High dynamism for neo-sex chromosomes: satellite dnas reveal complex evolution in a grasshopper

High dynamism for neo-sex chromosomes: satellite dnas reveal complex evolution in a grasshopper

Play all audios:

Loading...

ABSTRACT A common characteristic of sex chromosomes is the accumulation of repetitive DNA, which accounts for their diversification and degeneration. In grasshoppers, the X0 sex-determining


system in males is considered ancestral. However, in some species, derived variants like neo-XY in males evolved several times independently by Robertsonian translocation. This is the case


of _Ronderosia bergii_, in which further large pericentromeric inversion in the neo-Y also took place, making this species particularly interesting for investigating sex chromosome


evolution. Here, we characterized the satellite DNAs (satDNAs) and transposable elements (TEs) of the species to investigate the quantitative differences in repeat composition between male


and female genomes putatively associated with sex chromosomes. We found a total of 53 satDNA families and 56 families of TEs. The satDNAs were 13.5% more abundant in males than in females,


while TEs were just 1.02% more abundant in females. These results imply differential amplification of satDNAs on neo-Y chromosome and a minor role of TEs in sex chromosome differentiation.


We showed highly differentiated neo-XY sex chromosomes owing to major amplification of satDNAs in neo-Y. Furthermore, chromosomal mapping of satDNAs suggests high turnover of neo-sex


chromosomes in _R. bergii_ at the intrapopulation level, caused by multiple paracentric inversions, amplifications, and transpositions. Finally, the species is an example of the action of


repetitive DNAs in the generation of variability for sex chromosomes after the suppression of recombination, and helps understand sex chromosome evolution at the intrapopulation level. You


have full access to this article via your institution. Download PDF SIMILAR CONTENT BEING VIEWED BY OTHERS SATELLITOME ANALYSIS ON THE PALE-BREASTED THRUSH _TURDUS LEUCOMELAS_


(PASSERIFORMES; TURDIDAE) UNCOVERS THE PUTATIVE CO-EVOLUTION OF SEX CHROMOSOMES AND SATELLITE DNAS Article Open access 04 September 2024 INDEPENDENT EVOLUTION OF SATELLITE DNA SEQUENCES IN


HOMOLOGOUS SEX CHROMOSOMES OF NEOTROPICAL ARMORED CATFISH (_HARTTIA_) Article Open access 30 March 2025 EVOLUTION OF A PLANT SEX CHROMOSOME DRIVEN BY EXPANDING PERICENTROMERIC RECOMBINATION


SUPPRESSION Article Open access 16 January 2024 INTRODUCTION Sex chromosomes are some of the most dynamic parts of genomes, including their repetitive DNA content (Steinemann and Steinemann


2005; Graves 2008; Matsunaga 2009; Hobza et al. 2017). Across diverse taxa, these chromosomes have originated independently from ordinary pairs of autosomes during evolution, but they


present similar evolutionary fates (Bachtrog et al. 2011; Bachtrog 2013; Wright et al. 2016; Charlesworth 2017). Current models suggest that sex chromosomes evolved by acquiring a major


sex-determining locus in the proto-Y or proto-W in the heterogametic sexes. Next, the accumulation of sexually antagonistic loci whose fitness consequences are in opposition between sexes,


may favor recombination reduction followed by recombination suppression and repetitive DNA accumulation, resulting in mutational decay and gene loss in the sex-limited region of the Y or W


chromosomes (Bachtrog et al. 2014; Wright et al. 2016; Charlesworth 2017). The genetic erosion of the Y or W chromosomes may even lead to complete disappearance, or perhaps to translocation


to the autosomes (Bachtrog 2013; Blackmon and Demuth 2014, 2015; Blackmon et al. 2017; Daish and Grützner 2019). Cases of loss of the heteromorphic element (Y or W), leading to emergence of


X0 or Z0 sex systems, are well documented in insects and worms (Bachtrog et al. 2014; Blackmon et al. 2017; Daish and Grützner 2019), yet the persistence of Y or W chromosomes in many


insects suggests that they may arise de novo by fusion of the ancestral X or Z with autosomes. This results in newly evolved neo-sex chromosomes (Charlesworth et al. 2005; Veltsos et al.


2008), like those neo-XY, neo-ZW, and multiple sex systems as reported in orthopterans and lepidopterans (Bidau and Marti 2001; Traut et al. 2007; Marec et al. 2010; Castillo et al. 2010a;


Blackmon et al. 2017). However, despite many cytological works explaining the repeated evolution of neo-sex chromosomes across insects, a detailed molecular view of how and what kinds of


changes occur in the neo-Y is severely lacking. Among grasshoppers (_Orthoptera_), the sex-determining system X0 in males and XX in females is considered ancestral. However, in


representatives of _Melanoplinae_ (Acrididae), which is one of the largest subfamilies of Acridiae grasshoppers distributed in Eurasia and America (Chintauan-Marquier et al. 2011), a high


frequency of transition to neo-sex chromosome systems is observed (Castillo et al. 2010a). Among _Melanoplinae_ species, _Ronderosia_ genus is represented by ten valid species, which are


morphologically similar. They are commonly found in the Pampas and Atlantic forests, and some species may cause damage to agricultural crops (Cigliano et al. 2014). The highest _Ronderosia_


diversity is found in Argentina, Brazil, Paraguay, and Uruguay where most species are sympatric in restricted regions (Cigliano et al. 2018; Castillo et al. 2019). _Ronderosia_ is a


monophyletic group in which chromosomal rearrangements led to the origin of simple neo-XY and multiple neo-X1X2Y/X1X1X2X2 systems. In some representatives of _Ronderosia_, the neo-XY system


evolved several times independently by repeated centric fusion of the ancestral X with one of the autosomes. However, some species with the ancestral state of neo-XY, i.e., fusion involving


the same autosome pair with the X chromosome, have been documented (Castillo et al. 2019). Moreover, in _R. dubia_, a multiple neo-X1X2Y sex system evolved by a second centric fusion between


the neo-Y and an autosomal pair. In another _Ronderosia_ species, _R. bergii_, besides the fusion that led to the karyotype 2n = 22 and neo-XY, a large pericentric inversion on the neo-Y


and complete heterochromatinization of this element took place (Castillo et al. 2010b; Palacios-Gimenez et al. 2015, 2018). In contrast, the neo-X shows heterochromatic blocks on terminal


and pericentromeric regions, and in autosomes, the heterochromatin occupies primarily the pericentromeres. In meiosis, the neo-XY of _R. bergii_ presents synapsis and recombination limited


to the distal end of XR and short arm of neo-Y (Castillo et al. 2010a; Palacios-Gimenez et al. 2015). With the advent of high-throughput sequencing methods and bioinformatics tools, it is


possible to identify and characterize much of the repetitive portions of the genomes, allowing for a better picture about the chromosomal organization and evolution of this genomic fraction.


Recent works utilizing such approaches in many species have successfully elucidated the evolutionary history of sex chromosomes (Palacios-Gimenez et al. 2017; Lisachov et al. 2019;


Rodríguez et al. 2019; Schemberger et al. 2019). Part of the composition of the _R. bergii_ neo-Y chromosome was studied (Palacios-Gimenez et al. 2015, 2018). Using two satellite DNAs


(satDNA) as probes, the occurrence of multiple paracentric inversions in the neo-Y resulting in cryptic polymorphism in one natural population from Rio Claro, São Paulo/Brazil was revealed


(Palacios-Gimenez et al. 2018). Here we extend earlier works in _R. bergii_ (Palacios-Gimenez et al. 2015, 2018), aiming to more deeply understand the repeat composition and evolutionary


history of its intriguing neo-sex chromosomes, and the action of repetitive DNAs in the evolution of sex chromosomes after the establishment of a large chromosomal rearrangement. For this,


we characterized the composition of satDNAs and transposable elements (TEs) in this species by combining computational and cytogenetic tools, focused on the differential composition of


repeats between sexes. Our data support the accumulation of various satDNA families exclusively on the neo-Y chromosome and low differential accumulation of TEs in both sex chromosomes.


Furthermore, we provided compelling evidence for extensive reshuffling of neo-X and neo-Y at an intrapopulation level, resulting from both reorganization of satDNAs and complex chromosomal


rearrangements. We hypothesize the possible mechanisms involved in the origin of multiple variants of the neo-sex chromosomes presenting empirical data of high dynamism of a sex chromosome


after establishment of large non-recombining state. MATERIALS AND METHODS SAMPLE COLLECTION AND CHROMOSOME PREPARATIONS Males and females of _R. bergii_ were collected in the campus of São


Paulo state University in Rio Claro/São Paulo (SP), Brazil (22°24′45″ S, 47°31′28″ W). Adult males were anesthetized, and the testis follicles were dissected and fixed in modified Carnoy’s


solution (3:1, absolute ethanol: glacial acetic acid) to obtain preparation of meiotic chromosomes. Some females were maintained in captivity until oviposition. After ~15 days from egg


laying, oothecas were dissected for embryo neuroblasts obtained for mitotic chromosome acquisition, according to Webb et al. (1978). Whole animals were stored in 100% ethanol for DNA


extraction. The material was stored at −20 °C until use. The slides were obtained by maceration of follicles or embryos in a drop of 50% glacial acetic acid, followed by spreading on a hot


plate at 40–45 °C. GENOME SEQUENCING AND TRIMMING We extracted genomic DNA from femurs (saltatory legs) of one adult male harboring the neo-Y variant type II that is the most common among


adults (see Palacios-Gimenez et al. 2018), and one adult female individual using Qiagen DNeasy kit (Qiagen Inc., CA, USA), following the manufacturer’s protocol. The neo-Y variant type II is


characterized by the presence of the satDNA Rber248 (new nomenclature RbeSat25-166) proximal to the centromere in the long arm and Rber299 (new nomenclature RbeSat23-285) located in the


middle of the long arm (Palacios-Gimenez et al. 2018). The extracted DNAs were sonicated to obtain fragments of ~500 bp and used to generate the paired-end genomic library as recommended by


Illumina. The libraries were constructed following the protocol TruSeq DNA PCR-Free sample, using the kit TrueSeq DNA PCR-Free kit (Illumina Inc., San Diego, CA, USA). The libraries were


sequenced using an Illumina Hiseq 4000 platform, using a service of Macrogen Inc. (Seoul, Republic of Korea). The sequencing yielded 11,956,092 and 11,577,878 reads of 2 × 101 nt for the


male and the female individuals, respectively. We used Trimmomatic software (Bolger et al. 2014) to perform the quality trimming of the reads at Q20 and minimum length of 101 nt. The


sequencing data are deposited in GenBank under accession numbers SRX8370569 and SRX8370570. SATDNA ANALYSIS We used the sequenced genomes for comparative analysis of satDNAs, focused on


differences between sexes in order to obtain sequences enriched on neo-sex chromosomes and description of their molecular composition. Sequences enriched on neo-Y are expected to be more


represented in male (neo-XY) reads than in female (neo-XX) reads, while sequences enriched on neo-X should be putatively more represented in female than in male genomes. The differential


enrichment of satDNAs across sexes was estimated by normalizing the abundance of a given repeat in the male genome by the female genome and vice versa. We used 1.1 times more abundant as the


threshold to consider satDNA enrichment across sexes. These enriched sequences were selected for cytogenetic treatment, i.e., in FISH chromosomal mapping. For satDNA prospection, we used


the satMiner protocol (Ruiz-Ruano et al. 2016) available at GitHub (https://github.com/fjruizruano/satminer). The protocol identifies the maximum possible number of satDNAs by several rounds


of clustering in RepeatExplorer (Novák et al. 2013) followed by DeconSeq (Schmieder and Edwards 2011) to filter out reads previously assembled in RepeatExplorer. We started this analysis


with a random selection of 150,000 read pairs using rexp_prepare.py script for the male and the female genomes together as an input for comparative RepeatExplorer using default options


suggested in Ruiz-Ruano et al. (2016). Then we searched for putative satDNA clusters by selecting those clusters with a high graph density, and with a spherical or ring-like shape. Finally,


we studied the internal structure of the contigs for those clusters to search for tandem repetitions to consider them as satDNA clusters using Tandem Repeat Finder (Benson 1999) and the


dotplot tool implemented in Geneious v4.8 software (Drummond et al. 2009). Using the described analysis, sequences arranged in tandem were considered satDNAs, which was confirmed by a ladder


pattern in PCR amplification. The clustering and filtering steps were repeated five times adding 2 × 50,000 filtered reads in each interaction, until no new satDNA was detected. We searched


for homologous satDNAs, performing an all-against-all RepeatMasker (Smit et al. 2013–2015) comparison of the recovered satDNA monomers, using the “rm_homology.py” script


(https://github.com/fjruizruano/ngs-protocols). Then, we classified satDNA sequences into superfamilies, families, or variants, and named these according to Ruiz-Ruano et al. (2016). We


calculated abundance and divergence of all the recovered satDNA families in the female and in the male genomes using RepeatMasker. For this purpose, we randomly selected 11.5 million read


pairs (23 million reads per library in total) per library with the seqtk tool (https://github.com/lh3/seqtk) and aligned them against dimers of satDNA consensus sequences. For smaller


satDNAs, several monomers were concatenated, until they approximately reached the read length. We used the generated alignment files to estimate the average Kimura 2-parameter distances


(K2P) of each satDNA family using the calcDivergenceFromAlign.pl script from the RepeatMasker utility tool. Next, we calculated the genomic abundance for every satDNA family as the


proportion of nucleotides aligned with the reference consensus sequence divided by the library size. We compared the divergence of satDNAs between sexes by generating repeat landscapes,


showing the relative abundance of repeat elements on the _Y_ axis at 1% intervals of K2P distance from the consensus on the _X_ axis. Recently amplified elements are unlikely to have


accumulated a large number of mutations that differentiate them from their consensus sequences. The relative divergence thus was calculated as the K2P genetic distance between the satDNA


pair. TE CHARACTERIZATION AND QUANTIFICATION We used the dnaPipeTE pipeline (Goubert et al. 2015) freely available at GitHub (https://github.com/clemgoub/dnaPipeTE) to estimate TE abundance


and divergence across the male and female genomes. Because TEs in grasshoppers are quite abundant and frequently widely spread on euchromatin (see, e.g., Montiel et al. 2012;


Palacios-Gimenez et al. 2014), we used 5× difference in copy number as a threshold to consider TE enrichment in males and females. The sequences represented more than five times as much in


one genome were used for FISH chromosomal mapping. DnaPipeTE is a suitable tool for de novo assembly of TEs and uses low-coverage raw reads as input (<1× genome coverage). It uses Trinity


(Grabherr et al. 2011) as assembler, followed by automatic annotation and quantification of TEs in sequencing raw reads, together with the Repbase database. DnaPipeTE thus provides a good


estimate of the recent TE age distribution in a small sample of sequencing raw reads, unlike RepeatMasker that quantifies repeats with a wide range of ages in assembled genomes (Goubert et


al. 2015). To optimize the amount of sequencing data for dnaPipeTE subsampling of each genome, we selected the male genome and ran dnaPipeTE on subsamples ranging between 500,000 and


1,000,000 reads in intervals of 100,000 reads (6 runs). For each of the 6 runs in the male genome, we selected the subsample yielding the highest contig N50 metric in the Trinity assembly


step of dnaPipeTE, as a measure of optimized read subsampling. The optimized read subsample in male genomes (800,000 reads) was then used to run dnaPipeTE on the female genome. We annotated


TEs using the -RM_lib option in dnaPipeTE with Arthropoda Repbase as database and an unpublished custom-curated TE library generated from grasshopper genomes. The dnaPipeTE output landscape


graph (TE age distribution) depicts the BLASTn divergence distribution between reads and the contigs on which they map. AMPLIFICATION OF REPETITIVE SEQUENCES THROUGH PCR We selected the


sequences (satDNAs and TEs) with higher male versus female abundance differences to proceed with PCR isolation and FISH mapping (see the next few sections). We used the obtained consensus


sequences of each repeat family to design divergent primers for satDNAs and convergent ones for TEs (Supplementary File 1). Divergent primers were designed manually or using Geneious


software on conserved regions. Genomic DNA of males was used to amplify the repetitive elements by PCR using the mix: 10 × PCR Rxn Buffer, 0.2 mM MgCl2, 0.16 mM dNTPs, 2 mM of each primer, 1


 U of _Taq_ Platinum DNA Polymerase (Invitrogen, San Diego, CA, USA), and 50–100 ng/μL of template DNA. The PCR conditions included an initial denaturation at 94 °C for 5 min and 30 cycles


at 94 °C (30 s), 55 °C (30 s), and 72 °C (80 s), plus a final extension at 72 °C for 5 min. The PCR products were separated with a 1% electrophoresis agarose gel. The monomeric bands were


isolated and purified with ZymoclenTM Gel DNA Recovery Kit (Zymo Research Corp., The Epigenetics Company, USA), following the manufacturer’s recommendations, and used as a source for


reamplification through PCR. PCR products were sequenced by Sanger method using the service of Macrogen Inc. (Seoul, Republic of Korea) to check the correct amplification of desired


sequences. Sequences are deposited in GenBank under accession numbers MT501156-MT5001208. FLUORESCENCE IN SITU HYBRIDIZATION The sequences of each satDNA and TE obtained through PCR were


labeled with digoxigenin-11-dUTP (Roche, Mannheim, Germany) or biotin-14-dATP (Invitrogen) by nick translation. The telomeric probe was obtained by non-template PCR using self-complementary


primers (TTAGG)5 and (CCTAA)5 according to Ijdo et al. (1991). Unstained slides of mitotic or meiotic preparations were used for single or two-color FISH following the Pinkel et al. (1986)


protocol with modifications (Cabral-de-Mello 2015). Probes labeled with digoxigenin-11-dUTP were detected using anti-digoxigenin-Rhodamine (Roche), while probes labeled with biotin-14-dATP


were detected with Streptavidin Alexa Fluor 488-conjugated (Invitrogen). After FISH, preparations were counterstained with 4′,6-diamidino-2′-phenylindole (DAPI) and mounted in VECTASHIELD


(Vector, Burlingame, CA, USA). The slides were observed using an Olympus microscope BX61 equipped with fluorescence lamp and appropriate filters. The images were documented with a


DP70-cooled digital camera in grayscale and then pseudo-colored. Images were merged and optimized for brightness and contrast with Adobe Photoshop CS6. To describe the patterns of satDNA and


TE distribution, at least 15 metaphases were analyzed. EXPERIMENTAL DESIGN FOR ANALYSIS OF NEO-SEX CHROMOSOME VARIABILITY THROUGH SATDNA LOCATION First, we mapped the satDNAs with


differential abundance between male and female genomes in meiotic cells (metaphase I) of one adult individual harboring the neo-Y variant type II, which is the most common variant among


adults (Palacios-Gimenez et al. 2018). After bearing in mind the variability for the neo-Y chromosome reported by Palacios-Gimenez et al. (2018), we mapped satDNAs with signals on neo-Y or


neo-X chromosomes plus satDNAs Rber248 (new nomenclature RbeSat25-166), Rber299 (new nomenclature RbeSat23-285), and telomere motif in embryos from the same and from different ootheca to


check the variability of sex chromosomes. We used a total of 20 embryos, eight selected randomly from distinct oothecas, and 12 selected from four individual oothecas (three per ootheca).


Each embryo was used to produce nine slides, to allow the mapping of all satDNAs and telomeric probe by two-color FISH. This enabled us to define the position of each satDNA on the neo-Y and


neo-X. We then performed an experiment to check the satDNA location and its relation on the neo-Y chromosome. For this, we used two slides prepared from the same embryo (with the most


common neo-Y chromosome), and hybridized and photographed each slide after FISH rounds with different satDNAs. After each FISH experiment, we removed the coverslips and probes by three


washes, 5 min each, in 4× SSC and 1% Triton-100. After that, we proceed the refixation in 3.7% formaldehyde diluted in wash-blocking buffer (0.4× SSC, 0.1% Triton C, and 1% skimmed milk),


and then followed the standard protocol of FISH. RESULTS BIOINFORMATIC SATDNA CHARACTERIZATION Computational analysis of repetitive DNAs from male and female genomes revealed the occurrence


of a total of 53 satDNA families, all of which were shared between sexes (Fig. 1a, b). Among the 53 satDNA families detected, 31 were differentially enriched across sexes. From these, 27


satDNAs were male-biased, suggesting enrichment on the neo-Y chromosome, while four satDNAs were female-biased, and therefore putatively enriched on the neo-X chromosome (Table 1, Fig. 1e).


Similarity sequence comparison between the 53 satDNAs did not reveal sequences with similarity higher than 50% that could be grouped into superfamilies. The total satDNA composition is 2.77%


in male and 2.44% in female genomes. This means that there was 13.5% higher abundance of satDNAs in males than in females. The satDNA monomer length varied from 11 bp to 748 bp, and A+T


content was on average 58.90% (ranged from 36.40 to 79.40%). Each satDNA family was named in decreasing order of abundance based on male genome. The ten satDNAs previously identified by


Palacios-Gimenez et al. (2018) were renamed to follow this criterion. The most abundant satDNA (RbeSat01-53) represented 0.36% of the male genome and 0.43% of the female. The least-abundant


satDNA (RbeSat53-21) represented 0.0022% of the male genome and 0.0025% of the female genome. The K2P genetic distance between satDNA families was 8.62% in males and 10.24% in females, on


average. The least-divergent satDNA in males was RbeSat36-222 (K2P 1.02%), and in females it was RbeSat52-176 (K2P 1.43%). The most divergent satDNA in males was RbeSat17-175 (K2P 23.72%),


while in females it was RbeSat21-209 (K2P 24.54%). More detailed data about satDNAs are summarized in Table 1. BIOINFORMATIC CHARACTERIZATION OF TES The TEs were much more abundant in


comparison with satDNAs in both male and female genomes. However, the difference between sexes was lower, suggesting less accumulation on sex chromosomes (Fig. 1c, d). We were able to


identify a total of 56 superfamilies, corresponding to 52.74% of male and 53.72% of female genomes. The most abundant TE was an LTR/Gypsy element (corresponding to 8.47% of male and 8.15% of


female genomes) (Supplementary File 2). With a threshold of fivefold difference between sexes (see “Materials and methods”), none of the TE families were highly enriched. However, we noted


some differences in TE enrichment when specific variants of superfamilies were examined. Following the same criterion used to analyze biased TE superfamilies across sexes, a total of six


variants from distinct superfamlies were biased in males and four biased in females (Fig. 1f). Although we detected enrichment of TE in one of the sexes, these superfamily variants


represented only a small proportion in the genomes, the largest 0.33% in males and 0.37% in females (Supplementary File 3). CHROMOSOMAL LOCATION OF SATDNAS AND TES WITH DIFFERENTIAL


ABUNDANCE BETWEEN SEXES Aiming to understand the repetitive DNA composition and its organization on sex chromosomes, we selected repeats that were enriched in one of the sexes, according to


bioinformatic analysis for FISH mapping. In this way, we selected 27 satDNAs from a total of 31 differentially enriched across sexes. We excluded four of them because they were previously


mapped by Palacios-Gimenez et al. (2018), RbeSat08-11 (previous name Rber61), RbeSat12-176 (previous name Rber158), RbeSat37-22 (previous name Rber185), and RbeSat40-16 (previous name


Rber370). Although the RbeSat23-285 (previous name Rber299) and RbeSat25-166 (previous name Rber248) were previously mapped, we used them in FISH experiments because they were used by


Palacios-Gimenez et al. (2018) to describe neo-Y variants. To confirm the general satDNA chromosomal location, we mapped the 27 satDNAs on metaphase I of one individual harboring the neo-Y


variant type II (Palacios-Gimenez et al. 2018), which is the most common neo-Y variant in adults. This revealed the occurrence of loci on sex chromosomes for 14 satDNAs: five were located


exclusively on autosomes and eight did not reveal FISH signals (Table 1). Among the satDNAs with loci on sex chromosomes, we identified seven exclusively placed on neo-Y, none exclusive on


neo-X, three located on neo-X and neo-Y, one of which was located on neo-X and autosomes, and one located on both neo-Y and autosomes (Supplementary File 4). Two other satDNAs with exclusive


occurrence in neo-Y were also mapped, RbeSat23-285 (Rber299) and RbeSat25-166 (Rber248). To get more precise information about the distribution of the newly detected satDNA families, we


mapped 11 families plus the families RbeSat23-285 (Rber299) and RbeSat25-166 (Rber248) on one embryo harboring neo-Y variant type I, the most common variant among embryos (Palacios-Gimenez


et al. 2018). Two satDNAs were exclusively located on the short arm, RbeSat19-162 near the terminal region and RbeSat35-374 occupying the entire extension of the neo-Y. RbeSat09-216 and


RbeSat10-272 probes mapped to the centromere. One locus of the satDNAs, RbeSat34-312, RbeSat10-272, RbeSat15-289, and RbeSat18-239, occurred on the middle of the long arm. The other satDNAs


(RbeSat21-209, RbeSat25-166, RbeSat03-391, RbeSat44-296, and RbeSat23-285), besides loci of RbeSat34-312, RbeSat10-272, RbeSat15-289, and RbeSat18-239, were grouped on the first half of the


long arm, except the RbeSat36-222, which presented an additional band in the second half of the long arm. As expected, telomeric repeats mapped to terminal regions of the neo-Y chromosome


(Fig. 2). The ten TE superfamily variants enriched in one of the sexes detected by computational analysis did not reveal signals in FISH experiments (results not shown). This may partly be


due to the low abundance of these sequences in the genomes or scattered organization, which may be below the threshold for FISH resolution. SATDNA LANDSCAPE OF NEO-Y We generated a


comparative satDNA landscape for sequences exclusively located on neo-Y chromosome (based on FISH data), i.e., RbeSat03-391, RbeSat21-209, RbeSat23-285, RbeSat25-166, RbeSat34-312,


RbeSat36-222, and RbeSat44-296, to check the differential amplification and divergence of copies between sequences found in female and male genomes. The seven satDNA, which presented the


lowest K2P divergence in male than in female genomes, were also more abundant in males than in females. In addition, the satDNA RbeSat03-391 showed monomers with low K2P divergence in males,


indicating the occurrence of highly divergent copies between sexes (Fig. 3). SATDNA MAPPING REVEALS VARIABLE NEO-SEX CHROMOSOMES The mapping of satDNAs in distinct embryos revealed


variability in regard to the distribution of satDNAs on neo-sex chromosomes. Among 20 analyzed male embryos, we observed eight distinct neo-Y chromosomes in comparison with satDNA


distribution presented in Fig. 2, which corresponds to the most common variant (occurring in twelve embryos). Based on the analysis of Palacios-Gimenez et al. (2018), it corresponds to the


neo-Y variant I. Only slight differences were observed for two embryos that revealed additional centromeric locus for RbeSat15-289 (Fig. 4a), and for one embryo with repositioning of


RbeSat36-222 and RbeSat15-288 (Fig. 4b). On the other hand, we noted extensive reshuffling for another five neo-Y variants, as follows: three embryos with repositioning of satDNAs


RbeSat23-285, RbeSat15-288, RbeSat36-222, RbeSat10-272, and RbeSat18-239. Among these three embryos, the RbeSat15-288 and RbeSat36-222 occupied two distinct positions (Fig. 4c, d). One


embryo, that besides repositioning these five satDNAs, also presented an additional subterminal locus on the long arm for RbeSat25-166 and one centromeric band for RbeSat15-288 (Fig. 4e).


Finally, we observed one embryo with repositioning of satDNAs RbeSat23-285, RbeSat36-222, RbeSat10-272, and RbeSat18-239, an additional locus for RbeSat25-166, and repositioning plus


additional loci for RbeSat15-288 (Fig. 4f). Interestingly, among these embryos with distinct neo-Y chromosomes, three of them belonged to the same ootheca (Fig. 4c, d). The neo-X chromosome


from the 20 male embryos analyzed presented small FISH signals (dot- like), variable in position and in loci number. We followed the classification from White (1973) to describe neo-X


chromosome arms, i.e., XL is the ancestral X and XR is the arm that shares homology with neo-Y. Considering this, the short arm of the neo-X is the XR, while the long arm of the neo-X is XL.


The satDNAs RbeSat12-176, RbeSat25-166, RbeSat26-141, RbeSat03-391, RbeSat44-296, RbeSat34-312, and RbeSat23-285 did not reveal loci on the neo-X chromosome (results not shown). On the


other hand, in all embryos, the satDNAs RbeSat07-277, RbeSat09-215, RbeSat10-272, RbeSat15-288, and RbeSat19-162 were placed on neo-X (Fig. 5a). The RbeSat07-277 occurred invariably in the


terminal region of XL, RbeSat10-272 occurred invariably on the proximal region of XR, RbeSat19-162 occurred invariably in the terminal of XR, RbeSat09-215 revealed multiple loci occurring in


both arms, variably in terminal, interstitial, or proximal regions, RbeSat15-288 occurred as a single locus or multiple loci exclusively on the XR, and as single/multiple loci in both the


XR and XL arms. Finally, the satDNAs RbeSat35-374 and RbeSat18-239 occurred in some neo-X but not in others (Fig. 5b). RbeSat35-374 occurred as a single locus terminally located on XR in 10%


of the embryos, while RbeSat18-239 occurred in 80% of the embryos mainly as single loci on XR or XL with terminal or interstitial location, but in one embryo, two loci (subterminal and


interstitial) on XR were observed. All variations were observed between individuals, and no intraindividual variability was noticed for either neo-X or neo-Y chromosomes. Some satDNAs with


loci on the neo-X and autosomes detected by FISH in mitotic chromosome preparation from embryos were not well visualized on meiotic chromosomes (metaphase I). This is probably due to a


differential condensation state of chromosomes, and small signal size or population variability for the presence and absence of loci. DISCUSSION Despite a few empirical observations of the


accumulation of repeats in neo-sex chromosomes of orthopterans (Palacios-Gimenez et al. 2013, 2015, 2017, 2018; Palacios-Gimenez and Cabral-de-Mello 2015), there is still a limited insight


into the potential role of repetitive DNAs in leading to neo-X and neo-Y differentiation. Here, by recovering repetitive DNAs in _R. bergii_, we provided compelling evidence of differential


enrichment satDNAs on neo-X and neo-Y chromosomes, leading to their differentiation. These data can answer questions about (i) the molecular divergence between neo-X and neo-Y and (ii)


possible driving forces acting for sex chromosome differentiation and variability at the intrapopulation level, clarifying the evolutionary history of the intriguing sex chromosome system in


_R. bergii_. Besides the satDNAs and TEs described here, the U2 snDNA and H3 histone genes and some microsatellites were differentially enriched in one of the sex chromosomes of _R. bergii_


(Palacios-Gimenez et al. 2015). The accumulation of distinct classes of repetitive DNAs in sex chromosomes is a common and convergent pattern of sex chromosomes that evolved repeated times


independently across various taxa (Bachtrog 2013; Wright et al. 2016; Charlesworth 2019; Daish and Grützner 2019). In this way, accumulation of satDNA families, as observed here, was


reported in many other species, for example, in crickets (Palacios-Gimenez et al. 2017), lizards (Giovannotti et al. 2018), frogs (Gatto et al. 2018), fish (Utsunomia et al. 2019), rodents


(Acosta et al. 2007), and bovids (Escudeiro et al. 2019). Concerning TEs, their involvement in sex chromosome evolution was noticed in many other species, like _Drosophila miranda_ (Bachtrog


et al. 2019), woodpecker birds (Bertocchi et al. 2018), and the fish _Apareiodon_ sp. (Schemberger et al. 2019) differing from _R. bergii_ in which we observed low accumulation of this kind


of repetitive DNA in comparison with satDNAs. This suggests that TEs play a minor role in sex chromosome differentiation in _R. bergii_ in comparison with satDNAs. The TEs differentially


enriched by sex have low abundance in the _R. bergii_ genome with no detectable clusters through FISH, implying that if they are accumulated on neo-sex chromosomes, they are likely scattered


and in low copy number. Considering the satDNAs mapped here and those previously studied (Palacios-Gimenez et al. 2018), we can observe three main patterns of chromosomal distribution: (i)


exclusively on the neo-Y chromosome (e.g., RbeSat03-391 and Rbe44-296, Fig. 2, Supplementary File 4), (ii) highly amplified on neo-Y chromosome and dot signals in chromosomal arms of neo-X


and autosomes (e.g., RbeSat09-216, Figs. 2, 4, Supplementary File 4), and (iii) amplified at centromeres of neo-X and some autosomes (e.g. RbeSat08-11, Fig. 1b from Palacios-Gimenez et al.


2018). These data offer support for extensive differentiation between the sex chromosomes by differential amplification of satDNAs in the neo-Y chromosome. This is in accordance with its


heterochromatic nature (Palacios-Gimenez et al. 2015). Among the satDNAs enriched on neo-Y, seven were exclusively mapped on this chromosome (FISH data, Fig. 2) and presented high


homogeneity (low level of K2P, Fig. 3), which is an indication of recent amplification, i.e., after the origin of neo-sex chromosomes. The occurrence of these satDNA families in low


abundance in the female genome implies that they were present in _R. bergii_ genome before establishment of neo-Y, and they were amplified during its evolution. Interestingly, RbeSat03-391


presents similar abundance between sexes and their landscape, revealing two peaks, one with low divergence (male repeats) and another with higher divergence (male and female repeats) (Fig.


3). This is indicative of the occurrence of very recently amplified and homogenized copies of this repeat in the neo-Y chromosome, in regard to other chromosomes. The specific amplification


on neo-Y chromosome could be corroborated by the absence of FISH signals on other chromosomes. Although the neo-sex chromosomes are highly differentiated, they still share some repetitive


DNAs between them and with autosomes, revealing insights about their evolution. The similarity in satDNA composition of the centromeres of neo-X chromosome and autosomes indicates that the


neo-X chromosome preserved centromeric ancestral composition, while the neo-Y suffered composition turnover. For the neo-XY, besides the occurrence of RberSat35-374 that is exclusively


shared between neo-X and neo-Y chromosomes, these chromosomes share another five satDNA families that are confined to discrete regions of neo-X chromosome, and are also shared with some


autosomes. These data suggest conservation of ancestral homology for the ancient autosome involved in the origin of the neo-sex chromosome system. Interestingly, the RberSat35-374 and


RberSat19-162 are shared between the terminal region of XR (short arm of neo-X) and short-arm neo-Y that could be involved in the proper recognition, orientation, and segregation of these


chromosomes during meiosis. It is believed that repetitive sequences can facilitate and mediate chromosomal rearrangements, like inversions, nonhomologous or ectopic recombination,


translocations, and transpositions (Molnár et al. 2011; Skinner and Griffin 2012; Raphael 2012; Li et al. 2016; Christmas et al. 2019). Exceptionally in _R. bergii_, these mechanisms


generated multiple variants of neo-sex chromosomes in the same population. Five variants for neo-Y were previously documented in _R. bergii_, which was thought to have occurred due to three


independent paracentric inversions (Palacios-Gimenez et al. 2018). Our mapping of satDNAs suggests that the turnover of neo-Y chromosome in _R. bergii_ is much more complex, involving


amplifications and transpositions, as well as multiple paracentric inversions (Fig. 4). These events generated highly variable distribution of satDNAs between individuals of _R. bergii_,


mainly for the proximal two-thirds of the long arm of neo-Y. The occurrence of some other variants was also observed for the neo-X chromosome, but only amplification of a minor amount of


satDNAs took place in chromosomal arms (Fig. 5). Interestingly, the high variability for satDNAs on neo-sex chromosomes occurred at an intrapopulation level, a pattern that is not well


documented. Variability for sex chromosomes, and the putative role of repetitive DNAs in sex chromosome differentiation at the intrapopulation level as noticed for _R. bergii_, were revealed


in other few species based on less-detailed analysis, like in _Mazama gouazoubira_, Cervidae (Valeri et al. 2018), by analysis of heterochromatin distribution, and in _Omophoita


aequinoctialis_, Coleoptera by C banding and mapping of repetitive probes, i.e., 18 S and 5 S rDNAs (Goll et al. 2018). In summary, our data support a high differentiation of neo-sex


chromosomes in _R. bergii_ caused primarily by action of satDNAs and events like inversions, amplification, and transpositions. The critical role of satDNAs in neo-sex chromosome evolution


is exemplified by the presence of 21 families in the neo-sex chromosomes (39% of families found in the genome of the species). The amplification of satDNAs in the neo-Y is supported by the


occurrence of 13.5% more satDNA in male than in female genomes. Moreover, seven satDNA families with recent amplification were exclusively enriched on neo-Y, as validated by bioinformatic


and FISH experiments, which accounted for its differentiation from the rest of the genome. The turnover of sex chromosomes in this species caused emergence of multiple variants of neo-X and


neo-Y at the population level, making _R. bergii_ an interesting species for intrapopulation analysis of sex chromosome evolution. Finally, considering that recombination between neo-sex


chromosomes in _R. bergii_ was mostly suppressed at least since the large pericentric inversion took place, we documented an empirical example of differential accumulation and variability of


satDNA as a posterior force after suppression of recombination driving sex chromosome evolution. DATA AVAILABILITY The sequencing data are deposited in GenBank under accession numbers


MT501156-MT5001208, SRX8370569, and SRX8370570. REFERENCES * Acosta MJ, Marchal JA, Martínez S, Puerma E, Bullejos M, de la Guardia RD et al. (2007) Characterization of the satellite DNA


Msat-160 from the species Chionomys nivalis (Rodentia, Arvicolinae). Genetica 130:43–51 Article  CAS  PubMed  Google Scholar  * Bachtrog D (2013) Y-chromosome evolution: emerging insights


into processes of Y-chromosome degeneration. Nat Rev Genet 14:113–124 Article  CAS  PubMed  PubMed Central  Google Scholar  * Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Pires CJ, Rice


W et al. (2011) Are all sex chromosomes created equal? Trends Genet 27:350–357 Article  CAS  PubMed  Google Scholar  * Bachtrog D, Mahajan S, Bracewell R (2019) Massive gene amplification on


a recently formed _Drosophila_ Y chromosome. Nat Ecol Evol 3:1587–1597 Article  PubMed  PubMed Central  Google Scholar  * Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL


et al. (2014) Sex determination: why so many ways of doing it? PLoS Biol 12:e1001899 Article  PubMed  PubMed Central  CAS  Google Scholar  * Benson G (1999) Tandem repeats finder: a program


to analyze DNA sequences. Nucleic Acids Res 27:573–580 Article  CAS  PubMed  PubMed Central  Google Scholar  * Bertocchi NA, de Oliveira TD, Garnero AV, Coan RLB, Gunski RJ, Martins C et al.


(2018) Distribution of CR1-like transposable element in woodpeckers (Aves Piciformes): Z sex chromosomes can act as a refuge for transposable elements. Chromosome Res 26:333–343 Article 


CAS  PubMed  Google Scholar  * Bidau CJ, Marti DA (2001) Meiosis and the neo-XY system of Dichroplus vittatus (Melanoplinae, Acrididae): a comparison between sexes. Genetica 110:185–194


Article  Google Scholar  * Blackmon H, Demuth JP (2014) Estimating tempo and mode of Y chromosome turnover: explaining Y chromosome loss with the fragile Y hypothesis. Genetics 197:561–572


Article  PubMed  PubMed Central  Google Scholar  * Blackmon H, Demuth JP (2015) The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic


mechanism evolution. BioEssays 37:942–950 Article  CAS  PubMed  Google Scholar  * Blackmon H, Ross L, Bachtrog D (2017) Sex determination, sex chromosomes, and karyotype evolution in


insects. J Hered 108:78–93 Article  CAS  PubMed  Google Scholar  * Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120


Article  CAS  PubMed  PubMed Central  Google Scholar  * Cabral-de-Mello DC (2015) Beetles (Coleoptera). In: Van Sharakhov I (ed) Protocols for cytogenetic mapping of arthropod genomes, 1st


edn. CRC Press, Boca Raton, p 191–203 Google Scholar  * Castillo ER, Marti DA, Bidau CJ (2010a) Sex and neo-sex chromosomes in orthoptera: a review. J Orthoptera Res 19:213–231 Article 


Google Scholar  * Castillo ERD, Bidau CJ, Martí DA (2010b) Neo-sex chromosome diversity in Neotropical Melanopline grasshoppers (Melanoplinae, Acrididae). Genetica 138:775–786 Article 


PubMed  Google Scholar  * Castillo ERD, Martí DA, Maronna MM, Scattolini MC, Cabral-de-Mello DC, Cigliano MM (2019) Chromosome evolution and phylogeny in Ronderosia (Orthoptera, Acrididae,


Melanoplinae): clues of survivors to the challenge of sympatry? Syst Entomol 44:61–74 Article  Google Scholar  * Charlesworth D (2017) Evolution of recombination rates between sex


chromosomes. Philos Trans R Soc Lond B Biol Sci 372:20160456 Article  PubMed  PubMed Central  CAS  Google Scholar  * Charlesworth D (2019) Young sex chromosomes in plants and animals. N.


Phytol 224:1095–1107 Article  Google Scholar  * Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128 Article  CAS 


PubMed  Google Scholar  * Chintauan-Marquier IC, Jordan S, Berthier P, Amédégnato C, Pompanon F (2011) Evolutionary history and taxonomy of a short-horned grasshopper subfamily: the


melanoplinae (Orthoptera: Acrididae). Mol Phyl Evol 58:22–32 Article  Google Scholar  * Christmas MJ, Wallberg A, Bunikis I et al. (2019) Chromosomal inversions associated with environmental


adaptation in honeybees. Mol Ecol 28:1358–1374 Article  CAS  PubMed  Google Scholar  * Cigliano MM, Pocco M, Lange CE (2014) Acridoideos (Orthoptera) de importancia agroeconómica en la


República Argentina. In: Claps LE, Roig- Juñent (eds) Biodiversidad de Artrópodos Argentinos. Editorial INSUE – UNT, San Miguel de Tucumán, p 11–36. Vol. 3 Google Scholar  * Cigliano MM,


Braun H, Eades DC, Otte D (2018) Orthoptera Species file. Version 5.0/5.0. http://Orthoptera.speciesFile.org * Daish T, Grützner F (2019) Evolution and meiotic organization of heteromorphic


sex chromosomes. Curr Top Dev Biol 134:1–48 Article  CAS  PubMed  Google Scholar  * Drummond AJ, Ashton B, Cheung M, Cooper A, Heled J, Kearse M et al. (2009) Geneious v4.8. Biomatters Ltd,


Auckland, New Zealand Google Scholar  * Escudeiro A, Ferreira D, Mendes-da-Silva A et al. (2019) Bovine satellite DNAs—a history of the evolution of complexity and its impact in the Bovidae


family. Eur Zool J 86:20–37 Article  CAS  Google Scholar  * Gatto KP, Mattos JV, Seger KR, Lourenço LB (2018) Sex chromosome differentiation in the frog genus Pseudis involves satellite DNA


and chromosome rearrangements. Front Genet 9:301 Article  PubMed  PubMed Central  CAS  Google Scholar  * Giovannotti M, Nisi Cerioni P, Rojo V, Olmo E, Slimani T, Splendiani A et al. (2018)


Characterization of a satellite DNA in the genera Lacerta and Timon (Reptilia, Lacertidae) and its role in the differentiation of the W chromosome. J Exp Zool B Mol Dev Evol 330:83–95


Article  CAS  PubMed  Google Scholar  * Goll LG, Artoni RF, Gross MC, Mello LRA, Coelho MPB, Almeida MC et al. (2018) Comparative cytogenetics of _Omophoita abbreviata_ and _O.


aequinoctialis_ (Coleoptera, Chrysomelidae, Alticini) from the Adolpho Ducke Forest Reserve in Brazilian Amazonia: intrapopulation variation in karyotypes. Cytogenet Genome Res 156:56–64


Article  CAS  PubMed  Google Scholar  * Goubert C, Modolo L, Vieira C, ValienteMoro C, Mavingui P, Boulesteix M (2015) De novo assembly and annotation of the asian tiger mosquito (Aedes


albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti). Genome Biol Evol 7:1192–1205 Article  CAS  PubMed  PubMed


Central  Google Scholar  * Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat


Biotechnol 29:644–652 Article  CAS  PubMed  PubMed Central  Google Scholar  * Graves JAM (2008) Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu Rev Genet


42:565–586 Article  CAS  Google Scholar  * Hobza R, Cegan R, Jesionek W, Kejnovsky E, Vyskot B, Kubat Z (2017) Impact of repetitive elements on the Y chromosome formation in plants. Genes


8:1–12 Article  CAS  Google Scholar  * Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res


19:4780 Article  CAS  PubMed  PubMed Central  Google Scholar  * Li W, Challa GS, Zhu H, Wei W (2016) Recurrence of chromosome rearrangements and reuse of DNA breakpoints in the evolution of


the Triticeae genomes. G3 6:3837–3847 Article  CAS  PubMed  PubMed Central  Google Scholar  * Lisachov AP, Makunin AI, Giovannotti M, Pereira JC, Druzhkova AS, Barucchi VC et al. (2019)


Genetic content of the neo-sex chromosomes in Ctenonotus and Norops (Squamata, Dactyloidae) and degeneration of the Y chromosome as revealed by high-throughput sequencing of individual


chromosomes. Cytogenet Genome Res 157:115–122 Article  CAS  PubMed  Google Scholar  * Marec F, Sahara K, Traut W (2010) Rise and fall of the W chromosome in Lepidoptera. In: Goldsmith MR,


Marec F (eds) Molecular Biology and Genetics of the Lepidoptera. CRC Press, Boca Ratonpp, p 49–63 Google Scholar  * Matsunaga S (2009) Junk DNA promotes sex chromosome evolution. Heredity


102:525–526 Article  CAS  PubMed  Google Scholar  * Molnár I, Cifuentes M, Schneider A, Benavente E, Molnár-Láng M (2011) Association between simple sequence repeat-rich chromosome regions


and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann Bot 107:65–76 Article  PubMed  CAS  Google Scholar  * Montiel EE, Cabrero J, Camacho JPM,


López-León MD (2012) Gypsy, RTE and mariner transposable elements populate Eyprepocnemis plorans genome. Genetica 140:365–374 Article  CAS  PubMed  Google Scholar  * Novák P, Neumann P, Pech


J, Steinhaisl J, Macas J (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads.


Bioinformatics 29:792–793 Article  PubMed  CAS  Google Scholar  * Palacios-Gimenez OM, Bueno D, Cabral-de-Melo DC (2014) Chromosomal mapping of two Mariner-like elements in the grasshopper


Abracris flavolineata (Orthoptera: Acrididae) reveals enrichment in euchromatin. Eur J Entomol 111:329–334 Article  Google Scholar  * Palacios-Gimenez OM, Cabral-de-Mello DC (2015)


Repetitive DNA chromosomal organization in the cricket cycloptiloides americanus: a case of the unusual X1X20 sex chromosome system in Orthoptera. Mol Genet Genomics 290:623–631 Article  CAS


  PubMed  Google Scholar  * Palacios-Gimenez OM, Castillo ER, Martí DA, Cabral-de-Mello DC (2013) Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through


chromosomal mapping of repetitive DNA sequences. BMC Evol Biol 13(167):1–12 Google Scholar  * Palacios-Gimenez OM, Dias GB, Lima LG, Kuhn GCS, Ramos E, Martins C et al. (2017)


High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci Rep. 7:6422 Article  PubMed 


PubMed Central  CAS  Google Scholar  * Palacios-Gimenez OM, Marti DA, Cabral-de-Mello DC (2015) Neo-sex chromosomes of Ronderosia bergi: insight into the evolution of sex chromosomes in


grasshoppers. Chromosoma 124:353–365 Article  CAS  PubMed  Google Scholar  * Palacios-Gimenez OM, Milani D, Lemos B, Castillo ER, Martí DA, Ramos E et al. (2018) Uncovering the evolutionary


history of neo-XY sex chromosomes in the grasshopper Ronderosia bergii (Orthoptera, Melanoplinae) through satellite DNA analysis. BMC Evol Biol 18:1–10 Article  CAS  Google Scholar  * Pinkel


D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938 Article  CAS  PubMed  PubMed Central


  Google Scholar  * Raphael BJ (2012) Chapter 6: structural variation and medical genomics. PLoS Comput Biol 8:e1002821 Article  CAS  PubMed  PubMed Central  Google Scholar  * Rodríguez ME,


Molina B, Merlo MA, Arias-Pérez A, Portela-Bens S, García-Angulo A et al. (2019) Evolution of the proto sex-chromosome in Solea senegalensis. Int J Mol Sci 20:5111 Article  PubMed Central 


CAS  Google Scholar  * Ruiz-Ruano FJ, López-León MD, Cabrero J, Camacho JPM (2016) High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep. 6:28333 Article 


CAS  PubMed  PubMed Central  Google Scholar  * Schemberger MO, Nascimento VD, Coan R, Ramos E, Nogaroto V, Ziemniczak K et al. (2019) DNA transposon invasion and microsatellite accumulation


guide W chromosome differentiation in a Neotropical fish genome. Chromosoma 128:547–560 Article  CAS  PubMed  Google Scholar  * Schmieder R, Edwards R (2011) Fast identification and removal


of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6:e17288 Article  CAS  PubMed  PubMed Central  Google Scholar  * Skinner BM, Griffin DK (2012) Intrachromosomal


rearrangements in avian genome evolution: evidence for regions prone to breakpoints. Heredity 108:37–41 Article  CAS  PubMed  Google Scholar  * Smit AFA, Hubley R, Green P (2013–2015)


RepeatMasker Open-4.0. http://www.repeatmasker.org/ * Steinemann S, Steinemann M (2005) Retroelements: tools for sex chromosome evolution. Cytogenet Genome Res 110:134–143 Article  CAS 


PubMed  Google Scholar  * Traut W, Sahara K, Marec F (2007) Sex chromosomes and sex determination in Lepidoptera. Sex Dev 1:332–346 Article  CAS  PubMed  Google Scholar  * Utsunomia R, Silva


DMZA, Ruiz-Ruano FJ, Goes AGG, Melo S, Ramos LP et al. (2019) Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of


satellite sequences on the heteromorphic sex chromosome. Sci Rep. 9:5856 Article  PubMed  PubMed Central  CAS  Google Scholar  * Valeri MP, Tomazella IM, Duarte JMB (2018) Intrapopulation


chromosomal polymorphism in _Mazama gouazoubira_ (Cetartiodactyla; Cervidae): the emergence of a new species? Cytogenet Genome Res 154:147–152 Article  CAS  PubMed  Google Scholar  * Veltsos


P, Keller I, Nichols RA (2008) The inexorable spread of a newly arisen neo-Y chromosome. PLoS Genet 4:e1000082 Article  PubMed  PubMed Central  CAS  Google Scholar  * Webb GC, White MJD,


Contreras N, Cheney J (1978) Cytogenetics of the parthenogenetic grasshopper Warramaba (formerly Moraba) virgo and its bisexual relatives. Chromosoma 67:309–339 Article  Google Scholar  *


White MJD (1973) Animal Cytology and Evolution, 3rd edn. Cambridge University Press, Cambridge Google Scholar  * Wright AE, Dean R, Zimmer F, Mank JE (2016) How to make a sex chromosome. Nat


Commun 7:12087 Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de


Nível Superior—Brasil (CAPES), by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (process numbers 2015/16661-1, 2014/11763-8), and Conselho Nacional de Desenvolvimento


Científico e Tecnológico (CNPq). We thank Julie Blommaert for the English corrections. We are grateful to the anonymous reviews for providing insightful peer reviews of this paper. OMPG and


FJRR acknowledge the scholarship obtained from the Lawski Foundation (Sweden). ABSMF and DM acknowledge the scholarship from CAPES. DCCM is a recipient of a research productivity fellowship


from the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (process number 304758/2014-0). Computing ran on resources provided by the Swedish National Infrastructure for


Computing (SNIC) through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Departamento de Biologia Geral e


Aplicada, UNESP-Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo, Brazil Ana B. S. M. Ferretti, Diogo Milani & Diogo C. Cabral-de-Mello * Department of


Organismal Biology, Uppsala University, Evolutionary Biology Centre, Uppsala, Sweden Octavio M. Palacios-Gimenez & Francisco J. Ruiz-Ruano * Department of Ecology and Genetics, Uppsala


University, Evolutionary Biology Centre, Uppsala, Sweden Octavio M. Palacios-Gimenez & Francisco J. Ruiz-Ruano Authors * Ana B. S. M. Ferretti View author publications You can also


search for this author inPubMed Google Scholar * Diogo Milani View author publications You can also search for this author inPubMed Google Scholar * Octavio M. Palacios-Gimenez View author


publications You can also search for this author inPubMed Google Scholar * Francisco J. Ruiz-Ruano View author publications You can also search for this author inPubMed Google Scholar *


Diogo C. Cabral-de-Mello View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Diogo C. Cabral-de-Mello. ETHICS


DECLARATIONS CONFLICT OF INTEREST The authors declare that they have no conflict of interest. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to


jurisdictional claims in published maps and institutional affiliations. Associate Editor: Aurora Ruiz-Herrera SUPPLEMENTARY INFORMATION SUPPLEMENTAL MATERIAL 1 SUPPLEMENTAL MATERIAL 2


SUPPLEMENTAL MATERIAL 3 SUPPLEMENTAL MATERIAL 4 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Ferretti, A.B.S.M., Milani, D., Palacios-Gimenez, O.M.


_et al._ High dynamism for neo-sex chromosomes: satellite DNAs reveal complex evolution in a grasshopper. _Heredity_ 125, 124–137 (2020). https://doi.org/10.1038/s41437-020-0327-7 Download


citation * Received: 04 March 2020 * Revised: 24 May 2020 * Accepted: 25 May 2020 * Published: 04 June 2020 * Issue Date: September 2020 * DOI: https://doi.org/10.1038/s41437-020-0327-7


SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to


clipboard Provided by the Springer Nature SharedIt content-sharing initiative