A. et al. Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia 21, 340–350 (2007).


Article  PubMed  CAS  Google Scholar 


Michel, G. et al. Risk of extramedullary relapse following allogeneic bone marrow transplantation for acute myelogenous leukemia with leukemia cutis. Bone Marrow Transplant. 20, 107–112


(1997).


Article  PubMed  CAS  Google Scholar 


Davids, M. S. et al. Ipilimumab for patients with relapse after allogeneic transplantation. N. Engl. J. Med. 375, 143–153 (2016).


Article  PubMed  PubMed Central  CAS  Google Scholar 


Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).


Article  PubMed  PubMed Central  CAS  Google Scholar 


Sanborn, J. Z. et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc. Natl Acad. Sci. USA 112, 10995–11000 (2015).


Article  PubMed  PubMed Central  CAS  Google Scholar 


Witkiewicz, A. K. et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 6, 6744 (2015).


Article  PubMed  CAS  Google Scholar 


Chun, S. & Fay, J. C. Identification of deleterious mutations within three human genomes. Genome Res. 19, 1553–1561 (2009).


Article  PubMed  PubMed Central  CAS  Google Scholar 


Shihab, H. A., Gough, J., Cooper, D. N., Day, I. N. & Gaunt, T. R. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics 29, 1504–1510 (2013).


Article  PubMed  PubMed Central  CAS  Google Scholar 


Cancer Genome Atlas Research, N. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).


Article  CAS  Google Scholar 


Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).


Article  PubMed  PubMed Central  CAS  Google Scholar 


Ward, A. F., Braun, B. S. & Shannon, K. M. Targeting oncogenic Ras signaling in hematologic malignancies. Blood 120, 3397–3406 (2012).


Article  PubMed  PubMed Central  CAS  Google Scholar 


Evans, E. K. et al. BLU-285, the first selective inhibitor of PDGFR alpha D842V and KIT Exon 17 mutants. Cancer Res. 75, 2015, Abstract nr 791.


Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).


Article  PubMed  CAS  Google Scholar 


Li, Z. et al. Next-generation sequencing reveals clinically actionable molecular markers in myeloid sarcoma. Leukemia 29, 2113–2116 (2015).


Article  PubMed  PubMed Central  CAS  Google Scholar 


Pastoret, C. et al. Detection of clonal heterogeneity and targetable mutations in myeloid sarcoma by high-throughput sequencing. Leuk. Lymphoma 58, 1008–1012 (2017).


Article  PubMed  Google Scholar 


Download references

Acknowledgements


This study was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare,


Republic of Korea (Grant number: HI14C1277).


Author informationAuthors and Affiliations Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea


Mihong Choi, Junshik Hong, Dong-Yeop Shin, Inho Kim, Sung-Soo Yoon & Youngil Koh


Department of Pathology, Seoul National University Hospital, Seoul, Korea


Yoon Kyung Jeon


Development Group, Samsung SDS, Seoul, Korea


Choong-Hyun Sun


Department of Bioinformatics, Seoul National University Hospital, Seoul, Korea


Hong-Seok Yun


AuthorsMihong ChoiView author publications You can also search for this author inPubMed Google Scholar


Yoon Kyung JeonView author publications You can also search for this author inPubMed Google Scholar


Choong-Hyun SunView author publications You can also search for this author inPubMed Google Scholar


Hong-Seok YunView author publications You can also search for this author inPubMed Google Scholar


Junshik HongView author publications You can also search for this author inPubMed Google Scholar


Dong-Yeop ShinView author publications You can also search for this author inPubMed Google Scholar


Inho KimView author publications You can also search for this author inPubMed Google Scholar


Sung-Soo YoonView author publications You can also search for this author inPubMed Google Scholar


Youngil KohView author publications You can also search for this author inPubMed Google Scholar


Corresponding author Correspondence to Youngil Koh.

Ethics declarations Conflict of interest


The authors declare that they have no conflict of interest.

Additional information


Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary materialSupplementarly


informationRights and permissions


Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or


format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or


other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in


the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the


copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.


Reprints and permissions


About this articleCite this article Choi, M., Jeon, Y.K., Sun, CH. et al. RTK-RAS pathway mutation is enriched in myeloid sarcoma. Blood Cancer Journal 8, 43 (2018).


https://doi.org/10.1038/s41408-018-0083-6


Download citation


Received: 17 November 2017


Revised: 19 December 2017


Accepted: 09 January 2018


Published: 23 May 2018


DOI: https://doi.org/10.1038/s41408-018-0083-6


Share this article Anyone you share the following link with will be able to read this content:


Get shareable link Sorry, a shareable link is not currently available for this article.


Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative