The application of single-cell sequencing in pancreatic neoplasm: analysis, diagnosis and treatment

The application of single-cell sequencing in pancreatic neoplasm: analysis, diagnosis and treatment

Play all audios:

Loading...

ABSTRACT Pancreatic neoplasms, including pancreatic ductal adenocarcinoma (PDAC), intraductal papillary mucinous neoplasm (IPMN) and pancreatic cystic neoplasms (PCNs), are the most puzzling


diseases. Numerous studies have not brought significant improvements in prognosis and diagnosis, especially in PDAC. One important reason is that previous studies only focused on


differences between patients and healthy individuals but ignored intratumoral heterogeneity. In recent years, single-cell sequencing techniques, represented by single-cell RNA sequencing


(scRNA-seq), have emerged by which researchers can analyse each cell in tumours instead of their average levels. Herein, we summarise the new current knowledge of single-cell sequencing in


pancreatic neoplasms with respect to techniques, tumour heterogeneities and treatments. Access through your institution Buy or subscribe This is a preview of subscription content, access via


your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 24 print issues and online access $259.00 per year only $10.79 per issue Learn more Buy


this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *


Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS SINGLE-CELL PROFILING TO EXPLORE PANCREATIC CANCER


HETEROGENEITY, PLASTICITY AND RESPONSE TO THERAPY Article 23 March 2023 SINGLE-CELL PROFILING REVEALS DIFFERENCES BETWEEN HUMAN CLASSICAL ADENOCARCINOMA AND MUCINOUS ADENOCARCINOMA Article


Open access 23 January 2023 TUMOR ORGANOIDS IMPROVE MUTATION DETECTION OF PANCREATIC DUCTAL ADENOCARCINOMA Article Open access 26 October 2024 DATA AVAILABILITY Not applicable. REFERENCES *


Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34. https://doi.org/10.3322/caac.21551. e-pub ahead of print 2019/01/09. Article  Google Scholar  * Rahib


L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the


United States. Cancer Res. 2014;74:2913–21. https://doi.org/10.1158/0008-5472.CAN-14-0155. Article  CAS  Google Scholar  * Grossberg AJ, Chu LC, Deig CR, Fishman EK, Hwang WL, Maitra A, et


al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J Clin. 2020;70:375–403. https://doi.org/10.3322/caac.21626. e-pub ahead of print


2020/07/20. Article  Google Scholar  * Milan M, Diaferia GR, Natoli G. Tumor cell heterogeneity and its transcriptional bases in pancreatic cancer: a tale of two cell types and their many


variants. EMBO J. 2021;40:e107206 https://doi.org/10.15252/embj.2020107206. Article  CAS  Google Scholar  * Belle JI, DeNardo DG. A single-cell window into pancreas cancer fibroblast


heterogeneity. Cancer Discov. 2019;9:1001–2. https://doi.org/10.1158/2159-8290.CD-19-0576. Article  CAS  Google Scholar  * Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer.


Lancet. 2020;395:2008–20. https://doi.org/10.1016/s0140-6736(20)30974-0. e-pub ahead of print 2020/07/01. Article  CAS  Google Scholar  * Paik DT, Cho S, Tian L, Chang HY, Wu JC. Single-cell


RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol. 2020;17:457–73. https://doi.org/10.1038/s41569-020-0359-y. Article  CAS  Google Scholar  * Islam S,


Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;11:163–6. https://doi.org/10.1038/nmeth.2772.


Article  CAS  Google Scholar  * Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013;14:618–30.


https://doi.org/10.1038/nrg3542. Article  CAS  Google Scholar  * Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 2018;14:479–92.


https://doi.org/10.1038/s41581-018-0021-7. Article  CAS  Google Scholar  * Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single


cell. Nat Methods. 2009;6:377–82. https://doi.org/10.1038/nmeth.1315. Article  CAS  Google Scholar  * Korin B, Chung J-J, Avraham S, Shaw AS. Preparation of single-cell suspensions of mouse


glomeruli for high-throughput analysis. Nat Protoc. 2021;16:4068–83. https://doi.org/10.1038/s41596-021-00578-2. Article  CAS  Google Scholar  * Dillies M-A, Rau A, Aubert J,


Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform.


2013;14:671–83. https://doi.org/10.1093/bib/bbs046. Article  CAS  Google Scholar  * Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive


full-length transcriptome profiling in single cells. Nat Methods. 2013;10:1096–8. https://doi.org/10.1038/nmeth.2639. Article  CAS  Google Scholar  * Picelli S, Björklund AK, Reinius B,


Sagasser S, Winberg G, Sandberg R. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 2014;24:2033–40. https://doi.org/10.1101/gr.177881.114.


Article  CAS  Google Scholar  * Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter


droplets. Cell. 2015;161:1202–14. https://doi.org/10.1016/j.cell.2015.05.002. Article  CAS  Google Scholar  * Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al.


Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science (N. Y, NY). 2014;343:776–9. https://doi.org/10.1126/science.1247651. Article  CAS 


Google Scholar  * Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016;17:77


https://doi.org/10.1186/s13059-016-0938-8. Article  Google Scholar  * Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA


sequencing methods. Mol Cell. 2017; 65. https://doi.org/10.1016/j.molcel.2017.01.023. * Lun ATL, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell


RNA-seq data with bioconductor. F1000Research. 2016;5:2122. Google Scholar  * Chan TE, Stumpf MPH, Babtie AC. Gene regulatory network inference from single-cell data using multivariate


information measures. Cell Syst. 2017; 5. https://doi.org/10.1016/j.cels.2017.08.014. * Büttner M, Miao Z, Wolf FA, Teichmann SA, Theis FJ. A test metric for assessing single-cell RNA-seq


batch correction. Nat Methods. 2019;16:43–9. https://doi.org/10.1038/s41592-018-0254-1. Article  Google Scholar  * van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al.


Recovering gene interactions from single-cell data using data diffusion. Cell. 2018; 174; https://doi.org/10.1016/j.cell.2018.05.061. * Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep


generative modeling for single-cell transcriptomics. Nat Methods. 2018;15:1053–8. https://doi.org/10.1038/s41592-018-0229-2. Article  CAS  Google Scholar  * Huang M, Wang J, Torre E, Dueck


H, Shaffer S, Bonasio R, et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods. 2018;15:539–42. https://doi.org/10.1038/s41592-018-0033-z. Article  CAS  Google


Scholar  * Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with harmony. Nat Methods. 2019;16:1289–96.


https://doi.org/10.1038/s41592-019-0619-0. Article  CAS  Google Scholar  * Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive Integration of single-cell


data. Cell. 2019; 177, https://doi.org/10.1016/j.cell.2019.05.031. * Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, et al. A benchmark of batch-effect correction methods for


single-cell RNA sequencing data. Genome Biol. 2020;21:12 https://doi.org/10.1186/s13059-019-1850-9. Article  CAS  Google Scholar  * Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A,


Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187–201. https://doi.org/10.1016/j.cell.2015.04.044. Article  CAS  Google


Scholar  * Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res 2008;9:2579–2605. * McInnes L, Healy J, Melville J. Umap: uniform manifold approximation and projection


for dimension reduction. 2018. https://doi.org/10.48550/arXiv.1802.03426. * Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech:


theory Exp. 2008;2008:P10008. Article  Google Scholar  * Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S. Visualization and analysis of single-cell RNA-seq data by kernel-based


similarity learning. Nat Methods. 2017;14:414–6. https://doi.org/10.1038/nmeth.4207. Article  CAS  Google Scholar  * Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al.


The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6. https://doi.org/10.1038/nbt.2859. Article  CAS 


Google Scholar  * Yao Z, Mich JK, Ku S, Menon V, Krostag A-R, Martinez RA, et al. A single-cell roadmap of lineage bifurcation in human esc models of embryonic brain development. Cell Stem


Cell. 2017;20:120–34. https://doi.org/10.1016/j.stem.2016.09.011. Article  CAS  Google Scholar  * Xie P, Gao M, Wang C, Zhang J, Noel P, Yang C, et al. SuperCT: a supervised-learning


framework for enhanced characterization of single-cell transcriptomic profiles. Nucleic Acids Res. 2019;47:e48 https://doi.org/10.1093/nar/gkz116. e-pub ahead of print 2019/02/26. Article 


CAS  Google Scholar  * Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data across data sets. Nat Methods. 2018;15:359–62. https://doi.org/10.1038/nmeth.4644. Article


  CAS  Google Scholar  * Zanini F, Berghuis BA, Jones RC, Nicolis di Robilant B, Nong RY, Norton JA, et al. Northstar enables automatic classification of known and novel cell types from


tumor samples. Sci Rep. 2020;10:15251. https://doi.org/10.1038/s41598-020-71805-1. Article  CAS  Google Scholar  * Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, et al. Genomic and


functional approaches to understanding cancer aneuploidy. Cancer Cell. 2018; 33, https://doi.org/10.1016/j.ccell.2018.03.007. * Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM,


Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science (N. Y, NY). 2014;344:1396–401. https://doi.org/10.1126/science.1254257. Article


  CAS  Google Scholar  * Fan J, Lee H-O, Lee S, Ryu D-E, Lee S, Xue C, et al. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data.


Genome Res. 2018;28:1217–27. https://doi.org/10.1101/gr.228080.117. Article  CAS  Google Scholar  * Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy number and


clonal substructure in human tumors from single-cell transcriptomes. Nat Biotechnol. 2021;39:599–608. https://doi.org/10.1038/s41587-020-00795-2. Article  CAS  Google Scholar  * Kiselev VY,


Andrews TS, Hemberg M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet. 2019;20:273–82. https://doi.org/10.1038/s41576-018-0088-9. e-pub ahead of print


2019/01/09. Article  CAS  Google Scholar  * Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SGH, Hoadley KA, et al. Virtual microdissection identifies distinct tumor- and stroma-specific


subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47:1168–78. https://doi.org/10.1038/ng.3398. Article  CAS  Google Scholar  * Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N,


Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20:1218–49. Article  CAS  Google Scholar  * Peng J, Sun B-F, Chen C-Y, Zhou J-Y, Chen Y-S, Chen H, et


al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019;29:725–38.


https://doi.org/10.1038/s41422-019-0195-y. Article  CAS  Google Scholar  * Juiz N, Elkaoutari A, Bigonnet M, Gayet O, Roques J, Nicolle R, et al. Basal-like and classical cells coexist in


pancreatic cancer revealed by single-cell analysis on biopsy-derived pancreatic cancer organoids from the classical subtype. FASEB J. 2020;34:12214–28.


https://doi.org/10.1096/fj.202000363RR. Article  CAS  Google Scholar  * Tiriac H, Plenker D, Baker LA, Tuveson DA Organoid models for translational pancreatic cancer research. Curr Opin


Genet Dev. 2019; 54, https://doi.org/10.1016/j.gde.2019.02.003. * Hosein AN, Huang H, Wang Z, Parmar K, Du W, Huang J, et al. Cellular heterogeneity during mouse pancreatic ductal


adenocarcinoma progression at single-cell resolution. JCI Insight. 2019; 5, https://doi.org/10.1172/jci.insight.129212. * Wang M, Estrella JS, Katz MH, Kim M, Rashid A, Lee JE, et al.


Expression of epithelial-mesenchymal transition markers in treated pancreatic ductal adenocarcinoma. Pancreas. 2019;48:1367–72. https://doi.org/10.1097/MPA.0000000000001432. Article  CAS 


Google Scholar  * Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XHF. Metastasis organotropism: redefining the congenial soil. Dev Cell. 2019;49:375–91.


https://doi.org/10.1016/j.devcel.2019.04.012. Article  CAS  Google Scholar  * Chen Y-I, Chang C-C, Hsu M-F, Jeng Y-M, Tien Y-W, Chang M-C, et al. Homophilic ATP1A1 binding induces activin A


secretion to promote EMT of tumor cells and myofibroblast activation. Nat Commun. 2022;13:2945. https://doi.org/10.1038/s41467-022-30638-4. Article  CAS  Google Scholar  * Lin W, Noel P,


Borazanci EH, Lee J, Amini A, Han IW, et al. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions.


Genome Med. 2020;12:80 https://doi.org/10.1186/s13073-020-00776-9. Article  CAS  Google Scholar  * Xu Q, Chen S, Hu Y, Huang W. Single-cell RNA transcriptome reveals the intra-tumoral


heterogeneity and regulators underlying tumor progression in metastatic pancreatic ductal adenocarcinoma. Cell Death Discov. 2021;7:331. https://doi.org/10.1038/s41420-021-00663-1. e-pub


ahead of print 2021/11/05. Article  CAS  Google Scholar  * McDonald OG, Maitra A, Hruban RH. Human correlates of provocative questions in pancreatic pathology. Adv Anat Pathol.


2012;19:351–62. https://doi.org/10.1097/PAP.0b013e318273f998. Article  Google Scholar  * Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, et al. Epithelial-to-mesenchymal


transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–30. https://doi.org/10.1038/nature16064. Article  CAS  Google Scholar  *


Carstens JL, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews KM, et al. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver


metastasis in pancreatic cancer. Cell Rep. 2021;35:108990. https://doi.org/10.1016/j.celrep.2021.108990. Article  CAS  Google Scholar  * Yao D, Dai C, Peng S. Mechanism of the


mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res: MCR. 2011;9:1608–20. https://doi.org/10.1158/1541-7786.MCR-10-0568. Article  CAS 


Google Scholar  * Lu W, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell. 2019;49:361–74. https://doi.org/10.1016/j.devcel.2019.04.010. Article  CAS 


Google Scholar  * Pan H, Diao H, Zhong W, Wang T, Wen P, Wu C. A cancer cell cluster marked by LincRNA MEG3 leads pancreatic ductal adenocarcinoma metastasis. Front Oncol. 2021;11:656564.


https://doi.org/10.3389/fonc.2021.656564. e-pub ahead of print 2021/06/01. Article  Google Scholar  * Yang Y. Current status and future prospect of surgical treatment for pancreatic cancer.


Hepatobiliary Surg Nutr. 2020;9:89–91. https://doi.org/10.21037/hbsn.2019.12.04. Article  Google Scholar  * Chen K, Wang Q, Li M, Guo H, Liu W, Wang F, et al. Single-cell RNA-seq reveals


dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. EBioMedicine. 2021;66:103315 https://doi.org/10.1016/j.ebiom.2021.103315. Article  CAS


  Google Scholar  * Hosein AN, Dangol G, Okumura T, Roszik J, Rajapakshe K, Siemann M, et al. Loss of Rnf43 accelerates Kras-mediated neoplasia and remodels the tumor immune microenvironment


in pancreatic adenocarcinoma. Gastroenterology. 2022;162:1303–18. https://doi.org/10.1053/j.gastro.2021.12.273. e1318e-pub ahead of print 2022/01/02. Article  CAS  Google Scholar  *


Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015;6:263.


https://doi.org/10.3389/fimmu.2015.00263. Article  Google Scholar  * Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, et al. CXCR2 inhibition profoundly suppresses


metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell. 2016;29:832–45. https://doi.org/10.1016/j.ccell.2016.04.014. Article  CAS  Google Scholar  * Li A,


King J, Moro A, Sugi MD, Dawson DW, Kaplan J, et al. Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer. Am J Pathol. 2011;178:1340–9.


https://doi.org/10.1016/j.ajpath.2010.11.058. Article  CAS  Google Scholar  * Chen Z, Hambardzumyan D. Macrophage-tumor cell intertwine drives the transition into a mesenchymal-like cellular


state of glioblastoma. Cancer Cell. 2021;39:743–5. https://doi.org/10.1016/j.ccell.2021.05.003. e-pub ahead of print 2021/06/05. Article  CAS  Google Scholar  * Lee JJ, Bernard V, Semaan A,


Monberg ME, Huang J, Stephens BM, et al. Elucidation of tumor-stromal heterogeneity and the ligand-receptor interactome by single-cell transcriptomics in real-world pancreatic cancer


biopsies. Clin Cancer Res. 2021;27:5912–21. https://doi.org/10.1158/1078-0432.CCR-20-3925. e-pub ahead of print 2021/08/25. Article  CAS  Google Scholar  * Garrido-Laguna I, Hidalgo M.


Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat Rev Clin Oncol. 2015;12:319–34. https://doi.org/10.1038/nrclinonc.2015.53. Article  CAS  Google Scholar


  * Erkan M, Hausmann S, Michalski CW, Fingerle AA, Dobritz M, Kleeff J, et al. The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol


Hepatol. 2012;9:454–67. https://doi.org/10.1038/nrgastro.2012.115. Article  CAS  Google Scholar  * Feig C, Jones JO, Kraman M, Wells RJB, Deonarine A, Chan DS, et al. Targeting CXCL12 from


FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA. 2013;110:20212–7.


https://doi.org/10.1073/pnas.1320318110. Article  CAS  Google Scholar  * Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C, Simpson TR, et al. Depletion of carcinoma-associated


fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25:719–34. https://doi.org/10.1016/j.ccr.2014.04.005. Article 


Google Scholar  * Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting


cancer-associated fibroblasts. Cancer Discov. 2019;9:1102–23. https://doi.org/10.1158/2159-8290.Cd-19-0094. e-pub ahead of print 2019/06/15. Article  CAS  Google Scholar  * Huang H, Wang Z,


Zhang Y, Pradhan RN, Ganguly D, Chandra R, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer.


Cancer Cell. 2022;40:656–73. https://doi.org/10.1016/j.ccell.2022.04.011. e657e-pub ahead of print 2022/05/07. Article  CAS  Google Scholar  * McAndrews KM, Chen Y, Darpolor JK, Zheng X,


Yang S, Carstens JL, et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct il6-mediated therapy resistance in pancreatic cancer. Cancer Discov.


2022;12:1580–97. https://doi.org/10.1158/2159-8290.CD-20-1484. Article  CAS  Google Scholar  * Wang LM, Silva MA, D’Costa Z, Bockelmann R, Soonawalla Z, Liu S, et al. The prognostic role of


desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:4183–94. https://doi.org/10.18632/oncotarget.6770. Article  Google Scholar  * Laklai H, Miroshnikova YA, Pickup


MW, Collisson EA, Kim GE, Barrett AS, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med. 2016;22:497–505.


https://doi.org/10.1038/nm.4082. Article  CAS  Google Scholar  * Wang Y, Liang Y, Xu H, Zhang X, Mao T, Cui J, et al. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a


novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discov. 2021;7:36. https://doi.org/10.1038/s41421-021-00271-4. e-pub ahead of print


2021/05/27. Article  CAS  Google Scholar  * Dominguez CX, Müller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15


myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 2020;10:232–53. https://doi.org/10.1158/2159-8290.CD-19-0644. Article  CAS  Google Scholar  *


Calon A, Espinet E, Palomo-Ponce S, Tauriello DVF, Iglesias M, Céspedes MV, et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.


Cancer Cell. 2012;22:571–84. https://doi.org/10.1016/j.ccr.2012.08.013. Article  CAS  Google Scholar  * Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ


attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8. https://doi.org/10.1038/nature25501. Article  CAS  Google Scholar  * Ståhl PL,


Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353:78–82.


https://doi.org/10.1126/science.aaf2403. Article  Google Scholar  * Saiselet M, Rodrigues-Vitória J, Tourneur A, Craciun L, Spinette A, Larsimont D, et al. Transcriptional output, cell-type


densities, and normalization in spatial transcriptomics. J Mol Cell Biol. 2020;12:906–8. https://doi.org/10.1093/jmcb/mjaa028. Article  Google Scholar  * Moncada R, Barkley D, Wagner F,


Chiodin M, Devlin JC, Baron M, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat


Biotechnol. 2020;38:333–42. https://doi.org/10.1038/s41587-019-0392-8. Article  CAS  Google Scholar  * Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H. SPOTlight: seeded NMF regression to


deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 2021;49:e50 https://doi.org/10.1093/nar/gkab043. Article  CAS  Google Scholar  * Pantel K,


Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8:329–40. https://doi.org/10.1038/nrc2375.


Article  CAS  Google Scholar  * Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT, et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by


pancreatic circulating tumor cells. Cell Rep. 2014;8:1905–18. https://doi.org/10.1016/j.celrep.2014.08.029. Article  CAS  Google Scholar  * Lapin M, Tjensvoll K, Oltedal S, Javle M, Smaaland


R, Gilje B, et al. Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells. BMC Cancer. 2017;17:390


https://doi.org/10.1186/s12885-017-3385-3. Article  Google Scholar  * Lapin M, Tjensvoll K, Oltedal S, Buhl T, Gilje B, Smaaland R, et al. MINDEC-an enhanced negative depletion strategy for


circulating tumour cell enrichment. Sci Rep. 2016;6:28929. https://doi.org/10.1038/srep28929. Article  CAS  Google Scholar  * Zhu L, Kan K-J, Grün JL, Hissa B, Yang C, Győrffy B, et al.


GAS2L1 is a potential biomarker of circulating tumor cells in pancreatic cancer. Cancers. 2020; 12; https://doi.org/10.3390/cancers12123774. * Dimitrov-Markov S, Perales-Patón J, Bockorny B,


Dopazo A, Muñoz M, Baños N, et al. Discovery of new targets to control metastasis in pancreatic cancer by single-cell transcriptomics analysis of circulating tumor cells. Mol Cancer Ther.


2020;19:1751–60. https://doi.org/10.1158/1535-7163.MCT-19-1166. Article  CAS  Google Scholar  * Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021; 71;


https://doi.org/10.3322/caac.21654. * Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature.


2010;467:1114–7. https://doi.org/10.1038/nature09515. Article  CAS  Google Scholar  * Basturk O, Hong S-M, Wood LD, Adsay NV, Albores-Saavedra J, Biankin AV, et al. A revised classification


system and recommendations from the baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surgical Pathol. 2015;39:1730–41.


https://doi.org/10.1097/PAS.0000000000000533. Article  Google Scholar  * Bernard V, Semaan A, Huang J, San Lucas FA, Mulu FC, Stephens BM, et al. Single-cell transcriptomics of pancreatic


cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res. 2019;25:2194–205.


https://doi.org/10.1158/1078-0432.Ccr-18-1955. e-pub ahead of print 2018/11/06. Article  CAS  Google Scholar  * Kuboki Y, Fischer CG, Beleva Guthrie V, Huang W, Yu J, Chianchiano P, et al.


Single-cell sequencing defines genetic heterogeneity in pancreatic cancer precursor lesions. J Pathol. 2019;247:347–56. https://doi.org/10.1002/path.5194. Article  CAS  Google Scholar  *


Kopp JL, von Figura G, Mayes E, Liu F-F, Dubois CL, Morris JP, et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic


ductal adenocarcinoma. Cancer Cell. 2012;22:737–50. https://doi.org/10.1016/j.ccr.2012.10.025. Article  CAS  Google Scholar  * Schlesinger Y, Yosefov-Levi O, Kolodkin-Gal D, Granit RZ,


Peters L, Kalifa R, et al. Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells’ heterogeneity. Nat Commun. 2020;11:4516.


https://doi.org/10.1038/s41467-020-18207-z. Article  CAS  Google Scholar  * Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in


patients with advanced cancer. N Engl J Med. 2012;366:2455–65. https://doi.org/10.1056/NEJMoa1200694. Article  CAS  Google Scholar  * Lu C, Paschall AV, Shi H, Savage N, Waller JL,


Sabbatini ME, et al. The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J Natl Cancer Inst. 2017; 109, https://doi.org/10.1093/jnci/djw283. * Sanmamed MF,


Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175:313–26. https://doi.org/10.1016/j.cell.2018.09.035. Article  CAS  Google Scholar  * Blando


J, Sharma A, Higa MG, Zhao H, Vence L, Yadav SS, et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc


Natl Acad Sci USA. 2019;116:1692–7. https://doi.org/10.1073/pnas.1811067116. Article  CAS  Google Scholar  * Pan Y, Lu F, Fei Q, Yu X, Xiong P, Yu X, et al. Single-cell RNA sequencing


reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer. J Hematol Oncol. 2019;12:124


https://doi.org/10.1186/s13045-019-0822-6. Article  CAS  Google Scholar  * Heilmann AM, Perera RM, Ecker V, Nicolay BN, Bardeesy N, Benes CH, et al. CDK4/6 and IGF1 receptor inhibitors


synergize to suppress the growth of p16INK4A-deficient pancreatic cancers. Cancer Res. 2014;74:3947–58. https://doi.org/10.1158/0008-5472.CAN-13-2923. Article  CAS  Google Scholar  * Franco


J, Witkiewicz AK, Knudsen ES. CDK4/6 inhibitors have potent activity in combination with pathway selective therapeutic agents in models of pancreatic cancer. Oncotarget. 2014;5:6512–25.


Article  Google Scholar  * Knudsen ES, Witkiewicz AK. The strange case of CDK4/6 inhibitors: mechanisms, resistance, and combination strategies. Trends Cancer. 2017;3:39–55.


https://doi.org/10.1016/j.trecan.2016.11.006. Article  CAS  Google Scholar  * Knudsen ES, Kumarasamy V, Chung S, Ruiz A, Vail P, Tzetzo S, et al. Targeting dual signalling pathways in


concert with immune checkpoints for the treatment of pancreatic cancer. Gut. 2021;70:127–38. https://doi.org/10.1136/gutjnl-2020-321000. Article  CAS  Google Scholar  * Panagi M, Voutouri C,


Mpekris F, Papageorgis P, Martin MR, Martin JD, et al. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor


immunity. Theranostics. 2020;10:1910–22. https://doi.org/10.7150/thno.36936. Article  CAS  Google Scholar  * Minami Y, Nishida N, Kudo M. Radiofrequency ablation of liver metastasis:


potential impact on immune checkpoint inhibitor therapy. Eur Radio. 2019;29:5045–51. https://doi.org/10.1007/s00330-019-06189-6. Article  Google Scholar  * Fei Q, Pan Y, Lin W, Zhou Y, Yu X,


Hou Z, et al. High-dimensional single-cell analysis delineates radiofrequency ablation induced immune microenvironmental remodeling in pancreatic cancer. Cell Death Dis. 2020;11:589


https://doi.org/10.1038/s41419-020-02787-1. Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS The authors thank Dr. Le Li for assistance with his comments and proof reading


that greatly improved the manuscript. This paper was supported by grants from the National Natural Scientific Foundation of China (81770639,82070657), Applied technology research and


development project of Heilongjiang Province (GA20C019), Outstanding youth funds of the first affiliated hospital of Harbin Medical University (HYD2020JQ0006), and Research projects of


Chinese Research Hospital Association (Y2019FH-DTCC-SB1). AUTHOR INFORMATION Author notes * These authors contributed equally: Gaoyuan Lv, Liang Zhang. AUTHORS AND AFFILIATIONS * Department


of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 150000, Harbin, Heilongjiang Province, China Gaoyuan Lv, Liang Zhang, Lei Gao, Jitao Cui, 


Ziying Liu, Bei Sun & Gang Wang * Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China Gaoyuan Lv 


& Gang Wang * Chinese Journal of Practical Surgery, Chinese Medical University, Shenyang, China Qiushi Tang Authors * Gaoyuan Lv View author publications You can also search for this


author inPubMed Google Scholar * Liang Zhang View author publications You can also search for this author inPubMed Google Scholar * Lei Gao View author publications You can also search for


this author inPubMed Google Scholar * Jitao Cui View author publications You can also search for this author inPubMed Google Scholar * Ziying Liu View author publications You can also search


for this author inPubMed Google Scholar * Bei Sun View author publications You can also search for this author inPubMed Google Scholar * Gang Wang View author publications You can also


search for this author inPubMed Google Scholar * Qiushi Tang View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS All authors were involved in


acquired data, interpreted the results, reviewed literature, drafted and revised the manuscript and agrees to be accountable for all aspects of the work. CORRESPONDING AUTHORS Correspondence


to Gang Wang or Qiushi Tang. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ETHICS APPROVAL AND CONSENT TO PARTICIPATE Not applicable. CONSENT FOR


PUBLICATION Not applicable. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other


rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lv, G., Zhang, L., Gao, L. _et al._ The application of single-cell sequencing in pancreatic neoplasm: analysis, diagnosis and treatment. _Br


J Cancer_ 128, 206–218 (2023). https://doi.org/10.1038/s41416-022-02023-x Download citation * Received: 01 April 2022 * Revised: 11 October 2022 * Accepted: 12 October 2022 * Published: 28


October 2022 * Issue Date: 19 January 2023 * DOI: https://doi.org/10.1038/s41416-022-02023-x SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content:


Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative