Play all audios:
Download PDF Correspondence Open access Published: 23 May 2018 RTK-RAS pathway mutation is enriched in myeloid sarcoma Mihong Choi1, Yoon Kyung Jeon2, Choong-Hyun Sun3, Hong-Seok Yun4,
Junshik Hong1, Dong-Yeop Shin1, Inho Kim1, Sung-Soo Yoon1 & …Youngil Koh1 Show authors Blood Cancer Journal volume 8, Article number: 43 (2018) Cite this article
2060 Accesses
1 Altmetric
Metrics details
Subjects Acute myeloid leukaemiaCancer geneticsMyeloid sarcoma (MS), or granulocytic sarcoma, is a rare extramedullary tumor of immature myeloid cells. MS may present simultaneously with or during the course of acute myeloid leukemia
(AML), myelodysplastic syndrome (MDS), or any forms of myeloproliferative neoplasms (MPN). Less commonly, it is detected as an isolated form without bone marrow (BM) involvement. Although
the prognosis of MS has not been well examined due to the rarity of this disorder, it is known to be refractory to standard therapies of AML and is generally associated with a poor outcome1.
Furthermore, it has been noted that patients with myeloid sarcoma have a predisposition to extramedullary relapses2.
Recently, immune checkpoint blockade with ipilimumab was shown to induce complete remission in four patients with extramedullary relapse after allogeneic hematopoietic stem cell
transplantation (HSCT) for AML, which lasted for more than 1 year in two of them3. This was an intriguing therapeutic breakthrough in that extramedullary myeloid leukemia, which had hitherto
been an area of unmet medical need for being unamenable to standard treatment, was highly susceptible to immuno-oncology drugs.
In light of this distinct biologic behavior of MS compared to that of conventional AML, namely, homing and clustering outside the hematopoietic system, being responsive to immune checkpoint
inhibitors while refractory to conventional chemotherapeutic agents used in AML, we hypothesized that MS could share some of the genetic abnormalities commonly found in solid tumors
demonstrating features mimicking them. The aim of this study was to explore this using a more expanded panel of cancer genes, which are not necessarily restricted to known AML-associated
genes, to gain insight into the molecular pathogenesis of MS and to identify potential drug targets.
We retrospectively identified and collected clinical data of 62 patients with a diagnosis of MS made between March 2003 and May 2016 at Seoul National University Hospital (SNUH). Of these,
13 patients went through planned panel sequencing of 83 genes (Figure S1). The study protocol was reviewed and approved by the Institutional Review Board of SNUH.
Genomic DNA was isolated from formalin-fixed paraffin-embedded (FFPE) tumor tissue blocks using the QIAamp DNA Mini Kit (Qiagen, Mancheester, UK), and the qualified DNA samples were captured
and sequenced with SureSelect (Agilent, Inc., USA) following the manufacturer’s instructions. The targeted 83 cancer genes were concentrated more on well-known oncogenes reported in the
Catalog of Somatic Mutations in Cancer database than on relatively unknown genes whose functional effects are currently in question and included the coding exons of 72 genes for the
detection of single nucleotide variants (SNVs), insertion/deletions (indels), and copy number variations (CNVs), and some introns for 5 genes for the detection of gene fusions. The mean
coverage of all the samples was 673 × (range 33–1506). (see Supplementary Methods for details).
Sixty-two patients with a clinical and/or pathologic diagnosis of MS were included in our clinical analysis, whose median age at presentation was 46 years old (range 18–83), and the
female-to-male ratio was 1.06. These MS cases presented most commonly with a concurrent initial diagnosis of AML (33.9%) followed by a relapse or persistence of marrow disease (22.6%), and
so on. Except for de novo MS, all cases were accompanied by AML (Table S1). Results of the clinical analysis are depicted in the Supplementary Results.
Table 1 and Table S3 summarize the clinical and/or mutational data by case in our series. All 13 sequenced cases had at least one well-known oncogenic mutation, and more than one mutation
was found in four patients, with all cases positive for the IDH2 and/or NPM1 mutation in the current study exhibiting another co-mutation. Although the number of sequenced cases in this
series was too small to test for a certain trend, patients with normal cytogenetics from their BM tended to have more known point mutations in MS than their counterparts (p = .066). In
contrast, age seemed to have no association with the number of driver mutations in the MS samples (p = .178), whereas it correlated with the number of mutations in the reported data of
AML4.
Table 1 Clinical and mutational profiles of sequenced casesFull size tableStrikingly, most of them (11 out of 13 cases) had a mutation in the genes of the receptor tyrosine kinase (RTK)-RAS pathway. NRAS was the most frequent genetic alterations among these,
affecting four cases. FLT3 ITD, KIT, and KRAS each were found in two patients, whereas ERBB2, JAK2, PIK3CA, and RET each were identified in one case. Of the affected genes not grouped as the
RTK-RAS pathway, the IDH2 R140Q mutation was reported in three cases, and the NPM1 mutation was found in two cases, which was consistent with their marrow findings. Interestingly, GNAQ T96S
was reported in two cases with an allele frequency of 5.7 and 5.9, respectively. The functional effect of this mutations is yet to be known, although it has been previously identified in
sequencing studies on melanoma5 and pancreatic adenocarcinoma6, and computationally predicted to be deleterious by LRT7 and FATHMM8.
CNVs were reliably analyzed in 5 samples, where the mean target coverage was approximated to be 1000–1500 × : #1, #4, #5, #8, and #10. Of these, only case #5 was remarkable for PTEN
deletion. No known gene fusion was found among those 13 cases.
Because previous studies have already disclosed the comprehensive mutational landscape of AML, we compared the mutational frequency of the genes sequenced in this series with that from the
reported data of AML4,9. As noted above, most of the driver mutations in MS occurred in genes of the RTK-RAS pathway, and their mutational frequency as a group was 84.6%, which was
significantly greater than that of 43.1 and 54.6% in AML, as reported from whole genome and whole exome sequencing in the Cancer Genome Atlas and extensive target sequencing involving more
than 1500 AML patients, respectively (p = .007 and p = .046, respectively; Table 2)
Table 2 Comparison of mutational frequency in MS with reported dataFull size tableThis would hint at a likely pathophysiology of MS in part. Being subclonal, mutation of the RTK-RAS signaling genes is inferred as a late event in leukemogenesis of AML4,10. Likewise, MS has
a good chance of occurring late in AML evolution, acquiring additional mutations in the process that potentially explain the unusual tropism of the myeloid blasts for extramedullary
tissues. It also has an important therapeutic implication because biochemical inhibition of oncogenic Ras signaling is being actively studied with FLT3 inhibitors being at the forefront11
closely followed by BLU-285, a potent and selective inhibitor of the exon 17 mutant KIT kinase12. On the other hand, clonal mutation including IDH2 R140Q is retained in MS, so that molecular
targeted therapy against these early lesions is expected to be effective on MS as well. Furthermore, if multiple mutations are gained to engender myeloid blasts to home outside the BM, this
high mutational burden of MS can be predictive of its responsiveness to immunotherapy13, as is the case with ipilimumab for extramedullary relapse of AML3.
There were two previous NGS studies of MS comparable to this study: Li et al. and Pastoret et al. reported on the results of targeted sequencing of 21 and 28 genes from 6 and 14 MS cases,
respectively. Genetic abnormalities were found in various AML-associated genes encoding tyrosine kinases (FLT3, KIT, and KRAS), tumor suppressors (WT1 and TP53), epigenetic modifiers (TET2
and ASXL1), spliceosome proteins (SF3B1 and SRSF2), and transcription factors (RUNX1)14,15. Although the current analysis partially reproduced these results, both of the prior studies used
panels consisting of a limited number of genes rendering their results inconclusive to examine whether a certain oncogenic pathway is affected in MS. In addition, novel variants discovered
from panel sequencing can either be a pathogenic mutation or neutral variation, for which we restricted our analysis to well-known variants.
Our study nevertheless has several limitations. First, this is a retrospective study with unavoidable selection bias. Second, as we extracted DNA from FFPE, artifacts caused by fixation and
storage cannot be ruled out, and the CNV analysis was unreliable for most samples presumably reflecting this. Third, although we tested an expanded set of genes compared to earlier studies,
genes not included in our panel could have an important implication. In addition, we did not assess the functional consequence of identified mutations. Furthermore, the referenced data of
AML included AML with MS as well as AML without MS. We believe, however, that this would have reinforced our point, if the mutational profile of MS had been compared only with that of AML
without MS. Lastly, the small sample size of our analysis undermines the statistical power, although these few cases consistently demonstrated RTK-RAS enrichment.
In summary, the pattern of molecular derangements in MS was generally consistent with that in AML, but MS was apparently more enriched with mutations of the RTK-RAS pathway genes, sharing
genetic commonalities with solid tumors than with AML. Future studies are warranted to elucidate their therapeutic and prognostic implications as well as the detailed molecular mechanism
underlying their distinct phenotypic expression.
References Pileri, S. A. et al. Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia 21, 340–350 (2007).
Article PubMed CAS Google Scholar
Michel, G. et al. Risk of extramedullary relapse following allogeneic bone marrow transplantation for acute myelogenous leukemia with leukemia cutis. Bone Marrow Transplant. 20, 107–112
(1997).
Article PubMed CAS Google Scholar
Davids, M. S. et al. Ipilimumab for patients with relapse after allogeneic transplantation. N. Engl. J. Med. 375, 143–153 (2016).
Article PubMed PubMed Central CAS Google Scholar
Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).
Article PubMed PubMed Central CAS Google Scholar
Sanborn, J. Z. et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc. Natl Acad. Sci. USA 112, 10995–11000 (2015).
Article PubMed PubMed Central CAS Google Scholar
Witkiewicz, A. K. et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 6, 6744 (2015).
Article PubMed CAS Google Scholar
Chun, S. & Fay, J. C. Identification of deleterious mutations within three human genomes. Genome Res. 19, 1553–1561 (2009).
Article PubMed PubMed Central CAS Google Scholar
Shihab, H. A., Gough, J., Cooper, D. N., Day, I. N. & Gaunt, T. R. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics 29, 1504–1510 (2013).
Article PubMed PubMed Central CAS Google Scholar
Cancer Genome Atlas Research, N. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).
Article CAS Google Scholar
Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).
Article PubMed PubMed Central CAS Google Scholar
Ward, A. F., Braun, B. S. & Shannon, K. M. Targeting oncogenic Ras signaling in hematologic malignancies. Blood 120, 3397–3406 (2012).
Article PubMed PubMed Central CAS Google Scholar
Evans, E. K. et al. BLU-285, the first selective inhibitor of PDGFR alpha D842V and KIT Exon 17 mutants. Cancer Res. 75, 2015, Abstract nr 791.
Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).
Article PubMed CAS Google Scholar
Li, Z. et al. Next-generation sequencing reveals clinically actionable molecular markers in myeloid sarcoma. Leukemia 29, 2113–2116 (2015).
Article PubMed PubMed Central CAS Google Scholar
Pastoret, C. et al. Detection of clonal heterogeneity and targetable mutations in myeloid sarcoma by high-throughput sequencing. Leuk. Lymphoma 58, 1008–1012 (2017).
Article PubMed Google Scholar
Download references
AcknowledgementsThis study was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare,
Republic of Korea (Grant number: HI14C1277).
Author informationAuthors and Affiliations Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
Mihong Choi, Junshik Hong, Dong-Yeop Shin, Inho Kim, Sung-Soo Yoon & Youngil Koh
Department of Pathology, Seoul National University Hospital, Seoul, Korea
Yoon Kyung Jeon
Development Group, Samsung SDS, Seoul, Korea
Choong-Hyun Sun
Department of Bioinformatics, Seoul National University Hospital, Seoul, Korea
Hong-Seok Yun
AuthorsMihong ChoiView author publications You can also search for this author inPubMed Google Scholar
Yoon Kyung JeonView author publications You can also search for this author inPubMed Google Scholar
Choong-Hyun SunView author publications You can also search for this author inPubMed Google Scholar
Hong-Seok YunView author publications You can also search for this author inPubMed Google Scholar
Junshik HongView author publications You can also search for this author inPubMed Google Scholar
Dong-Yeop ShinView author publications You can also search for this author inPubMed Google Scholar
Inho KimView author publications You can also search for this author inPubMed Google Scholar
Sung-Soo YoonView author publications You can also search for this author inPubMed Google Scholar
Youngil KohView author publications You can also search for this author inPubMed Google Scholar
Corresponding author Correspondence to Youngil Koh.
Ethics declarations Conflict of interestThe authors declare that they have no conflict of interest.
Additional informationPublisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary materialSupplementarlyinformationRights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and permissions
About this articleCite this article Choi, M., Jeon, Y.K., Sun, CH. et al. RTK-RAS pathway mutation is enriched in myeloid sarcoma. Blood Cancer Journal 8, 43 (2018).
https://doi.org/10.1038/s41408-018-0083-6
Download citation
Received: 17 November 2017
Revised: 19 December 2017
Accepted: 09 January 2018
Published: 23 May 2018
DOI: https://doi.org/10.1038/s41408-018-0083-6
Share this article Anyone you share the following link with will be able to read this content:
Get shareable link Sorry, a shareable link is not currently available for this article.
Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative