An inferred fitness consequence map of the rice genome

An inferred fitness consequence map of the rice genome

Play all audios:

Loading...

ABSTRACT The extent to which sequence variation impacts plant fitness is poorly understood. High-resolution maps detailing the constraint acting on the genome, especially in regulatory


sites, would be beneficial as functional annotation of noncoding sequences remains sparse. Here, we present a fitness consequence (fitCons) map for rice (_Oryza sativa_). We inferred fitCons


scores (_ρ_) for 246 inferred genome classes derived from nine functional genomic and epigenomic datasets, including chromatin accessibility, messenger RNA/small RNA transcription, DNA


methylation, histone modifications and engaged RNA polymerase activity. These were integrated with genome-wide polymorphism and divergence data from 1,477 rice accessions and 11 reference


genome sequences in the Oryzeae. We found _ρ_ to be multimodal, with _~_9% of the rice genome falling into classes where more than half of the bases would probably have a fitness consequence


if mutated. Around 2% of the rice genome showed evidence of weak negative selection, frequently at candidate regulatory sites, including a novel set of 1,000 potentially active enhancer


elements. This fitCons map provides perspective on the evolutionary forces associated with genome diversity, aids in genome annotation and can guide crop breeding programs. Access through


your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature


Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to


articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which


are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS EPIALLELIC VARIATION OF NON-CODING RNA GENES AND THEIR PHENOTYPIC CONSEQUENCES Article Open access 14 February 2024 A SUPER PAN-GENOMIC LANDSCAPE OF RICE Article Open access 12 July


2022 SEQUENCE-BASED ANALYSIS OF THE RICE CAMTA FAMILY: HAPLOTYPE AND NETWORK ANALYSES Article Open access 05 October 2024 DATA AVAILABILITY The read data used to generate the ChromHMM model


and genomic classes have been deposited at the NCBI SRA (https://www.ncbi.nlm.nih.gov/sra) and can be accessed through BioProject ID PRJNA586887. Genome assemblies of _O. officinalis_ and


_O. australiensis_ are available from the CoGe CyVerse website (https://genomevolution.org/coge/) with genome IDs id56031 and id56030, respectively. Access to genomic class annotation and


INSIGHT scoring of the rice genome is available via a genome browser linked from the project’s website (http://purugganan-genomebrowser.bio.nyu.edu/insightJuly2018/greenInsight.html). All


epigenomic data tracks, genome annotations, multiple alignments, conservation scores, fitCons scores and site classes are available for visualization and download on a local installation on


the USCSC Genome Browser at http://purugganan-genomebrowser.bio.nyu.edu/cgi-bin/hgTracks?db=Osaj&position=Osaj.1%3A166356–178595, and are also available for download from the NCBI SRA


(PRJNA586887). The greenINSIGHT-specific data used to generate the greenINSIGHT online tool are available in the “Additional information, scripts & data” section at


http://purugganan-genomebrowser.bio.nyu.edu/insightJuly2018/greenInsight.html. The greenINSIGHT-specific code used to generate the greenINSIGHT online tool, as well as the code described in


the Methods, are available in the “Additional information, scripts & data” section at http://purugganan-genomebrowser.bio.nyu.edu/insightJuly2018/greenInsight.html. CODE AVAILABILITY The


greenINSIGHT-specific data used to generate the greenINSIGHT online tool are available in the “Additional information, scripts & data” section at


http://purugganan-genomebrowser.bio.nyu.edu/insightJuly2018/greenInsight.html. The greenINSIGHT-specific code used to generate the greenINSIGHT online tool, as well as the code described in


the Methods, are available in the “Additional information, scripts & data” section at http://purugganan-genomebrowser.bio.nyu.edu/insightJuly2018/greenInsight.html. REFERENCES * Siepel,


A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. _Genome Res._ 15, 1034–1050 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Schrider, D. R. & Kern, A. D. Inferring selective constraint from population genomic data suggests recent regulatory turnover in the human brain. _Genome Biol. Evol._ 7, 3511–3528


(2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gronau, I., Arbiza, L., Mohammed, J. & Siepel, A. Inference of natural selection from interspersed genomic elements based


on polymorphism and divergence. _Mol. Biol. Evol._ 30, 1159–1171 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * McDonald, J. H. & Kreitman, M. Adaptive protein evolution


at the _Adh_ locus in _Drosophila_. _Nature_ 351, 652–654 (1991). Article  CAS  PubMed  Google Scholar  * Sawyer, S. A. & Hartl, D. L. Population genetics of polymorphism and


divergence. _Genetics_ 132, 1161–1176 (1992). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bustamante, C. D. et al. Natural selection on protein-coding genes in the human genome.


_Nature_ 437, 1153–1157 (2005). Article  CAS  PubMed  Google Scholar  * Smith, N. G. C. & Eyre-Walker, A. Adaptive protein evolution in _Drosophila_. _Nature_ 415, 1022–1024 (2002).


Article  CAS  PubMed  Google Scholar  * Gulko, B., Hubisz, M. J., Gronau, I. & Siepel, A. A method for calculating probabilities of fitness consequences for point mutations across the


human genome. _Nat. Genet._ 47, 276–283 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gulko, B. & Siepel, A. An evolutionary framework for measuring epigenomic


information and estimating cell-type-specific fitness consequences. _Nat. Genet._ 51, 335–342 (2019). Article  CAS  PubMed  Google Scholar  * Wing, R. A., Purugganan, M. D. & Zhang, Q.


The rice genome revolution: from an ancient grain to Green Super Rice. _Nat. Rev. Genet._ 19, 505–517 (2018). Article  CAS  PubMed  Google Scholar  * Wang, W. et al. Genomic variation in


3,010 diverse accessions of Asian cultivated rice. _Nature_ 557, 43–49 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stein, J. C. et al. Genomes of 13 domesticated and wild


rice relatives highlight genetic conservation, turnover and innovation across the genus _Oryza_. _Nat. Genet._ 50, 285–296 (2018). Article  CAS  PubMed  Google Scholar  * Cao, J. et al.


Whole-genome sequencing of multiple _Arabidopsis thaliana_ populations. _Nat. Genet._ 43, 956–963 (2011). Article  CAS  PubMed  Google Scholar  * Haudry, A. et al. An atlas of over 90,000


conserved noncoding sequences provides insight into crucifer regulatory regions. _Nat. Genet._ 45, 891–898 (2013). Article  CAS  PubMed  Google Scholar  * Huang, X. et al. A map of rice


genome variation reveals the origin of cultivated rice. _Nature_ 490, 497–501 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gutaker, R. M. et al. Genomic history and


ecology of the geographic spread of rice. Preprint at https://www.biorxiv.org/content/10.1101/748178v1 (2019). * Josephs, E. B., Lee, Y. W., Stinchcombe, J. R. & Wright, S. I.


Association mapping reveals the role of purifying selection in the maintenance of genomic variation in gene expression. _Proc. Natl Acad. Sci. USA_ 112, 15390–15395 (2015). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Flowers, J. M. et al. Natural selection in gene-dense regions shapes the genomic pattern of polymorphism in wild and domesticated rice. _Mol. Biol.


Evol._ 29, 675–687 (2012). Article  CAS  PubMed  Google Scholar  * Caicedo, A. L. et al. Genome-wide patterns of nucleotide polymorphism in domesticated rice. _PLoS Genet._ 3, 1745–1756


(2007). Article  CAS  PubMed  Google Scholar  * Bradnam, K. R. & Korf, I. Longer first introns are a general property of eukaryotic gene structure. _PLoS ONE_ 3, e3093 (2008). Article 


PubMed  PubMed Central  CAS  Google Scholar  * Rigau, M., Juan, D., Valencia, A. & Rico, D. Intronic CNVs and gene expression variation in human populations. _PLoS Genet._ 15, e1007902


(2019). Article  PubMed  PubMed Central  CAS  Google Scholar  * Berendzen, K. W. et al. Bioinformatic _cis_-element analyses performed in _Arabidopsis_ and rice disclose bZIP- and


MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. _BMC Plant Biol._ 12, 125 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Freeling, M., Rapaka, L., Lyons, E., Pedersen, B. & Thomas, B. C. G-boxes, bigfoot genes, and environmental response: characterization of intragenomic conserved noncoding sequences in


_Arabidopsis_. _Plant Cell_ 19, 1441–1457 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Choi, H. I., Hong, J. H., Ha, J. O., Kang, J. Y. & Kim, S. Y. ABFs, a family of


ABA-responsive element binding factors. _J. Biol. Chem._ 275, 1723–1730 (2000). Article  CAS  PubMed  Google Scholar  * Lu, T. et al. Function annotation of the rice transcriptome at


single-nucleotide resolution by RNA-Seq. _Genome Res._ 20, 1238–1249 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Peng, T. et al. Differentially expressed microRNA cohorts


in seed development may contribute to poor grain filling of inferior spikelets in rice. _BMC Plant Biol._ 14, 196 (2014). Article  PubMed  PubMed Central  CAS  Google Scholar  * Buenrostro,


J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins


and nucleosome position. _Nat. Methods_ 10, 1213–1218 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-Seq:


a method for assaying chromatin accessibility genome-wide. _Curr. Protoc. Mol. Biol_. 109, 21.29.1–21.29.9 (2015). Article  Google Scholar  * Feng, S. et al. Conservation and divergence of


methylation patterning in plants and animals. _Proc. Natl Acad. Sci. USA_ 107, 8689–8694 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mahat, D. B. et al.


Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-Seq). _Nat. Protoc._ 11, 1455–1476 (2016). Article  PubMed  PubMed Central  Google


Scholar  * Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. _Science_ 339, 950–953 (2013). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Liu, Y. et al. PCSD: a plant chromatin state database. _Nucleic Acids Res._ 46, D1157–D1167 (2018). Article  CAS  PubMed  Google Scholar  * Yan,


W. et al. Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis. _Nat. Commun._ 10, 1705 (2019). Article  PubMed  PubMed Central  CAS  Google


Scholar  * Wen, M. et al. Expression variations of miRNAs and mRNAs in rice (_Oryza sativa_). _Genome Biol. Evol._ 8, 3529–3544 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Zong, W., Zhong, X., You, J. & Xiong, L. Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. _Plant Mol. Biol._ 81, 175–188


(2013). Article  CAS  PubMed  Google Scholar  * Lozano, R. et al. RNA polymerase mapping in plants identifies enhancers enriched in causal variants. Preprint at


https://www.biorxiv.org/content/10.1101/376640v1 (2018). * Xia, J. et al. Detecting and characterizing microRNAs of diverse genomic origins via miRvial. _Nucleic Acids Res._ 45, e176 (2017).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Wilkins, O. et al. EGRINs (environmental gene regulatory influence networks) in rice that function in the response to water deficit,


high temperature, and agricultural environments. _Plant Cell_ 28, 2365–2384 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Tan, F. et al. Analysis of chromatin regulators


reveals specific features of rice DNA methylation pathways. _Plant Physiol._ 171, 2041–2054 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, C., Lu, F., Cui, X. &


Cao, X. Histone methylation in higher plants. _Annu. Rev. Plant Biol._ 61, 395–420 (2010). Article  CAS  PubMed  Google Scholar  * Liu, N., Fromm, M. & Avramova, Z. H3K27me3 and H3K4me3


chromatin environment at super-induced dehydration stress memory genes of _Arabidopsis thaliana_. _Mol. Plant_ 7, 502–513 (2014). Article  CAS  PubMed  Google Scholar  * Fang, H., Liu, X.,


Thorn, G., Duan, J. & Tian, L. Expression analysis of histone acetyltransferases in rice under drought stress. _Biochem. Biophys. Res. Commun._ 443, 400–405 (2014). Article  CAS  PubMed


  Google Scholar  * Du, Z. et al. Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in _Oryza sativa_ L. Japonica. _Mol. Plant_ 6, 1463–1472 (2013).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, T., Zhai, J. & Meyers, B. C. Conservation and divergence in eukaryotic DNA methylation. _Proc. Natl Acad. Sci. USA_ 107,


9027–9028 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. _Nat. Methods_ 9,


215–216 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. _Nat. Protoc._ 12, 2478–1492


(2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Roudier, F. et al. Integrative epigenomic mapping defines four main chromatin states in _Arabidopsis_. _EMBO J._ 30,


1928–1938 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sequeira-Mendes, J. et al. The functional topography of the _Arabidopsis_ genome is organized in a reduced number of


linear motifs of chromatin states. _Plant Cell_ 26, 2351–2366 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Liu, C. et al. Genome-wide analysis of chromatin packing in


_Arabidopsis thaliana_ at single-gene resolution. _Genome Res._ 26, 1057–1068 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Guo, H. & Moose, S. P. Conserved noncoding


sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution. _Plant Cell_ 15, 1143–1158 (2003). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Liu, L., Xu, W., Hu, X., Liu, H. & Lin, Y. W-box and G-box elements play important roles in early senescence of rice flag leaf. _Sci. Rep._ 6, 20881 (2016).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ding, M. et al. Enhancer RNAs (eRNAs): new insights into gene transcription and disease treatment. _J. Cancer_ 9, 2334–2340 (2018).


Article  PubMed  PubMed Central  CAS  Google Scholar  * Wang, Z., Chu, T., Choate, L. A. & Danko, C. G. Identification of regulatory elements from nascent transcription using dREG.


_Genome Res._ 29, 293–303 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Danko, C. G. et al. Dynamic evolution of regulatory element ensembles in primate CD4+ T cells. _Nat.


Ecol. Evol._ 2, 537–548 (2018). Article  PubMed  PubMed Central  Google Scholar  * Savisaar, R. & Hurst, L. D. Exonic splice regulation imposes strong selection at synonymous sites.


_Genome Res._ 28, 1442–1454 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cannavò, E. et al. Shadow enhancers are pervasive features of developmental regulatory networks.


_Curr. Biol._ 26, 38–51 (2016). Article  PubMed  PubMed Central  CAS  Google Scholar  * Prescott, S. L. et al. Enhancer divergence and _cis_-regulatory evolution in the human and chimp


neural crest. _Cell_ 163, 68–83 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mezmouk, S. & Ross-Ibarra, J. The pattern and distribution of deleterious mutations in


maize. _G3 (Bethesda)_ 4, 163–171 (2014). Article  CAS  Google Scholar  * Wallace, J. G., Rodgers-Melnick, E. & Buckler, E. S. On the road to breeding 4.0: unraveling the good, the bad,


and the boring of crop quantitative genomics. _Annu. Rev. Genet._ 52, 421–444 (2018). Article  CAS  PubMed  Google Scholar  * Moyers, B. T., Morrell, P. L. & McKay, J. K. Genetic costs


of domestication and improvement. _J. Hered._ 109, 103–116 (2018). Article  PubMed  Google Scholar  * Morrell, P. L., Buckler, E. S. & Ross-Ibarra, J. Crop genomics: advances and


applications. _Nat. Rev. Genet._ 13, 85–96 (2012). Article  CAS  Google Scholar  * Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. _EMBnet J._ 17, 10–12


(2011). Article  Google Scholar  * Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. _Nat. Methods_ 9, 357–359 (2012). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. _Bioinformatics_ 26, 841–842 (2010). CAS  PubMed  PubMed Central  Google


Scholar  * Kent, W. J. BLAT—the BLAST-like alignment tool. _Genome Res._ 12, 656–664 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Zhang, Y. et al. Model-based analysis of ChIP-Seq


(MACS). _Genome Biol._ 9, R137 (2008). Article  PubMed  PubMed Central  CAS  Google Scholar  * Raurell-Vila, H., Ramos-Rodríguez, M. & Pasquali, L. in _CpG Islands. Methods in Molecular


Biology_ Vol. 1766 (eds Vavouri, T. & Peinado, M. A.) 197–208 (Humana Press, 2018). * Hetzel, J., Duttke, S. H., Benner, C. & Chory, J. Nascent RNA sequencing reveals distinct


features in plant transcription., _Proc. Natl Acad. Sci. USA_ 113, 12316–12321 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Boisvert, S., Raymond, F., Godzaridis, É.,


Laviolette, F. & Corbeil, J. Ray Meta: scalable de novo metagenome assembly and profiling. _Genome Biol._ 13, R122 (2012). Article  PubMed  PubMed Central  CAS  Google Scholar  * Butler,


J. et al. ALLPATHS: de novo assembly of whole-genome shotgun microreads. _Genome Res._ 18, 810–820 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Green, E. D. et al.


Aligning multiple genomic sequences with the threaded blockset aligner. _Genome Res._ 14, 708–715 (2004). Article  PubMed  PubMed Central  CAS  Google Scholar  * Siepel, A. & Haussler,


D. Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. _Mol. Biol. Evol._ 21, 468–488 (2004). Article  CAS  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS We thank the New York University Center for Genomics and Systems Biology GenCore Facility and the Next Generation Sequencing core at Cold Spring Harbor Laboratory for


sequencing support. We thank O. Wilkins and C. Danko for valuable suggestions relating to the ATAC and PRO-Seq protocols, respectively. This work was supported primarily by a grant from the


Zegar Family Foundation (no. A16-0051-004), as well as some support from the National Science Foundation Plant Genome Research Program (no. IOS-1546218) and NYU Abu Dhabi Research Institute


to M.D.P., the National Science Foundation CAREER award (no. MCB-1552455), the US National Institutes of Health (no. R35GM124806) and US Department of Agriculture Hatch Program (no. 1012915)


to X.Z., the US National Institutes of Health (no. R35GM127070) to A.S., and fellowships from the Gordon and Betty Moore Foundation and Life Sciences Research Foundation (no. GBMF2550.06)


to S.C.G. and from the Natural Sciences and Engineering Research Council of Canada (no. PDF-502464-2017) to Z.J.-L. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Center for Genomics and


Systems Biology, Department of Biology, New York University, New York, NY, USA Zoé Joly-Lopez, Adrian E. Platts, Jae Young Choi, Simon C. Groen & Michael D. Purugganan * Simons Center


for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA Adrian E. Platts, Brad Gulko & Adam Siepel * Laboratory of Genetics and Wisconsin Institute for


Discovery, University of Wisconsin-Madison, Madison, WI, USA Xuehua Zhong * Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, NYU Abu Dhabi, Abu Dhabi, United Arab


Emirates Michael D. Purugganan Authors * Zoé Joly-Lopez View author publications You can also search for this author inPubMed Google Scholar * Adrian E. Platts View author publications You


can also search for this author inPubMed Google Scholar * Brad Gulko View author publications You can also search for this author inPubMed Google Scholar * Jae Young Choi View author


publications You can also search for this author inPubMed Google Scholar * Simon C. Groen View author publications You can also search for this author inPubMed Google Scholar * Xuehua Zhong


View author publications You can also search for this author inPubMed Google Scholar * Adam Siepel View author publications You can also search for this author inPubMed Google Scholar *


Michael D. Purugganan View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.D.P. conceived of the study idea. M.D.P., Z.J.-L., A.E.P. and A.S.


designed the study. M.D.P. directed the study. Z.J.-L. and X.Z. collected the data, A.E.P., Z.J.-L., J.Y.C., B.G., S.C.G. and M.D.P. analysed the data. Z.J.-L., A.E.P., A.S. and M.D.P. wrote


the paper. CORRESPONDING AUTHOR Correspondence to Michael D. Purugganan. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PEER


REVIEW INFORMATION _Nature Plants_ thanks Robin Allaby, Peter Civan and Peter Morrell for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral


with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–12. REPORTING SUMMARY


SUPPLEMENTARY TABLES Supplementary Tables 1–11. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Joly-Lopez, Z., Platts, A.E., Gulko, B. _et al._ An


inferred fitness consequence map of the rice genome. _Nat. Plants_ 6, 119–130 (2020). https://doi.org/10.1038/s41477-019-0589-3 Download citation * Received: 18 July 2019 * Accepted: 20


December 2019 * Published: 10 February 2020 * Issue Date: February 2020 * DOI: https://doi.org/10.1038/s41477-019-0589-3 SHARE THIS ARTICLE Anyone you share the following link with will be


able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative